Contributors: 86
Author Tokens Token Proportion Commits Commit Proportion
Chris Wilson 5393 22.45% 183 30.81%
Jesse Barnes 2026 8.43% 20 3.37%
Ville Syrjälä 1437 5.98% 22 3.70%
Ben Widawsky 975 4.06% 24 4.04%
Daniel Vetter 735 3.06% 28 4.71%
Tvrtko A. Ursulin 734 3.06% 15 2.53%
Stephen Chandler Paul 729 3.04% 3 0.51%
Maarten Lankhorst 686 2.86% 10 1.68%
Jani Nikula 658 2.74% 25 4.21%
Manasi D Navare 633 2.64% 6 1.01%
Rodrigo Vivi 631 2.63% 15 2.53%
Damien Lespiau 580 2.41% 18 3.03%
David Weinehall 552 2.30% 4 0.67%
Jeff McGee 539 2.24% 5 0.84%
Paulo Zanoni 533 2.22% 17 2.86%
Oscar Mateo 499 2.08% 6 1.01%
Todd Previte 460 1.92% 1 0.17%
Vandana Kannan 428 1.78% 1 0.17%
Imre Deak 428 1.78% 16 2.69%
Akash Goel 337 1.40% 7 1.18%
Dhinakaran Pandiyan 336 1.40% 6 1.01%
Daniele Ceraolo Spurio 307 1.28% 13 2.19%
José Roberto de Souza 305 1.27% 6 1.01%
Michał Winiarski 291 1.21% 4 0.67%
Ramalingam C 287 1.19% 5 0.84%
Mika Kuoppala 271 1.13% 16 2.69%
Sagar Arun Kamble 253 1.05% 8 1.35%
Kumar, Mahesh 237 0.99% 1 0.17%
Alex Dai 183 0.76% 4 0.67%
Matthew Auld 179 0.75% 1 0.17%
Lionel Landwerlin 167 0.70% 5 0.84%
Michal Wajdeczko 159 0.66% 9 1.52%
Wayne Boyer 145 0.60% 1 0.17%
Anshuman Gupta 129 0.54% 1 0.17%
Ben Gamari 123 0.51% 5 0.84%
Robert Fekete 113 0.47% 1 0.17%
Eric Anholt 110 0.46% 7 1.18%
Nagaraju, Vathsala 110 0.46% 3 0.51%
Zhenyu Wang 106 0.44% 2 0.34%
Dave Airlie 105 0.44% 3 0.51%
Deepak S 103 0.43% 3 0.51%
Libin Yang 100 0.42% 1 0.17%
Łukasz Daniluk 91 0.38% 1 0.17%
Arun Siluvery 78 0.32% 3 0.51%
Anusha Srivatsa 70 0.29% 1 0.17%
Tomeu Vizoso 69 0.29% 1 0.17%
Bob Paauwe 68 0.28% 1 0.17%
Kees Cook 53 0.22% 1 0.17%
Mika Kahola 50 0.21% 2 0.34%
Andy Shevchenko 50 0.21% 1 0.17%
Eric Engestrom 38 0.16% 2 0.34%
Ander Conselvan de Oliveira 37 0.15% 5 0.84%
Dave Gordon 36 0.15% 3 0.51%
Noralf Trönnes 29 0.12% 1 0.17%
Lucas De Marchi 25 0.10% 4 0.67%
Gabriel Krisman Bertazi 21 0.09% 1 0.17%
Namrta Salonie 20 0.08% 1 0.17%
Matt Roper 17 0.07% 2 0.34%
Stuart Summers 16 0.07% 3 0.51%
Brad Volkin 15 0.06% 1 0.17%
Jim Bride 14 0.06% 1 0.17%
Michel Thierry 11 0.05% 2 0.34%
Daniel Stone 11 0.05% 2 0.34%
Jyoti Yadav 9 0.04% 1 0.17%
Geliang Tang 8 0.03% 1 0.17%
Tom O'Rourke 8 0.03% 1 0.17%
Robert Foss 7 0.03% 1 0.17%
Shuang He 7 0.03% 1 0.17%
Peter Zijlstra 7 0.03% 1 0.17%
Azhar Shaikh 6 0.02% 1 0.17%
Carl Worth 6 0.02% 1 0.17%
Shayenne da Luz Moura 5 0.02% 1 0.17%
Joonas Lahtinen 4 0.02% 2 0.34%
Tetsuo Handa 3 0.01% 1 0.17%
Lukas Wunner 3 0.01% 1 0.17%
Adam Jackson 2 0.01% 1 0.17%
Simon Farnsworth 2 0.01% 1 0.17%
Vedang Patel 2 0.01% 1 0.17%
Piotr Piórkowski 2 0.01% 1 0.17%
Colin Ian King 1 0.00% 1 0.17%
A.Sunil Kamath 1 0.00% 1 0.17%
Eugeni Dodonov 1 0.00% 1 0.17%
Thierry Reding 1 0.00% 1 0.17%
Carlos Santa 1 0.00% 1 0.17%
Alexandre Belloni 1 0.00% 1 0.17%
Yuanhan Liu 1 0.00% 1 0.17%
Total 24019 594


/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/sched/mm.h>
#include <linux/sort.h>

#include <drm/drm_debugfs.h>
#include <drm/drm_fourcc.h>

#include "display/intel_display_types.h"
#include "display/intel_dp.h"
#include "display/intel_fbc.h"
#include "display/intel_hdcp.h"
#include "display/intel_hdmi.h"
#include "display/intel_psr.h"

#include "gem/i915_gem_context.h"
#include "gt/intel_gt_pm.h"
#include "gt/intel_reset.h"
#include "gt/uc/intel_guc_submission.h"

#include "i915_debugfs.h"
#include "i915_irq.h"
#include "i915_trace.h"
#include "intel_csr.h"
#include "intel_pm.h"
#include "intel_sideband.h"

static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
{
	return to_i915(node->minor->dev);
}

static int i915_capabilities(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	const struct intel_device_info *info = INTEL_INFO(dev_priv);
	struct drm_printer p = drm_seq_file_printer(m);

	seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
	seq_printf(m, "platform: %s\n", intel_platform_name(info->platform));
	seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));

	intel_device_info_dump_flags(info, &p);
	intel_device_info_dump_runtime(RUNTIME_INFO(dev_priv), &p);
	intel_driver_caps_print(&dev_priv->caps, &p);

	kernel_param_lock(THIS_MODULE);
	i915_params_dump(&i915_modparams, &p);
	kernel_param_unlock(THIS_MODULE);

	return 0;
}

static char get_pin_flag(struct drm_i915_gem_object *obj)
{
	return obj->pin_global ? 'p' : ' ';
}

static char get_tiling_flag(struct drm_i915_gem_object *obj)
{
	switch (i915_gem_object_get_tiling(obj)) {
	default:
	case I915_TILING_NONE: return ' ';
	case I915_TILING_X: return 'X';
	case I915_TILING_Y: return 'Y';
	}
}

static char get_global_flag(struct drm_i915_gem_object *obj)
{
	return READ_ONCE(obj->userfault_count) ? 'g' : ' ';
}

static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
{
	return obj->mm.mapping ? 'M' : ' ';
}

static const char *
stringify_page_sizes(unsigned int page_sizes, char *buf, size_t len)
{
	size_t x = 0;

	switch (page_sizes) {
	case 0:
		return "";
	case I915_GTT_PAGE_SIZE_4K:
		return "4K";
	case I915_GTT_PAGE_SIZE_64K:
		return "64K";
	case I915_GTT_PAGE_SIZE_2M:
		return "2M";
	default:
		if (!buf)
			return "M";

		if (page_sizes & I915_GTT_PAGE_SIZE_2M)
			x += snprintf(buf + x, len - x, "2M, ");
		if (page_sizes & I915_GTT_PAGE_SIZE_64K)
			x += snprintf(buf + x, len - x, "64K, ");
		if (page_sizes & I915_GTT_PAGE_SIZE_4K)
			x += snprintf(buf + x, len - x, "4K, ");
		buf[x-2] = '\0';

		return buf;
	}
}

static void
describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct intel_engine_cs *engine;
	struct i915_vma *vma;
	int pin_count = 0;

	seq_printf(m, "%pK: %c%c%c%c %8zdKiB %02x %02x %s%s%s",
		   &obj->base,
		   get_pin_flag(obj),
		   get_tiling_flag(obj),
		   get_global_flag(obj),
		   get_pin_mapped_flag(obj),
		   obj->base.size / 1024,
		   obj->read_domains,
		   obj->write_domain,
		   i915_cache_level_str(dev_priv, obj->cache_level),
		   obj->mm.dirty ? " dirty" : "",
		   obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
	if (obj->base.name)
		seq_printf(m, " (name: %d)", obj->base.name);

	spin_lock(&obj->vma.lock);
	list_for_each_entry(vma, &obj->vma.list, obj_link) {
		if (!drm_mm_node_allocated(&vma->node))
			continue;

		spin_unlock(&obj->vma.lock);

		if (i915_vma_is_pinned(vma))
			pin_count++;

		seq_printf(m, " (%sgtt offset: %08llx, size: %08llx, pages: %s",
			   i915_vma_is_ggtt(vma) ? "g" : "pp",
			   vma->node.start, vma->node.size,
			   stringify_page_sizes(vma->page_sizes.gtt, NULL, 0));
		if (i915_vma_is_ggtt(vma)) {
			switch (vma->ggtt_view.type) {
			case I915_GGTT_VIEW_NORMAL:
				seq_puts(m, ", normal");
				break;

			case I915_GGTT_VIEW_PARTIAL:
				seq_printf(m, ", partial [%08llx+%x]",
					   vma->ggtt_view.partial.offset << PAGE_SHIFT,
					   vma->ggtt_view.partial.size << PAGE_SHIFT);
				break;

			case I915_GGTT_VIEW_ROTATED:
				seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
					   vma->ggtt_view.rotated.plane[0].width,
					   vma->ggtt_view.rotated.plane[0].height,
					   vma->ggtt_view.rotated.plane[0].stride,
					   vma->ggtt_view.rotated.plane[0].offset,
					   vma->ggtt_view.rotated.plane[1].width,
					   vma->ggtt_view.rotated.plane[1].height,
					   vma->ggtt_view.rotated.plane[1].stride,
					   vma->ggtt_view.rotated.plane[1].offset);
				break;

			case I915_GGTT_VIEW_REMAPPED:
				seq_printf(m, ", remapped [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
					   vma->ggtt_view.remapped.plane[0].width,
					   vma->ggtt_view.remapped.plane[0].height,
					   vma->ggtt_view.remapped.plane[0].stride,
					   vma->ggtt_view.remapped.plane[0].offset,
					   vma->ggtt_view.remapped.plane[1].width,
					   vma->ggtt_view.remapped.plane[1].height,
					   vma->ggtt_view.remapped.plane[1].stride,
					   vma->ggtt_view.remapped.plane[1].offset);
				break;

			default:
				MISSING_CASE(vma->ggtt_view.type);
				break;
			}
		}
		if (vma->fence)
			seq_printf(m, " , fence: %d", vma->fence->id);
		seq_puts(m, ")");

		spin_lock(&obj->vma.lock);
	}
	spin_unlock(&obj->vma.lock);

	seq_printf(m, " (pinned x %d)", pin_count);
	if (obj->stolen)
		seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
	if (obj->pin_global)
		seq_printf(m, " (global)");

	engine = i915_gem_object_last_write_engine(obj);
	if (engine)
		seq_printf(m, " (%s)", engine->name);
}

struct file_stats {
	struct i915_address_space *vm;
	unsigned long count;
	u64 total, unbound;
	u64 active, inactive;
	u64 closed;
};

static int per_file_stats(int id, void *ptr, void *data)
{
	struct drm_i915_gem_object *obj = ptr;
	struct file_stats *stats = data;
	struct i915_vma *vma;

	stats->count++;
	stats->total += obj->base.size;
	if (!atomic_read(&obj->bind_count))
		stats->unbound += obj->base.size;

	spin_lock(&obj->vma.lock);
	if (!stats->vm) {
		for_each_ggtt_vma(vma, obj) {
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			if (i915_vma_is_active(vma))
				stats->active += vma->node.size;
			else
				stats->inactive += vma->node.size;

			if (i915_vma_is_closed(vma))
				stats->closed += vma->node.size;
		}
	} else {
		struct rb_node *p = obj->vma.tree.rb_node;

		while (p) {
			long cmp;

			vma = rb_entry(p, typeof(*vma), obj_node);
			cmp = i915_vma_compare(vma, stats->vm, NULL);
			if (cmp == 0) {
				if (drm_mm_node_allocated(&vma->node)) {
					if (i915_vma_is_active(vma))
						stats->active += vma->node.size;
					else
						stats->inactive += vma->node.size;

					if (i915_vma_is_closed(vma))
						stats->closed += vma->node.size;
				}
				break;
			}
			if (cmp < 0)
				p = p->rb_right;
			else
				p = p->rb_left;
		}
	}
	spin_unlock(&obj->vma.lock);

	return 0;
}

#define print_file_stats(m, name, stats) do { \
	if (stats.count) \
		seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu unbound, %llu closed)\n", \
			   name, \
			   stats.count, \
			   stats.total, \
			   stats.active, \
			   stats.inactive, \
			   stats.unbound, \
			   stats.closed); \
} while (0)

static void print_context_stats(struct seq_file *m,
				struct drm_i915_private *i915)
{
	struct file_stats kstats = {};
	struct i915_gem_context *ctx;

	list_for_each_entry(ctx, &i915->contexts.list, link) {
		struct i915_gem_engines_iter it;
		struct intel_context *ce;

		for_each_gem_engine(ce,
				    i915_gem_context_lock_engines(ctx), it) {
			intel_context_lock_pinned(ce);
			if (intel_context_is_pinned(ce)) {
				if (ce->state)
					per_file_stats(0,
						       ce->state->obj, &kstats);
				per_file_stats(0, ce->ring->vma->obj, &kstats);
			}
			intel_context_unlock_pinned(ce);
		}
		i915_gem_context_unlock_engines(ctx);

		if (!IS_ERR_OR_NULL(ctx->file_priv)) {
			struct file_stats stats = { .vm = ctx->vm, };
			struct drm_file *file = ctx->file_priv->file;
			struct task_struct *task;
			char name[80];

			spin_lock(&file->table_lock);
			idr_for_each(&file->object_idr, per_file_stats, &stats);
			spin_unlock(&file->table_lock);

			rcu_read_lock();
			task = pid_task(ctx->pid ?: file->pid, PIDTYPE_PID);
			snprintf(name, sizeof(name), "%s",
				 task ? task->comm : "<unknown>");
			rcu_read_unlock();

			print_file_stats(m, name, stats);
		}
	}

	print_file_stats(m, "[k]contexts", kstats);
}

static int i915_gem_object_info(struct seq_file *m, void *data)
{
	struct drm_i915_private *i915 = node_to_i915(m->private);
	int ret;

	seq_printf(m, "%u shrinkable [%u free] objects, %llu bytes\n",
		   i915->mm.shrink_count,
		   atomic_read(&i915->mm.free_count),
		   i915->mm.shrink_memory);

	seq_putc(m, '\n');

	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	print_context_stats(m, i915);
	mutex_unlock(&i915->drm.struct_mutex);

	return 0;
}

static void gen8_display_interrupt_info(struct seq_file *m)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	int pipe;

	for_each_pipe(dev_priv, pipe) {
		enum intel_display_power_domain power_domain;
		intel_wakeref_t wakeref;

		power_domain = POWER_DOMAIN_PIPE(pipe);
		wakeref = intel_display_power_get_if_enabled(dev_priv,
							     power_domain);
		if (!wakeref) {
			seq_printf(m, "Pipe %c power disabled\n",
				   pipe_name(pipe));
			continue;
		}
		seq_printf(m, "Pipe %c IMR:\t%08x\n",
			   pipe_name(pipe),
			   I915_READ(GEN8_DE_PIPE_IMR(pipe)));
		seq_printf(m, "Pipe %c IIR:\t%08x\n",
			   pipe_name(pipe),
			   I915_READ(GEN8_DE_PIPE_IIR(pipe)));
		seq_printf(m, "Pipe %c IER:\t%08x\n",
			   pipe_name(pipe),
			   I915_READ(GEN8_DE_PIPE_IER(pipe)));

		intel_display_power_put(dev_priv, power_domain, wakeref);
	}

	seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
		   I915_READ(GEN8_DE_PORT_IMR));
	seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
		   I915_READ(GEN8_DE_PORT_IIR));
	seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
		   I915_READ(GEN8_DE_PORT_IER));

	seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
		   I915_READ(GEN8_DE_MISC_IMR));
	seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
		   I915_READ(GEN8_DE_MISC_IIR));
	seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
		   I915_READ(GEN8_DE_MISC_IER));

	seq_printf(m, "PCU interrupt mask:\t%08x\n",
		   I915_READ(GEN8_PCU_IMR));
	seq_printf(m, "PCU interrupt identity:\t%08x\n",
		   I915_READ(GEN8_PCU_IIR));
	seq_printf(m, "PCU interrupt enable:\t%08x\n",
		   I915_READ(GEN8_PCU_IER));
}

static int i915_interrupt_info(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct intel_engine_cs *engine;
	intel_wakeref_t wakeref;
	int i, pipe;

	wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);

	if (IS_CHERRYVIEW(dev_priv)) {
		intel_wakeref_t pref;

		seq_printf(m, "Master Interrupt Control:\t%08x\n",
			   I915_READ(GEN8_MASTER_IRQ));

		seq_printf(m, "Display IER:\t%08x\n",
			   I915_READ(VLV_IER));
		seq_printf(m, "Display IIR:\t%08x\n",
			   I915_READ(VLV_IIR));
		seq_printf(m, "Display IIR_RW:\t%08x\n",
			   I915_READ(VLV_IIR_RW));
		seq_printf(m, "Display IMR:\t%08x\n",
			   I915_READ(VLV_IMR));
		for_each_pipe(dev_priv, pipe) {
			enum intel_display_power_domain power_domain;

			power_domain = POWER_DOMAIN_PIPE(pipe);
			pref = intel_display_power_get_if_enabled(dev_priv,
								  power_domain);
			if (!pref) {
				seq_printf(m, "Pipe %c power disabled\n",
					   pipe_name(pipe));
				continue;
			}

			seq_printf(m, "Pipe %c stat:\t%08x\n",
				   pipe_name(pipe),
				   I915_READ(PIPESTAT(pipe)));

			intel_display_power_put(dev_priv, power_domain, pref);
		}

		pref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
		seq_printf(m, "Port hotplug:\t%08x\n",
			   I915_READ(PORT_HOTPLUG_EN));
		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
			   I915_READ(VLV_DPFLIPSTAT));
		seq_printf(m, "DPINVGTT:\t%08x\n",
			   I915_READ(DPINVGTT));
		intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, pref);

		for (i = 0; i < 4; i++) {
			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
				   i, I915_READ(GEN8_GT_IMR(i)));
			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
				   i, I915_READ(GEN8_GT_IIR(i)));
			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
				   i, I915_READ(GEN8_GT_IER(i)));
		}

		seq_printf(m, "PCU interrupt mask:\t%08x\n",
			   I915_READ(GEN8_PCU_IMR));
		seq_printf(m, "PCU interrupt identity:\t%08x\n",
			   I915_READ(GEN8_PCU_IIR));
		seq_printf(m, "PCU interrupt enable:\t%08x\n",
			   I915_READ(GEN8_PCU_IER));
	} else if (INTEL_GEN(dev_priv) >= 11) {
		seq_printf(m, "Master Interrupt Control:  %08x\n",
			   I915_READ(GEN11_GFX_MSTR_IRQ));

		seq_printf(m, "Render/Copy Intr Enable:   %08x\n",
			   I915_READ(GEN11_RENDER_COPY_INTR_ENABLE));
		seq_printf(m, "VCS/VECS Intr Enable:      %08x\n",
			   I915_READ(GEN11_VCS_VECS_INTR_ENABLE));
		seq_printf(m, "GUC/SG Intr Enable:\t   %08x\n",
			   I915_READ(GEN11_GUC_SG_INTR_ENABLE));
		seq_printf(m, "GPM/WGBOXPERF Intr Enable: %08x\n",
			   I915_READ(GEN11_GPM_WGBOXPERF_INTR_ENABLE));
		seq_printf(m, "Crypto Intr Enable:\t   %08x\n",
			   I915_READ(GEN11_CRYPTO_RSVD_INTR_ENABLE));
		seq_printf(m, "GUnit/CSME Intr Enable:\t   %08x\n",
			   I915_READ(GEN11_GUNIT_CSME_INTR_ENABLE));

		seq_printf(m, "Display Interrupt Control:\t%08x\n",
			   I915_READ(GEN11_DISPLAY_INT_CTL));

		gen8_display_interrupt_info(m);
	} else if (INTEL_GEN(dev_priv) >= 8) {
		seq_printf(m, "Master Interrupt Control:\t%08x\n",
			   I915_READ(GEN8_MASTER_IRQ));

		for (i = 0; i < 4; i++) {
			seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
				   i, I915_READ(GEN8_GT_IMR(i)));
			seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
				   i, I915_READ(GEN8_GT_IIR(i)));
			seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
				   i, I915_READ(GEN8_GT_IER(i)));
		}

		gen8_display_interrupt_info(m);
	} else if (IS_VALLEYVIEW(dev_priv)) {
		seq_printf(m, "Display IER:\t%08x\n",
			   I915_READ(VLV_IER));
		seq_printf(m, "Display IIR:\t%08x\n",
			   I915_READ(VLV_IIR));
		seq_printf(m, "Display IIR_RW:\t%08x\n",
			   I915_READ(VLV_IIR_RW));
		seq_printf(m, "Display IMR:\t%08x\n",
			   I915_READ(VLV_IMR));
		for_each_pipe(dev_priv, pipe) {
			enum intel_display_power_domain power_domain;
			intel_wakeref_t pref;

			power_domain = POWER_DOMAIN_PIPE(pipe);
			pref = intel_display_power_get_if_enabled(dev_priv,
								  power_domain);
			if (!pref) {
				seq_printf(m, "Pipe %c power disabled\n",
					   pipe_name(pipe));
				continue;
			}

			seq_printf(m, "Pipe %c stat:\t%08x\n",
				   pipe_name(pipe),
				   I915_READ(PIPESTAT(pipe)));
			intel_display_power_put(dev_priv, power_domain, pref);
		}

		seq_printf(m, "Master IER:\t%08x\n",
			   I915_READ(VLV_MASTER_IER));

		seq_printf(m, "Render IER:\t%08x\n",
			   I915_READ(GTIER));
		seq_printf(m, "Render IIR:\t%08x\n",
			   I915_READ(GTIIR));
		seq_printf(m, "Render IMR:\t%08x\n",
			   I915_READ(GTIMR));

		seq_printf(m, "PM IER:\t\t%08x\n",
			   I915_READ(GEN6_PMIER));
		seq_printf(m, "PM IIR:\t\t%08x\n",
			   I915_READ(GEN6_PMIIR));
		seq_printf(m, "PM IMR:\t\t%08x\n",
			   I915_READ(GEN6_PMIMR));

		seq_printf(m, "Port hotplug:\t%08x\n",
			   I915_READ(PORT_HOTPLUG_EN));
		seq_printf(m, "DPFLIPSTAT:\t%08x\n",
			   I915_READ(VLV_DPFLIPSTAT));
		seq_printf(m, "DPINVGTT:\t%08x\n",
			   I915_READ(DPINVGTT));

	} else if (!HAS_PCH_SPLIT(dev_priv)) {
		seq_printf(m, "Interrupt enable:    %08x\n",
			   I915_READ(GEN2_IER));
		seq_printf(m, "Interrupt identity:  %08x\n",
			   I915_READ(GEN2_IIR));
		seq_printf(m, "Interrupt mask:      %08x\n",
			   I915_READ(GEN2_IMR));
		for_each_pipe(dev_priv, pipe)
			seq_printf(m, "Pipe %c stat:         %08x\n",
				   pipe_name(pipe),
				   I915_READ(PIPESTAT(pipe)));
	} else {
		seq_printf(m, "North Display Interrupt enable:		%08x\n",
			   I915_READ(DEIER));
		seq_printf(m, "North Display Interrupt identity:	%08x\n",
			   I915_READ(DEIIR));
		seq_printf(m, "North Display Interrupt mask:		%08x\n",
			   I915_READ(DEIMR));
		seq_printf(m, "South Display Interrupt enable:		%08x\n",
			   I915_READ(SDEIER));
		seq_printf(m, "South Display Interrupt identity:	%08x\n",
			   I915_READ(SDEIIR));
		seq_printf(m, "South Display Interrupt mask:		%08x\n",
			   I915_READ(SDEIMR));
		seq_printf(m, "Graphics Interrupt enable:		%08x\n",
			   I915_READ(GTIER));
		seq_printf(m, "Graphics Interrupt identity:		%08x\n",
			   I915_READ(GTIIR));
		seq_printf(m, "Graphics Interrupt mask:		%08x\n",
			   I915_READ(GTIMR));
	}

	if (INTEL_GEN(dev_priv) >= 11) {
		seq_printf(m, "RCS Intr Mask:\t %08x\n",
			   I915_READ(GEN11_RCS0_RSVD_INTR_MASK));
		seq_printf(m, "BCS Intr Mask:\t %08x\n",
			   I915_READ(GEN11_BCS_RSVD_INTR_MASK));
		seq_printf(m, "VCS0/VCS1 Intr Mask:\t %08x\n",
			   I915_READ(GEN11_VCS0_VCS1_INTR_MASK));
		seq_printf(m, "VCS2/VCS3 Intr Mask:\t %08x\n",
			   I915_READ(GEN11_VCS2_VCS3_INTR_MASK));
		seq_printf(m, "VECS0/VECS1 Intr Mask:\t %08x\n",
			   I915_READ(GEN11_VECS0_VECS1_INTR_MASK));
		seq_printf(m, "GUC/SG Intr Mask:\t %08x\n",
			   I915_READ(GEN11_GUC_SG_INTR_MASK));
		seq_printf(m, "GPM/WGBOXPERF Intr Mask: %08x\n",
			   I915_READ(GEN11_GPM_WGBOXPERF_INTR_MASK));
		seq_printf(m, "Crypto Intr Mask:\t %08x\n",
			   I915_READ(GEN11_CRYPTO_RSVD_INTR_MASK));
		seq_printf(m, "Gunit/CSME Intr Mask:\t %08x\n",
			   I915_READ(GEN11_GUNIT_CSME_INTR_MASK));

	} else if (INTEL_GEN(dev_priv) >= 6) {
		for_each_uabi_engine(engine, dev_priv) {
			seq_printf(m,
				   "Graphics Interrupt mask (%s):	%08x\n",
				   engine->name, ENGINE_READ(engine, RING_IMR));
		}
	}

	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);

	return 0;
}

static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
{
	struct drm_i915_private *i915 = node_to_i915(m->private);
	unsigned int i;

	seq_printf(m, "Total fences = %d\n", i915->ggtt.num_fences);

	rcu_read_lock();
	for (i = 0; i < i915->ggtt.num_fences; i++) {
		struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
		struct i915_vma *vma = reg->vma;

		seq_printf(m, "Fence %d, pin count = %d, object = ",
			   i, atomic_read(&reg->pin_count));
		if (!vma)
			seq_puts(m, "unused");
		else
			describe_obj(m, vma->obj);
		seq_putc(m, '\n');
	}
	rcu_read_unlock();

	return 0;
}

#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
			      size_t count, loff_t *pos)
{
	struct i915_gpu_state *error;
	ssize_t ret;
	void *buf;

	error = file->private_data;
	if (!error)
		return 0;

	/* Bounce buffer required because of kernfs __user API convenience. */
	buf = kmalloc(count, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	ret = i915_gpu_state_copy_to_buffer(error, buf, *pos, count);
	if (ret <= 0)
		goto out;

	if (!copy_to_user(ubuf, buf, ret))
		*pos += ret;
	else
		ret = -EFAULT;

out:
	kfree(buf);
	return ret;
}

static int gpu_state_release(struct inode *inode, struct file *file)
{
	i915_gpu_state_put(file->private_data);
	return 0;
}

static int i915_gpu_info_open(struct inode *inode, struct file *file)
{
	struct drm_i915_private *i915 = inode->i_private;
	struct i915_gpu_state *gpu;
	intel_wakeref_t wakeref;

	gpu = NULL;
	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
		gpu = i915_capture_gpu_state(i915);
	if (IS_ERR(gpu))
		return PTR_ERR(gpu);

	file->private_data = gpu;
	return 0;
}

static const struct file_operations i915_gpu_info_fops = {
	.owner = THIS_MODULE,
	.open = i915_gpu_info_open,
	.read = gpu_state_read,
	.llseek = default_llseek,
	.release = gpu_state_release,
};

static ssize_t
i915_error_state_write(struct file *filp,
		       const char __user *ubuf,
		       size_t cnt,
		       loff_t *ppos)
{
	struct i915_gpu_state *error = filp->private_data;

	if (!error)
		return 0;

	DRM_DEBUG_DRIVER("Resetting error state\n");
	i915_reset_error_state(error->i915);

	return cnt;
}

static int i915_error_state_open(struct inode *inode, struct file *file)
{
	struct i915_gpu_state *error;

	error = i915_first_error_state(inode->i_private);
	if (IS_ERR(error))
		return PTR_ERR(error);

	file->private_data  = error;
	return 0;
}

static const struct file_operations i915_error_state_fops = {
	.owner = THIS_MODULE,
	.open = i915_error_state_open,
	.read = gpu_state_read,
	.write = i915_error_state_write,
	.llseek = default_llseek,
	.release = gpu_state_release,
};
#endif

static int i915_frequency_info(struct seq_file *m, void *unused)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct intel_uncore *uncore = &dev_priv->uncore;
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	intel_wakeref_t wakeref;
	int ret = 0;

	wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);

	if (IS_GEN(dev_priv, 5)) {
		u16 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
		u16 rgvstat = intel_uncore_read16(uncore, MEMSTAT_ILK);

		seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
		seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
		seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
			   MEMSTAT_VID_SHIFT);
		seq_printf(m, "Current P-state: %d\n",
			   (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
		u32 rpmodectl, freq_sts;

		rpmodectl = I915_READ(GEN6_RP_CONTROL);
		seq_printf(m, "Video Turbo Mode: %s\n",
			   yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
		seq_printf(m, "HW control enabled: %s\n",
			   yesno(rpmodectl & GEN6_RP_ENABLE));
		seq_printf(m, "SW control enabled: %s\n",
			   yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
				  GEN6_RP_MEDIA_SW_MODE));

		vlv_punit_get(dev_priv);
		freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
		vlv_punit_put(dev_priv);

		seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
		seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);

		seq_printf(m, "actual GPU freq: %d MHz\n",
			   intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));

		seq_printf(m, "current GPU freq: %d MHz\n",
			   intel_gpu_freq(dev_priv, rps->cur_freq));

		seq_printf(m, "max GPU freq: %d MHz\n",
			   intel_gpu_freq(dev_priv, rps->max_freq));

		seq_printf(m, "min GPU freq: %d MHz\n",
			   intel_gpu_freq(dev_priv, rps->min_freq));

		seq_printf(m, "idle GPU freq: %d MHz\n",
			   intel_gpu_freq(dev_priv, rps->idle_freq));

		seq_printf(m,
			   "efficient (RPe) frequency: %d MHz\n",
			   intel_gpu_freq(dev_priv, rps->efficient_freq));
	} else if (INTEL_GEN(dev_priv) >= 6) {
		u32 rp_state_limits;
		u32 gt_perf_status;
		u32 rp_state_cap;
		u32 rpmodectl, rpinclimit, rpdeclimit;
		u32 rpstat, cagf, reqf;
		u32 rpupei, rpcurup, rpprevup;
		u32 rpdownei, rpcurdown, rpprevdown;
		u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
		int max_freq;

		rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
		if (IS_GEN9_LP(dev_priv)) {
			rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
			gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
		} else {
			rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
			gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
		}

		/* RPSTAT1 is in the GT power well */
		intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);

		reqf = I915_READ(GEN6_RPNSWREQ);
		if (INTEL_GEN(dev_priv) >= 9)
			reqf >>= 23;
		else {
			reqf &= ~GEN6_TURBO_DISABLE;
			if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
				reqf >>= 24;
			else
				reqf >>= 25;
		}
		reqf = intel_gpu_freq(dev_priv, reqf);

		rpmodectl = I915_READ(GEN6_RP_CONTROL);
		rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
		rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);

		rpstat = I915_READ(GEN6_RPSTAT1);
		rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
		rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
		rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
		rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
		rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
		rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
		cagf = intel_gpu_freq(dev_priv,
				      intel_get_cagf(dev_priv, rpstat));

		intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);

		if (INTEL_GEN(dev_priv) >= 11) {
			pm_ier = I915_READ(GEN11_GPM_WGBOXPERF_INTR_ENABLE);
			pm_imr = I915_READ(GEN11_GPM_WGBOXPERF_INTR_MASK);
			/*
			 * The equivalent to the PM ISR & IIR cannot be read
			 * without affecting the current state of the system
			 */
			pm_isr = 0;
			pm_iir = 0;
		} else if (INTEL_GEN(dev_priv) >= 8) {
			pm_ier = I915_READ(GEN8_GT_IER(2));
			pm_imr = I915_READ(GEN8_GT_IMR(2));
			pm_isr = I915_READ(GEN8_GT_ISR(2));
			pm_iir = I915_READ(GEN8_GT_IIR(2));
		} else {
			pm_ier = I915_READ(GEN6_PMIER);
			pm_imr = I915_READ(GEN6_PMIMR);
			pm_isr = I915_READ(GEN6_PMISR);
			pm_iir = I915_READ(GEN6_PMIIR);
		}
		pm_mask = I915_READ(GEN6_PMINTRMSK);

		seq_printf(m, "Video Turbo Mode: %s\n",
			   yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
		seq_printf(m, "HW control enabled: %s\n",
			   yesno(rpmodectl & GEN6_RP_ENABLE));
		seq_printf(m, "SW control enabled: %s\n",
			   yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
				  GEN6_RP_MEDIA_SW_MODE));

		seq_printf(m, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n",
			   pm_ier, pm_imr, pm_mask);
		if (INTEL_GEN(dev_priv) <= 10)
			seq_printf(m, "PM ISR=0x%08x IIR=0x%08x\n",
				   pm_isr, pm_iir);
		seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
			   rps->pm_intrmsk_mbz);
		seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
		seq_printf(m, "Render p-state ratio: %d\n",
			   (gt_perf_status & (INTEL_GEN(dev_priv) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
		seq_printf(m, "Render p-state VID: %d\n",
			   gt_perf_status & 0xff);
		seq_printf(m, "Render p-state limit: %d\n",
			   rp_state_limits & 0xff);
		seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
		seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
		seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
		seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
		seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
		seq_printf(m, "CAGF: %dMHz\n", cagf);
		seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
			   rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
		seq_printf(m, "RP CUR UP: %d (%dus)\n",
			   rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
		seq_printf(m, "RP PREV UP: %d (%dus)\n",
			   rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
		seq_printf(m, "Up threshold: %d%%\n",
			   rps->power.up_threshold);

		seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
			   rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
		seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
			   rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
		seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
			   rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
		seq_printf(m, "Down threshold: %d%%\n",
			   rps->power.down_threshold);

		max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
			    rp_state_cap >> 16) & 0xff;
		max_freq *= (IS_GEN9_BC(dev_priv) ||
			     INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
		seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
			   intel_gpu_freq(dev_priv, max_freq));

		max_freq = (rp_state_cap & 0xff00) >> 8;
		max_freq *= (IS_GEN9_BC(dev_priv) ||
			     INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
		seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
			   intel_gpu_freq(dev_priv, max_freq));

		max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
			    rp_state_cap >> 0) & 0xff;
		max_freq *= (IS_GEN9_BC(dev_priv) ||
			     INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
		seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
			   intel_gpu_freq(dev_priv, max_freq));
		seq_printf(m, "Max overclocked frequency: %dMHz\n",
			   intel_gpu_freq(dev_priv, rps->max_freq));

		seq_printf(m, "Current freq: %d MHz\n",
			   intel_gpu_freq(dev_priv, rps->cur_freq));
		seq_printf(m, "Actual freq: %d MHz\n", cagf);
		seq_printf(m, "Idle freq: %d MHz\n",
			   intel_gpu_freq(dev_priv, rps->idle_freq));
		seq_printf(m, "Min freq: %d MHz\n",
			   intel_gpu_freq(dev_priv, rps->min_freq));
		seq_printf(m, "Boost freq: %d MHz\n",
			   intel_gpu_freq(dev_priv, rps->boost_freq));
		seq_printf(m, "Max freq: %d MHz\n",
			   intel_gpu_freq(dev_priv, rps->max_freq));
		seq_printf(m,
			   "efficient (RPe) frequency: %d MHz\n",
			   intel_gpu_freq(dev_priv, rps->efficient_freq));
	} else {
		seq_puts(m, "no P-state info available\n");
	}

	seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
	seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
	seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);

	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
	return ret;
}

static void i915_instdone_info(struct drm_i915_private *dev_priv,
			       struct seq_file *m,
			       struct intel_instdone *instdone)
{
	int slice;
	int subslice;

	seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
		   instdone->instdone);

	if (INTEL_GEN(dev_priv) <= 3)
		return;

	seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
		   instdone->slice_common);

	if (INTEL_GEN(dev_priv) <= 6)
		return;

	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
		seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
			   slice, subslice, instdone->sampler[slice][subslice]);

	for_each_instdone_slice_subslice(dev_priv, slice, subslice)
		seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
			   slice, subslice, instdone->row[slice][subslice]);
}

static int i915_hangcheck_info(struct seq_file *m, void *unused)
{
	struct drm_i915_private *i915 = node_to_i915(m->private);
	struct intel_gt *gt = &i915->gt;
	struct intel_engine_cs *engine;
	intel_wakeref_t wakeref;
	enum intel_engine_id id;

	seq_printf(m, "Reset flags: %lx\n", gt->reset.flags);
	if (test_bit(I915_WEDGED, &gt->reset.flags))
		seq_puts(m, "\tWedged\n");
	if (test_bit(I915_RESET_BACKOFF, &gt->reset.flags))
		seq_puts(m, "\tDevice (global) reset in progress\n");

	if (!i915_modparams.enable_hangcheck) {
		seq_puts(m, "Hangcheck disabled\n");
		return 0;
	}

	if (timer_pending(&gt->hangcheck.work.timer))
		seq_printf(m, "Hangcheck active, timer fires in %dms\n",
			   jiffies_to_msecs(gt->hangcheck.work.timer.expires -
					    jiffies));
	else if (delayed_work_pending(&gt->hangcheck.work))
		seq_puts(m, "Hangcheck active, work pending\n");
	else
		seq_puts(m, "Hangcheck inactive\n");

	seq_printf(m, "GT active? %s\n", yesno(gt->awake));

	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
		for_each_engine(engine, i915, id) {
			struct intel_instdone instdone;

			seq_printf(m, "%s: %d ms ago\n",
				   engine->name,
				   jiffies_to_msecs(jiffies -
						    engine->hangcheck.action_timestamp));

			seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
				   (long long)engine->hangcheck.acthd,
				   intel_engine_get_active_head(engine));

			intel_engine_get_instdone(engine, &instdone);

			seq_puts(m, "\tinstdone read =\n");
			i915_instdone_info(i915, m, &instdone);

			seq_puts(m, "\tinstdone accu =\n");
			i915_instdone_info(i915, m,
					   &engine->hangcheck.instdone);
		}
	}

	return 0;
}

static int ironlake_drpc_info(struct seq_file *m)
{
	struct drm_i915_private *i915 = node_to_i915(m->private);
	struct intel_uncore *uncore = &i915->uncore;
	u32 rgvmodectl, rstdbyctl;
	u16 crstandvid;

	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
	rstdbyctl = intel_uncore_read(uncore, RSTDBYCTL);
	crstandvid = intel_uncore_read16(uncore, CRSTANDVID);

	seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
	seq_printf(m, "Boost freq: %d\n",
		   (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
		   MEMMODE_BOOST_FREQ_SHIFT);
	seq_printf(m, "HW control enabled: %s\n",
		   yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
	seq_printf(m, "SW control enabled: %s\n",
		   yesno(rgvmodectl & MEMMODE_SWMODE_EN));
	seq_printf(m, "Gated voltage change: %s\n",
		   yesno(rgvmodectl & MEMMODE_RCLK_GATE));
	seq_printf(m, "Starting frequency: P%d\n",
		   (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
	seq_printf(m, "Max P-state: P%d\n",
		   (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
	seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
	seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
	seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
	seq_printf(m, "Render standby enabled: %s\n",
		   yesno(!(rstdbyctl & RCX_SW_EXIT)));
	seq_puts(m, "Current RS state: ");
	switch (rstdbyctl & RSX_STATUS_MASK) {
	case RSX_STATUS_ON:
		seq_puts(m, "on\n");
		break;
	case RSX_STATUS_RC1:
		seq_puts(m, "RC1\n");
		break;
	case RSX_STATUS_RC1E:
		seq_puts(m, "RC1E\n");
		break;
	case RSX_STATUS_RS1:
		seq_puts(m, "RS1\n");
		break;
	case RSX_STATUS_RS2:
		seq_puts(m, "RS2 (RC6)\n");
		break;
	case RSX_STATUS_RS3:
		seq_puts(m, "RC3 (RC6+)\n");
		break;
	default:
		seq_puts(m, "unknown\n");
		break;
	}

	return 0;
}

static int i915_forcewake_domains(struct seq_file *m, void *data)
{
	struct drm_i915_private *i915 = node_to_i915(m->private);
	struct intel_uncore *uncore = &i915->uncore;
	struct intel_uncore_forcewake_domain *fw_domain;
	unsigned int tmp;

	seq_printf(m, "user.bypass_count = %u\n",
		   uncore->user_forcewake_count);

	for_each_fw_domain(fw_domain, uncore, tmp)
		seq_printf(m, "%s.wake_count = %u\n",
			   intel_uncore_forcewake_domain_to_str(fw_domain->id),
			   READ_ONCE(fw_domain->wake_count));

	return 0;
}

static void print_rc6_res(struct seq_file *m,
			  const char *title,
			  const i915_reg_t reg)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);

	seq_printf(m, "%s %u (%llu us)\n",
		   title, I915_READ(reg),
		   intel_rc6_residency_us(dev_priv, reg));
}

static int vlv_drpc_info(struct seq_file *m)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	u32 rcctl1, pw_status;

	pw_status = I915_READ(VLV_GTLC_PW_STATUS);
	rcctl1 = I915_READ(GEN6_RC_CONTROL);

	seq_printf(m, "RC6 Enabled: %s\n",
		   yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
					GEN6_RC_CTL_EI_MODE(1))));
	seq_printf(m, "Render Power Well: %s\n",
		   (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
	seq_printf(m, "Media Power Well: %s\n",
		   (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");

	print_rc6_res(m, "Render RC6 residency since boot:", VLV_GT_RENDER_RC6);
	print_rc6_res(m, "Media RC6 residency since boot:", VLV_GT_MEDIA_RC6);

	return i915_forcewake_domains(m, NULL);
}

static int gen6_drpc_info(struct seq_file *m)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	u32 gt_core_status, rcctl1, rc6vids = 0;
	u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;

	gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
	trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);

	rcctl1 = I915_READ(GEN6_RC_CONTROL);
	if (INTEL_GEN(dev_priv) >= 9) {
		gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
		gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
	}

	if (INTEL_GEN(dev_priv) <= 7)
		sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS,
				       &rc6vids, NULL);

	seq_printf(m, "RC1e Enabled: %s\n",
		   yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
	seq_printf(m, "RC6 Enabled: %s\n",
		   yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
	if (INTEL_GEN(dev_priv) >= 9) {
		seq_printf(m, "Render Well Gating Enabled: %s\n",
			yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
		seq_printf(m, "Media Well Gating Enabled: %s\n",
			yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
	}
	seq_printf(m, "Deep RC6 Enabled: %s\n",
		   yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
	seq_printf(m, "Deepest RC6 Enabled: %s\n",
		   yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
	seq_puts(m, "Current RC state: ");
	switch (gt_core_status & GEN6_RCn_MASK) {
	case GEN6_RC0:
		if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
			seq_puts(m, "Core Power Down\n");
		else
			seq_puts(m, "on\n");
		break;
	case GEN6_RC3:
		seq_puts(m, "RC3\n");
		break;
	case GEN6_RC6:
		seq_puts(m, "RC6\n");
		break;
	case GEN6_RC7:
		seq_puts(m, "RC7\n");
		break;
	default:
		seq_puts(m, "Unknown\n");
		break;
	}

	seq_printf(m, "Core Power Down: %s\n",
		   yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
	if (INTEL_GEN(dev_priv) >= 9) {
		seq_printf(m, "Render Power Well: %s\n",
			(gen9_powergate_status &
			 GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
		seq_printf(m, "Media Power Well: %s\n",
			(gen9_powergate_status &
			 GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
	}

	/* Not exactly sure what this is */
	print_rc6_res(m, "RC6 \"Locked to RPn\" residency since boot:",
		      GEN6_GT_GFX_RC6_LOCKED);
	print_rc6_res(m, "RC6 residency since boot:", GEN6_GT_GFX_RC6);
	print_rc6_res(m, "RC6+ residency since boot:", GEN6_GT_GFX_RC6p);
	print_rc6_res(m, "RC6++ residency since boot:", GEN6_GT_GFX_RC6pp);

	if (INTEL_GEN(dev_priv) <= 7) {
		seq_printf(m, "RC6   voltage: %dmV\n",
			   GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
		seq_printf(m, "RC6+  voltage: %dmV\n",
			   GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
		seq_printf(m, "RC6++ voltage: %dmV\n",
			   GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
	}

	return i915_forcewake_domains(m, NULL);
}

static int i915_drpc_info(struct seq_file *m, void *unused)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	intel_wakeref_t wakeref;
	int err = -ENODEV;

	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			err = vlv_drpc_info(m);
		else if (INTEL_GEN(dev_priv) >= 6)
			err = gen6_drpc_info(m);
		else
			err = ironlake_drpc_info(m);
	}

	return err;
}

static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);

	seq_printf(m, "FB tracking busy bits: 0x%08x\n",
		   dev_priv->fb_tracking.busy_bits);

	seq_printf(m, "FB tracking flip bits: 0x%08x\n",
		   dev_priv->fb_tracking.flip_bits);

	return 0;
}

static int i915_fbc_status(struct seq_file *m, void *unused)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct intel_fbc *fbc = &dev_priv->fbc;
	intel_wakeref_t wakeref;

	if (!HAS_FBC(dev_priv))
		return -ENODEV;

	wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
	mutex_lock(&fbc->lock);

	if (intel_fbc_is_active(dev_priv))
		seq_puts(m, "FBC enabled\n");
	else
		seq_printf(m, "FBC disabled: %s\n", fbc->no_fbc_reason);

	if (intel_fbc_is_active(dev_priv)) {
		u32 mask;

		if (INTEL_GEN(dev_priv) >= 8)
			mask = I915_READ(IVB_FBC_STATUS2) & BDW_FBC_COMP_SEG_MASK;
		else if (INTEL_GEN(dev_priv) >= 7)
			mask = I915_READ(IVB_FBC_STATUS2) & IVB_FBC_COMP_SEG_MASK;
		else if (INTEL_GEN(dev_priv) >= 5)
			mask = I915_READ(ILK_DPFC_STATUS) & ILK_DPFC_COMP_SEG_MASK;
		else if (IS_G4X(dev_priv))
			mask = I915_READ(DPFC_STATUS) & DPFC_COMP_SEG_MASK;
		else
			mask = I915_READ(FBC_STATUS) & (FBC_STAT_COMPRESSING |
							FBC_STAT_COMPRESSED);

		seq_printf(m, "Compressing: %s\n", yesno(mask));
	}

	mutex_unlock(&fbc->lock);
	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);

	return 0;
}

static int i915_fbc_false_color_get(void *data, u64 *val)
{
	struct drm_i915_private *dev_priv = data;

	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
		return -ENODEV;

	*val = dev_priv->fbc.false_color;

	return 0;
}

static int i915_fbc_false_color_set(void *data, u64 val)
{
	struct drm_i915_private *dev_priv = data;
	u32 reg;

	if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
		return -ENODEV;

	mutex_lock(&dev_priv->fbc.lock);

	reg = I915_READ(ILK_DPFC_CONTROL);
	dev_priv->fbc.false_color = val;

	I915_WRITE(ILK_DPFC_CONTROL, val ?
		   (reg | FBC_CTL_FALSE_COLOR) :
		   (reg & ~FBC_CTL_FALSE_COLOR));

	mutex_unlock(&dev_priv->fbc.lock);
	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_false_color_fops,
			i915_fbc_false_color_get, i915_fbc_false_color_set,
			"%llu\n");

static int i915_ips_status(struct seq_file *m, void *unused)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	intel_wakeref_t wakeref;

	if (!HAS_IPS(dev_priv))
		return -ENODEV;

	wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);

	seq_printf(m, "Enabled by kernel parameter: %s\n",
		   yesno(i915_modparams.enable_ips));

	if (INTEL_GEN(dev_priv) >= 8) {
		seq_puts(m, "Currently: unknown\n");
	} else {
		if (I915_READ(IPS_CTL) & IPS_ENABLE)
			seq_puts(m, "Currently: enabled\n");
		else
			seq_puts(m, "Currently: disabled\n");
	}

	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);

	return 0;
}

static int i915_sr_status(struct seq_file *m, void *unused)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	intel_wakeref_t wakeref;
	bool sr_enabled = false;

	wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);

	if (INTEL_GEN(dev_priv) >= 9)
		/* no global SR status; inspect per-plane WM */;
	else if (HAS_PCH_SPLIT(dev_priv))
		sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
	else if (IS_I965GM(dev_priv) || IS_G4X(dev_priv) ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv))
		sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
	else if (IS_I915GM(dev_priv))
		sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
	else if (IS_PINEVIEW(dev_priv))
		sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;

	intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref);

	seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));

	return 0;
}

static int i915_ring_freq_table(struct seq_file *m, void *unused)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	unsigned int max_gpu_freq, min_gpu_freq;
	intel_wakeref_t wakeref;
	int gpu_freq, ia_freq;

	if (!HAS_LLC(dev_priv))
		return -ENODEV;

	min_gpu_freq = rps->min_freq;
	max_gpu_freq = rps->max_freq;
	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq /= GEN9_FREQ_SCALER;
		max_gpu_freq /= GEN9_FREQ_SCALER;
	}

	seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");

	wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
	for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
		ia_freq = gpu_freq;
		sandybridge_pcode_read(dev_priv,
				       GEN6_PCODE_READ_MIN_FREQ_TABLE,
				       &ia_freq, NULL);
		seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
			   intel_gpu_freq(dev_priv, (gpu_freq *
						     (IS_GEN9_BC(dev_priv) ||
						      INTEL_GEN(dev_priv) >= 10 ?
						      GEN9_FREQ_SCALER : 1))),
			   ((ia_freq >> 0) & 0xff) * 100,
			   ((ia_freq >> 8) & 0xff) * 100);
	}
	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);

	return 0;
}

static int i915_opregion(struct seq_file *m, void *unused)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct drm_device *dev = &dev_priv->drm;
	struct intel_opregion *opregion = &dev_priv->opregion;
	int ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		goto out;

	if (opregion->header)
		seq_write(m, opregion->header, OPREGION_SIZE);

	mutex_unlock(&dev->struct_mutex);

out:
	return 0;
}

static int i915_vbt(struct seq_file *m, void *unused)
{
	struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;

	if (opregion->vbt)
		seq_write(m, opregion->vbt, opregion->vbt_size);

	return 0;
}

static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct drm_device *dev = &dev_priv->drm;
	struct intel_framebuffer *fbdev_fb = NULL;
	struct drm_framebuffer *drm_fb;
	int ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

#ifdef CONFIG_DRM_FBDEV_EMULATION
	if (dev_priv->fbdev && dev_priv->fbdev->helper.fb) {
		fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);

		seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
			   fbdev_fb->base.width,
			   fbdev_fb->base.height,
			   fbdev_fb->base.format->depth,
			   fbdev_fb->base.format->cpp[0] * 8,
			   fbdev_fb->base.modifier,
			   drm_framebuffer_read_refcount(&fbdev_fb->base));
		describe_obj(m, intel_fb_obj(&fbdev_fb->base));
		seq_putc(m, '\n');
	}
#endif

	mutex_lock(&dev->mode_config.fb_lock);
	drm_for_each_fb(drm_fb, dev) {
		struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
		if (fb == fbdev_fb)
			continue;

		seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
			   fb->base.width,
			   fb->base.height,
			   fb->base.format->depth,
			   fb->base.format->cpp[0] * 8,
			   fb->base.modifier,
			   drm_framebuffer_read_refcount(&fb->base));
		describe_obj(m, intel_fb_obj(&fb->base));
		seq_putc(m, '\n');
	}
	mutex_unlock(&dev->mode_config.fb_lock);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
{
	seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, emit: %u)",
		   ring->space, ring->head, ring->tail, ring->emit);
}

static int i915_context_status(struct seq_file *m, void *unused)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct drm_device *dev = &dev_priv->drm;
	struct i915_gem_context *ctx;
	int ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	list_for_each_entry(ctx, &dev_priv->contexts.list, link) {
		struct i915_gem_engines_iter it;
		struct intel_context *ce;

		seq_puts(m, "HW context ");
		if (!list_empty(&ctx->hw_id_link))
			seq_printf(m, "%x [pin %u]", ctx->hw_id,
				   atomic_read(&ctx->hw_id_pin_count));
		if (ctx->pid) {
			struct task_struct *task;

			task = get_pid_task(ctx->pid, PIDTYPE_PID);
			if (task) {
				seq_printf(m, "(%s [%d]) ",
					   task->comm, task->pid);
				put_task_struct(task);
			}
		} else if (IS_ERR(ctx->file_priv)) {
			seq_puts(m, "(deleted) ");
		} else {
			seq_puts(m, "(kernel) ");
		}

		seq_putc(m, ctx->remap_slice ? 'R' : 'r');
		seq_putc(m, '\n');

		for_each_gem_engine(ce,
				    i915_gem_context_lock_engines(ctx), it) {
			intel_context_lock_pinned(ce);
			if (intel_context_is_pinned(ce)) {
				seq_printf(m, "%s: ", ce->engine->name);
				if (ce->state)
					describe_obj(m, ce->state->obj);
				describe_ctx_ring(m, ce->ring);
				seq_putc(m, '\n');
			}
			intel_context_unlock_pinned(ce);
		}
		i915_gem_context_unlock_engines(ctx);

		seq_putc(m, '\n');
	}

	mutex_unlock(&dev->struct_mutex);

	return 0;
}

static const char *swizzle_string(unsigned swizzle)
{
	switch (swizzle) {
	case I915_BIT_6_SWIZZLE_NONE:
		return "none";
	case I915_BIT_6_SWIZZLE_9:
		return "bit9";
	case I915_BIT_6_SWIZZLE_9_10:
		return "bit9/bit10";
	case I915_BIT_6_SWIZZLE_9_11:
		return "bit9/bit11";
	case I915_BIT_6_SWIZZLE_9_10_11:
		return "bit9/bit10/bit11";
	case I915_BIT_6_SWIZZLE_9_17:
		return "bit9/bit17";
	case I915_BIT_6_SWIZZLE_9_10_17:
		return "bit9/bit10/bit17";
	case I915_BIT_6_SWIZZLE_UNKNOWN:
		return "unknown";
	}

	return "bug";
}

static int i915_swizzle_info(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct intel_uncore *uncore = &dev_priv->uncore;
	intel_wakeref_t wakeref;

	wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);

	seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
		   swizzle_string(dev_priv->mm.bit_6_swizzle_x));
	seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
		   swizzle_string(dev_priv->mm.bit_6_swizzle_y));

	if (IS_GEN_RANGE(dev_priv, 3, 4)) {
		seq_printf(m, "DDC = 0x%08x\n",
			   intel_uncore_read(uncore, DCC));
		seq_printf(m, "DDC2 = 0x%08x\n",
			   intel_uncore_read(uncore, DCC2));
		seq_printf(m, "C0DRB3 = 0x%04x\n",
			   intel_uncore_read16(uncore, C0DRB3));
		seq_printf(m, "C1DRB3 = 0x%04x\n",
			   intel_uncore_read16(uncore, C1DRB3));
	} else if (INTEL_GEN(dev_priv) >= 6) {
		seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
			   intel_uncore_read(uncore, MAD_DIMM_C0));
		seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
			   intel_uncore_read(uncore, MAD_DIMM_C1));
		seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
			   intel_uncore_read(uncore, MAD_DIMM_C2));
		seq_printf(m, "TILECTL = 0x%08x\n",
			   intel_uncore_read(uncore, TILECTL));
		if (INTEL_GEN(dev_priv) >= 8)
			seq_printf(m, "GAMTARBMODE = 0x%08x\n",
				   intel_uncore_read(uncore, GAMTARBMODE));
		else
			seq_printf(m, "ARB_MODE = 0x%08x\n",
				   intel_uncore_read(uncore, ARB_MODE));
		seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
			   intel_uncore_read(uncore, DISP_ARB_CTL));
	}

	if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		seq_puts(m, "L-shaped memory detected\n");

	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);

	return 0;
}

static const char *rps_power_to_str(unsigned int power)
{
	static const char * const strings[] = {
		[LOW_POWER] = "low power",
		[BETWEEN] = "mixed",
		[HIGH_POWER] = "high power",
	};

	if (power >= ARRAY_SIZE(strings) || !strings[power])
		return "unknown";

	return strings[power];
}

static int i915_rps_boost_info(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct intel_rps *rps = &dev_priv->gt_pm.rps;
	u32 act_freq = rps->cur_freq;
	intel_wakeref_t wakeref;

	with_intel_runtime_pm_if_in_use(&dev_priv->runtime_pm, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
			vlv_punit_get(dev_priv);
			act_freq = vlv_punit_read(dev_priv,
						  PUNIT_REG_GPU_FREQ_STS);
			vlv_punit_put(dev_priv);
			act_freq = (act_freq >> 8) & 0xff;
		} else {
			act_freq = intel_get_cagf(dev_priv,
						  I915_READ(GEN6_RPSTAT1));
		}
	}

	seq_printf(m, "RPS enabled? %d\n", rps->enabled);
	seq_printf(m, "GPU busy? %s\n", yesno(dev_priv->gt.awake));
	seq_printf(m, "Boosts outstanding? %d\n",
		   atomic_read(&rps->num_waiters));
	seq_printf(m, "Interactive? %d\n", READ_ONCE(rps->power.interactive));
	seq_printf(m, "Frequency requested %d, actual %d\n",
		   intel_gpu_freq(dev_priv, rps->cur_freq),
		   intel_gpu_freq(dev_priv, act_freq));
	seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
		   intel_gpu_freq(dev_priv, rps->min_freq),
		   intel_gpu_freq(dev_priv, rps->min_freq_softlimit),
		   intel_gpu_freq(dev_priv, rps->max_freq_softlimit),
		   intel_gpu_freq(dev_priv, rps->max_freq));
	seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
		   intel_gpu_freq(dev_priv, rps->idle_freq),
		   intel_gpu_freq(dev_priv, rps->efficient_freq),
		   intel_gpu_freq(dev_priv, rps->boost_freq));

	seq_printf(m, "Wait boosts: %d\n", atomic_read(&rps->boosts));

	if (INTEL_GEN(dev_priv) >= 6 && rps->enabled && dev_priv->gt.awake) {
		u32 rpup, rpupei;
		u32 rpdown, rpdownei;

		intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
		rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
		rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
		rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
		rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
		intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);

		seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
			   rps_power_to_str(rps->power.mode));
		seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
			   rpup && rpupei ? 100 * rpup / rpupei : 0,
			   rps->power.up_threshold);
		seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
			   rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
			   rps->power.down_threshold);
	} else {
		seq_puts(m, "\nRPS Autotuning inactive\n");
	}

	return 0;
}

static int i915_llc(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	const bool edram = INTEL_GEN(dev_priv) > 8;

	seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
	seq_printf(m, "%s: %uMB\n", edram ? "eDRAM" : "eLLC",
		   dev_priv->edram_size_mb);

	return 0;
}

static int i915_huc_load_status_info(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	intel_wakeref_t wakeref;
	struct drm_printer p;

	if (!HAS_GT_UC(dev_priv))
		return -ENODEV;

	p = drm_seq_file_printer(m);
	intel_uc_fw_dump(&dev_priv->gt.uc.huc.fw, &p);

	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
		seq_printf(m, "\nHuC status 0x%08x:\n", I915_READ(HUC_STATUS2));

	return 0;
}

static int i915_guc_load_status_info(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	intel_wakeref_t wakeref;
	struct drm_printer p;

	if (!HAS_GT_UC(dev_priv))
		return -ENODEV;

	p = drm_seq_file_printer(m);
	intel_uc_fw_dump(&dev_priv->gt.uc.guc.fw, &p);

	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
		u32 tmp = I915_READ(GUC_STATUS);
		u32 i;

		seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
		seq_printf(m, "\tBootrom status = 0x%x\n",
			   (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
		seq_printf(m, "\tuKernel status = 0x%x\n",
			   (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
		seq_printf(m, "\tMIA Core status = 0x%x\n",
			   (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
		seq_puts(m, "\nScratch registers:\n");
		for (i = 0; i < 16; i++) {
			seq_printf(m, "\t%2d: \t0x%x\n",
				   i, I915_READ(SOFT_SCRATCH(i)));
		}
	}

	return 0;
}

static const char *
stringify_guc_log_type(enum guc_log_buffer_type type)
{
	switch (type) {
	case GUC_ISR_LOG_BUFFER:
		return "ISR";
	case GUC_DPC_LOG_BUFFER:
		return "DPC";
	case GUC_CRASH_DUMP_LOG_BUFFER:
		return "CRASH";
	default:
		MISSING_CASE(type);
	}

	return "";
}

static void i915_guc_log_info(struct seq_file *m,
			      struct drm_i915_private *dev_priv)
{
	struct intel_guc_log *log = &dev_priv->gt.uc.guc.log;
	enum guc_log_buffer_type type;

	if (!intel_guc_log_relay_enabled(log)) {
		seq_puts(m, "GuC log relay disabled\n");
		return;
	}

	seq_puts(m, "GuC logging stats:\n");

	seq_printf(m, "\tRelay full count: %u\n",
		   log->relay.full_count);

	for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) {
		seq_printf(m, "\t%s:\tflush count %10u, overflow count %10u\n",
			   stringify_guc_log_type(type),
			   log->stats[type].flush,
			   log->stats[type].sampled_overflow);
	}
}

static int i915_guc_info(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	const struct intel_guc *guc = &dev_priv->gt.uc.guc;
	struct intel_guc_client *client = guc->execbuf_client;

	if (!USES_GUC(dev_priv))
		return -ENODEV;

	i915_guc_log_info(m, dev_priv);

	if (!USES_GUC_SUBMISSION(dev_priv))
		return 0;

	GEM_BUG_ON(!guc->execbuf_client);

	seq_printf(m, "\nDoorbell map:\n");
	seq_printf(m, "\t%*pb\n", GUC_NUM_DOORBELLS, guc->doorbell_bitmap);
	seq_printf(m, "Doorbell next cacheline: 0x%x\n", guc->db_cacheline);

	seq_printf(m, "\nGuC execbuf client @ %p:\n", client);
	seq_printf(m, "\tPriority %d, GuC stage index: %u, PD offset 0x%x\n",
		   client->priority,
		   client->stage_id,
		   client->proc_desc_offset);
	seq_printf(m, "\tDoorbell id %d, offset: 0x%lx\n",
		   client->doorbell_id, client->doorbell_offset);
	/* Add more as required ... */

	return 0;
}

static int i915_guc_stage_pool(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	const struct intel_guc *guc = &dev_priv->gt.uc.guc;
	struct guc_stage_desc *desc = guc->stage_desc_pool_vaddr;
	int index;

	if (!USES_GUC_SUBMISSION(dev_priv))
		return -ENODEV;

	for (index = 0; index < GUC_MAX_STAGE_DESCRIPTORS; index++, desc++) {
		struct intel_engine_cs *engine;

		if (!(desc->attribute & GUC_STAGE_DESC_ATTR_ACTIVE))
			continue;

		seq_printf(m, "GuC stage descriptor %u:\n", index);
		seq_printf(m, "\tIndex: %u\n", desc->stage_id);
		seq_printf(m, "\tAttribute: 0x%x\n", desc->attribute);
		seq_printf(m, "\tPriority: %d\n", desc->priority);
		seq_printf(m, "\tDoorbell id: %d\n", desc->db_id);
		seq_printf(m, "\tEngines used: 0x%x\n",
			   desc->engines_used);
		seq_printf(m, "\tDoorbell trigger phy: 0x%llx, cpu: 0x%llx, uK: 0x%x\n",
			   desc->db_trigger_phy,
			   desc->db_trigger_cpu,
			   desc->db_trigger_uk);
		seq_printf(m, "\tProcess descriptor: 0x%x\n",
			   desc->process_desc);
		seq_printf(m, "\tWorkqueue address: 0x%x, size: 0x%x\n",
			   desc->wq_addr, desc->wq_size);
		seq_putc(m, '\n');

		for_each_uabi_engine(engine, dev_priv) {
			u32 guc_engine_id = engine->guc_id;
			struct guc_execlist_context *lrc =
						&desc->lrc[guc_engine_id];

			seq_printf(m, "\t%s LRC:\n", engine->name);
			seq_printf(m, "\t\tContext desc: 0x%x\n",
				   lrc->context_desc);
			seq_printf(m, "\t\tContext id: 0x%x\n", lrc->context_id);
			seq_printf(m, "\t\tLRCA: 0x%x\n", lrc->ring_lrca);
			seq_printf(m, "\t\tRing begin: 0x%x\n", lrc->ring_begin);
			seq_printf(m, "\t\tRing end: 0x%x\n", lrc->ring_end);
			seq_putc(m, '\n');
		}
	}

	return 0;
}

static int i915_guc_log_dump(struct seq_file *m, void *data)
{
	struct drm_info_node *node = m->private;
	struct drm_i915_private *dev_priv = node_to_i915(node);
	bool dump_load_err = !!node->info_ent->data;
	struct drm_i915_gem_object *obj = NULL;
	u32 *log;
	int i = 0;

	if (!HAS_GT_UC(dev_priv))
		return -ENODEV;

	if (dump_load_err)
		obj = dev_priv->gt.uc.load_err_log;
	else if (dev_priv->gt.uc.guc.log.vma)
		obj = dev_priv->gt.uc.guc.log.vma->obj;

	if (!obj)
		return 0;

	log = i915_gem_object_pin_map(obj, I915_MAP_WC);
	if (IS_ERR(log)) {
		DRM_DEBUG("Failed to pin object\n");
		seq_puts(m, "(log data unaccessible)\n");
		return PTR_ERR(log);
	}

	for (i = 0; i < obj->base.size / sizeof(u32); i += 4)
		seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
			   *(log + i), *(log + i + 1),
			   *(log + i + 2), *(log + i + 3));

	seq_putc(m, '\n');

	i915_gem_object_unpin_map(obj);

	return 0;
}

static int i915_guc_log_level_get(void *data, u64 *val)
{
	struct drm_i915_private *dev_priv = data;

	if (!USES_GUC(dev_priv))
		return -ENODEV;

	*val = intel_guc_log_get_level(&dev_priv->gt.uc.guc.log);

	return 0;
}

static int i915_guc_log_level_set(void *data, u64 val)
{
	struct drm_i915_private *dev_priv = data;

	if (!USES_GUC(dev_priv))
		return -ENODEV;

	return intel_guc_log_set_level(&dev_priv->gt.uc.guc.log, val);
}

DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_level_fops,
			i915_guc_log_level_get, i915_guc_log_level_set,
			"%lld\n");

static int i915_guc_log_relay_open(struct inode *inode, struct file *file)
{
	struct drm_i915_private *i915 = inode->i_private;
	struct intel_guc *guc = &i915->gt.uc.guc;
	struct intel_guc_log *log = &guc->log;

	if (!intel_guc_is_running(guc))
		return -ENODEV;

	file->private_data = log;

	return intel_guc_log_relay_open(log);
}

static ssize_t
i915_guc_log_relay_write(struct file *filp,
			 const char __user *ubuf,
			 size_t cnt,
			 loff_t *ppos)
{
	struct intel_guc_log *log = filp->private_data;

	intel_guc_log_relay_flush(log);
	return cnt;
}

static int i915_guc_log_relay_release(struct inode *inode, struct file *file)
{
	struct drm_i915_private *i915 = inode->i_private;
	struct intel_guc *guc = &i915->gt.uc.guc;

	intel_guc_log_relay_close(&guc->log);
	return 0;
}

static const struct file_operations i915_guc_log_relay_fops = {
	.owner = THIS_MODULE,
	.open = i915_guc_log_relay_open,
	.write = i915_guc_log_relay_write,
	.release = i915_guc_log_relay_release,
};

static int i915_psr_sink_status_show(struct seq_file *m, void *data)
{
	u8 val;
	static const char * const sink_status[] = {
		"inactive",
		"transition to active, capture and display",
		"active, display from RFB",
		"active, capture and display on sink device timings",
		"transition to inactive, capture and display, timing re-sync",
		"reserved",
		"reserved",
		"sink internal error",
	};
	struct drm_connector *connector = m->private;
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
	struct intel_dp *intel_dp =
		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
	int ret;

	if (!CAN_PSR(dev_priv)) {
		seq_puts(m, "PSR Unsupported\n");
		return -ENODEV;
	}

	if (connector->status != connector_status_connected)
		return -ENODEV;

	ret = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_STATUS, &val);

	if (ret == 1) {
		const char *str = "unknown";

		val &= DP_PSR_SINK_STATE_MASK;
		if (val < ARRAY_SIZE(sink_status))
			str = sink_status[val];
		seq_printf(m, "Sink PSR status: 0x%x [%s]\n", val, str);
	} else {
		return ret;
	}

	return 0;
}
DEFINE_SHOW_ATTRIBUTE(i915_psr_sink_status);

static void
psr_source_status(struct drm_i915_private *dev_priv, struct seq_file *m)
{
	u32 val, status_val;
	const char *status = "unknown";

	if (dev_priv->psr.psr2_enabled) {
		static const char * const live_status[] = {
			"IDLE",
			"CAPTURE",
			"CAPTURE_FS",
			"SLEEP",
			"BUFON_FW",
			"ML_UP",
			"SU_STANDBY",
			"FAST_SLEEP",
			"DEEP_SLEEP",
			"BUF_ON",
			"TG_ON"
		};
		val = I915_READ(EDP_PSR2_STATUS);
		status_val = (val & EDP_PSR2_STATUS_STATE_MASK) >>
			      EDP_PSR2_STATUS_STATE_SHIFT;
		if (status_val < ARRAY_SIZE(live_status))
			status = live_status[status_val];
	} else {
		static const char * const live_status[] = {
			"IDLE",
			"SRDONACK",
			"SRDENT",
			"BUFOFF",
			"BUFON",
			"AUXACK",
			"SRDOFFACK",
			"SRDENT_ON",
		};
		val = I915_READ(EDP_PSR_STATUS);
		status_val = (val & EDP_PSR_STATUS_STATE_MASK) >>
			      EDP_PSR_STATUS_STATE_SHIFT;
		if (status_val < ARRAY_SIZE(live_status))
			status = live_status[status_val];
	}

	seq_printf(m, "Source PSR status: %s [0x%08x]\n", status, val);
}

static int i915_edp_psr_status(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct i915_psr *psr = &dev_priv->psr;
	intel_wakeref_t wakeref;
	const char *status;
	bool enabled;
	u32 val;

	if (!HAS_PSR(dev_priv))
		return -ENODEV;

	seq_printf(m, "Sink support: %s", yesno(psr->sink_support));
	if (psr->dp)
		seq_printf(m, " [0x%02x]", psr->dp->psr_dpcd[0]);
	seq_puts(m, "\n");

	if (!psr->sink_support)
		return 0;

	wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
	mutex_lock(&psr->lock);

	if (psr->enabled)
		status = psr->psr2_enabled ? "PSR2 enabled" : "PSR1 enabled";
	else
		status = "disabled";
	seq_printf(m, "PSR mode: %s\n", status);

	if (!psr->enabled)
		goto unlock;

	if (psr->psr2_enabled) {
		val = I915_READ(EDP_PSR2_CTL);
		enabled = val & EDP_PSR2_ENABLE;
	} else {
		val = I915_READ(EDP_PSR_CTL);
		enabled = val & EDP_PSR_ENABLE;
	}
	seq_printf(m, "Source PSR ctl: %s [0x%08x]\n",
		   enableddisabled(enabled), val);
	psr_source_status(dev_priv, m);
	seq_printf(m, "Busy frontbuffer bits: 0x%08x\n",
		   psr->busy_frontbuffer_bits);

	/*
	 * SKL+ Perf counter is reset to 0 everytime DC state is entered
	 */
	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
		val = I915_READ(EDP_PSR_PERF_CNT) & EDP_PSR_PERF_CNT_MASK;
		seq_printf(m, "Performance counter: %u\n", val);
	}

	if (psr->debug & I915_PSR_DEBUG_IRQ) {
		seq_printf(m, "Last attempted entry at: %lld\n",
			   psr->last_entry_attempt);
		seq_printf(m, "Last exit at: %lld\n", psr->last_exit);
	}

	if (psr->psr2_enabled) {
		u32 su_frames_val[3];
		int frame;

		/*
		 * Reading all 3 registers before hand to minimize crossing a
		 * frame boundary between register reads
		 */
		for (frame = 0; frame < PSR2_SU_STATUS_FRAMES; frame += 3)
			su_frames_val[frame / 3] = I915_READ(PSR2_SU_STATUS(frame));

		seq_puts(m, "Frame:\tPSR2 SU blocks:\n");

		for (frame = 0; frame < PSR2_SU_STATUS_FRAMES; frame++) {
			u32 su_blocks;

			su_blocks = su_frames_val[frame / 3] &
				    PSR2_SU_STATUS_MASK(frame);
			su_blocks = su_blocks >> PSR2_SU_STATUS_SHIFT(frame);
			seq_printf(m, "%d\t%d\n", frame, su_blocks);
		}
	}

unlock:
	mutex_unlock(&psr->lock);
	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);

	return 0;
}

static int
i915_edp_psr_debug_set(void *data, u64 val)
{
	struct drm_i915_private *dev_priv = data;
	intel_wakeref_t wakeref;
	int ret;

	if (!CAN_PSR(dev_priv))
		return -ENODEV;

	DRM_DEBUG_KMS("Setting PSR debug to %llx\n", val);

	wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);

	ret = intel_psr_debug_set(dev_priv, val);

	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);

	return ret;
}

static int
i915_edp_psr_debug_get(void *data, u64 *val)
{
	struct drm_i915_private *dev_priv = data;

	if (!CAN_PSR(dev_priv))
		return -ENODEV;

	*val = READ_ONCE(dev_priv->psr.debug);
	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(i915_edp_psr_debug_fops,
			i915_edp_psr_debug_get, i915_edp_psr_debug_set,
			"%llu\n");

static int i915_energy_uJ(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	unsigned long long power;
	intel_wakeref_t wakeref;
	u32 units;

	if (INTEL_GEN(dev_priv) < 6)
		return -ENODEV;

	if (rdmsrl_safe(MSR_RAPL_POWER_UNIT, &power))
		return -ENODEV;

	units = (power & 0x1f00) >> 8;
	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
		power = I915_READ(MCH_SECP_NRG_STTS);

	power = (1000000 * power) >> units; /* convert to uJ */
	seq_printf(m, "%llu", power);

	return 0;
}

static int i915_runtime_pm_status(struct seq_file *m, void *unused)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct pci_dev *pdev = dev_priv->drm.pdev;

	if (!HAS_RUNTIME_PM(dev_priv))
		seq_puts(m, "Runtime power management not supported\n");

	seq_printf(m, "Runtime power status: %s\n",
		   enableddisabled(!dev_priv->power_domains.wakeref));

	seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
	seq_printf(m, "IRQs disabled: %s\n",
		   yesno(!intel_irqs_enabled(dev_priv)));
#ifdef CONFIG_PM
	seq_printf(m, "Usage count: %d\n",
		   atomic_read(&dev_priv->drm.dev->power.usage_count));
#else
	seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
#endif
	seq_printf(m, "PCI device power state: %s [%d]\n",
		   pci_power_name(pdev->current_state),
		   pdev->current_state);

	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)) {
		struct drm_printer p = drm_seq_file_printer(m);

		print_intel_runtime_pm_wakeref(&dev_priv->runtime_pm, &p);
	}

	return 0;
}

static int i915_power_domain_info(struct seq_file *m, void *unused)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct i915_power_domains *power_domains = &dev_priv->power_domains;
	int i;

	mutex_lock(&power_domains->lock);

	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
	for (i = 0; i < power_domains->power_well_count; i++) {
		struct i915_power_well *power_well;
		enum intel_display_power_domain power_domain;

		power_well = &power_domains->power_wells[i];
		seq_printf(m, "%-25s %d\n", power_well->desc->name,
			   power_well->count);

		for_each_power_domain(power_domain, power_well->desc->domains)
			seq_printf(m, "  %-23s %d\n",
				 intel_display_power_domain_str(dev_priv,
								power_domain),
				 power_domains->domain_use_count[power_domain]);
	}

	mutex_unlock(&power_domains->lock);

	return 0;
}

static int i915_dmc_info(struct seq_file *m, void *unused)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	intel_wakeref_t wakeref;
	struct intel_csr *csr;
	i915_reg_t dc5_reg, dc6_reg = {};

	if (!HAS_CSR(dev_priv))
		return -ENODEV;

	csr = &dev_priv->csr;

	wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);

	seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
	seq_printf(m, "path: %s\n", csr->fw_path);

	if (!csr->dmc_payload)
		goto out;

	seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
		   CSR_VERSION_MINOR(csr->version));

	if (INTEL_GEN(dev_priv) >= 12) {
		dc5_reg = TGL_DMC_DEBUG_DC5_COUNT;
		dc6_reg = TGL_DMC_DEBUG_DC6_COUNT;
	} else {
		dc5_reg = IS_BROXTON(dev_priv) ? BXT_CSR_DC3_DC5_COUNT :
						 SKL_CSR_DC3_DC5_COUNT;
		if (!IS_GEN9_LP(dev_priv))
			dc6_reg = SKL_CSR_DC5_DC6_COUNT;
	}

	seq_printf(m, "DC3 -> DC5 count: %d\n", I915_READ(dc5_reg));
	if (dc6_reg.reg)
		seq_printf(m, "DC5 -> DC6 count: %d\n", I915_READ(dc6_reg));

out:
	seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
	seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
	seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));

	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);

	return 0;
}

static void intel_seq_print_mode(struct seq_file *m, int tabs,
				 struct drm_display_mode *mode)
{
	int i;

	for (i = 0; i < tabs; i++)
		seq_putc(m, '\t');

	seq_printf(m, DRM_MODE_FMT "\n", DRM_MODE_ARG(mode));
}

static void intel_encoder_info(struct seq_file *m,
			       struct intel_crtc *intel_crtc,
			       struct intel_encoder *intel_encoder)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct drm_device *dev = &dev_priv->drm;
	struct drm_crtc *crtc = &intel_crtc->base;
	struct intel_connector *intel_connector;
	struct drm_encoder *encoder;

	encoder = &intel_encoder->base;
	seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
		   encoder->base.id, encoder->name);
	for_each_connector_on_encoder(dev, encoder, intel_connector) {
		struct drm_connector *connector = &intel_connector->base;
		seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
			   connector->base.id,
			   connector->name,
			   drm_get_connector_status_name(connector->status));
		if (connector->status == connector_status_connected) {
			struct drm_display_mode *mode = &crtc->mode;
			seq_printf(m, ", mode:\n");
			intel_seq_print_mode(m, 2, mode);
		} else {
			seq_putc(m, '\n');
		}
	}
}

static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct drm_device *dev = &dev_priv->drm;
	struct drm_crtc *crtc = &intel_crtc->base;
	struct intel_encoder *intel_encoder;
	struct drm_plane_state *plane_state = crtc->primary->state;
	struct drm_framebuffer *fb = plane_state->fb;

	if (fb)
		seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
			   fb->base.id, plane_state->src_x >> 16,
			   plane_state->src_y >> 16, fb->width, fb->height);
	else
		seq_puts(m, "\tprimary plane disabled\n");
	for_each_encoder_on_crtc(dev, crtc, intel_encoder)
		intel_encoder_info(m, intel_crtc, intel_encoder);
}

static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
{
	struct drm_display_mode *mode = panel->fixed_mode;

	seq_printf(m, "\tfixed mode:\n");
	intel_seq_print_mode(m, 2, mode);
}

static void intel_hdcp_info(struct seq_file *m,
			    struct intel_connector *intel_connector)
{
	bool hdcp_cap, hdcp2_cap;

	hdcp_cap = intel_hdcp_capable(intel_connector);
	hdcp2_cap = intel_hdcp2_capable(intel_connector);

	if (hdcp_cap)
		seq_puts(m, "HDCP1.4 ");
	if (hdcp2_cap)
		seq_puts(m, "HDCP2.2 ");

	if (!hdcp_cap && !hdcp2_cap)
		seq_puts(m, "None");

	seq_puts(m, "\n");
}

static void intel_dp_info(struct seq_file *m,
			  struct intel_connector *intel_connector)
{
	struct intel_encoder *intel_encoder = intel_connector->encoder;
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);

	seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
	seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
	if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
		intel_panel_info(m, &intel_connector->panel);

	drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
				&intel_dp->aux);
	if (intel_connector->hdcp.shim) {
		seq_puts(m, "\tHDCP version: ");
		intel_hdcp_info(m, intel_connector);
	}
}

static void intel_dp_mst_info(struct seq_file *m,
			  struct intel_connector *intel_connector)
{
	struct intel_encoder *intel_encoder = intel_connector->encoder;
	struct intel_dp_mst_encoder *intel_mst =
		enc_to_mst(&intel_encoder->base);
	struct intel_digital_port *intel_dig_port = intel_mst->primary;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	bool has_audio = drm_dp_mst_port_has_audio(&intel_dp->mst_mgr,
					intel_connector->port);

	seq_printf(m, "\taudio support: %s\n", yesno(has_audio));
}

static void intel_hdmi_info(struct seq_file *m,
			    struct intel_connector *intel_connector)
{
	struct intel_encoder *intel_encoder = intel_connector->encoder;
	struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);

	seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
	if (intel_connector->hdcp.shim) {
		seq_puts(m, "\tHDCP version: ");
		intel_hdcp_info(m, intel_connector);
	}
}

static void intel_lvds_info(struct seq_file *m,
			    struct intel_connector *intel_connector)
{
	intel_panel_info(m, &intel_connector->panel);
}

static void intel_connector_info(struct seq_file *m,
				 struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct intel_encoder *intel_encoder = intel_connector->encoder;
	struct drm_display_mode *mode;

	seq_printf(m, "connector %d: type %s, status: %s\n",
		   connector->base.id, connector->name,
		   drm_get_connector_status_name(connector->status));

	if (connector->status == connector_status_disconnected)
		return;

	seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
		   connector->display_info.width_mm,
		   connector->display_info.height_mm);
	seq_printf(m, "\tsubpixel order: %s\n",
		   drm_get_subpixel_order_name(connector->display_info.subpixel_order));
	seq_printf(m, "\tCEA rev: %d\n", connector->display_info.cea_rev);

	if (!intel_encoder)
		return;

	switch (connector->connector_type) {
	case DRM_MODE_CONNECTOR_DisplayPort:
	case DRM_MODE_CONNECTOR_eDP:
		if (intel_encoder->type == INTEL_OUTPUT_DP_MST)
			intel_dp_mst_info(m, intel_connector);
		else
			intel_dp_info(m, intel_connector);
		break;
	case DRM_MODE_CONNECTOR_LVDS:
		if (intel_encoder->type == INTEL_OUTPUT_LVDS)
			intel_lvds_info(m, intel_connector);
		break;
	case DRM_MODE_CONNECTOR_HDMIA:
		if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
		    intel_encoder->type == INTEL_OUTPUT_DDI)
			intel_hdmi_info(m, intel_connector);
		break;
	default:
		break;
	}

	seq_printf(m, "\tmodes:\n");
	list_for_each_entry(mode, &connector->modes, head)
		intel_seq_print_mode(m, 2, mode);
}

static const char *plane_type(enum drm_plane_type type)
{
	switch (type) {
	case DRM_PLANE_TYPE_OVERLAY:
		return "OVL";
	case DRM_PLANE_TYPE_PRIMARY:
		return "PRI";
	case DRM_PLANE_TYPE_CURSOR:
		return "CUR";
	/*
	 * Deliberately omitting default: to generate compiler warnings
	 * when a new drm_plane_type gets added.
	 */
	}

	return "unknown";
}

static void plane_rotation(char *buf, size_t bufsize, unsigned int rotation)
{
	/*
	 * According to doc only one DRM_MODE_ROTATE_ is allowed but this
	 * will print them all to visualize if the values are misused
	 */
	snprintf(buf, bufsize,
		 "%s%s%s%s%s%s(0x%08x)",
		 (rotation & DRM_MODE_ROTATE_0) ? "0 " : "",
		 (rotation & DRM_MODE_ROTATE_90) ? "90 " : "",
		 (rotation & DRM_MODE_ROTATE_180) ? "180 " : "",
		 (rotation & DRM_MODE_ROTATE_270) ? "270 " : "",
		 (rotation & DRM_MODE_REFLECT_X) ? "FLIPX " : "",
		 (rotation & DRM_MODE_REFLECT_Y) ? "FLIPY " : "",
		 rotation);
}

static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct drm_device *dev = &dev_priv->drm;
	struct intel_plane *intel_plane;

	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane_state *state;
		struct drm_plane *plane = &intel_plane->base;
		struct drm_format_name_buf format_name;
		char rot_str[48];

		if (!plane->state) {
			seq_puts(m, "plane->state is NULL!\n");
			continue;
		}

		state = plane->state;

		if (state->fb) {
			drm_get_format_name(state->fb->format->format,
					    &format_name);
		} else {
			sprintf(format_name.str, "N/A");
		}

		plane_rotation(rot_str, sizeof(rot_str), state->rotation);

		seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
			   plane->base.id,
			   plane_type(intel_plane->base.type),
			   state->crtc_x, state->crtc_y,
			   state->crtc_w, state->crtc_h,
			   (state->src_x >> 16),
			   ((state->src_x & 0xffff) * 15625) >> 10,
			   (state->src_y >> 16),
			   ((state->src_y & 0xffff) * 15625) >> 10,
			   (state->src_w >> 16),
			   ((state->src_w & 0xffff) * 15625) >> 10,
			   (state->src_h >> 16),
			   ((state->src_h & 0xffff) * 15625) >> 10,
			   format_name.str,
			   rot_str);
	}
}

static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
{
	struct intel_crtc_state *pipe_config;
	int num_scalers = intel_crtc->num_scalers;
	int i;

	pipe_config = to_intel_crtc_state(intel_crtc->base.state);

	/* Not all platformas have a scaler */
	if (num_scalers) {
		seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
			   num_scalers,
			   pipe_config->scaler_state.scaler_users,
			   pipe_config->scaler_state.scaler_id);

		for (i = 0; i < num_scalers; i++) {
			struct intel_scaler *sc =
					&pipe_config->scaler_state.scalers[i];

			seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
				   i, yesno(sc->in_use), sc->mode);
		}
		seq_puts(m, "\n");
	} else {
		seq_puts(m, "\tNo scalers available on this platform\n");
	}
}

static int i915_display_info(struct seq_file *m, void *unused)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct drm_device *dev = &dev_priv->drm;
	struct intel_crtc *crtc;
	struct drm_connector *connector;
	struct drm_connector_list_iter conn_iter;
	intel_wakeref_t wakeref;

	wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);

	seq_printf(m, "CRTC info\n");
	seq_printf(m, "---------\n");
	for_each_intel_crtc(dev, crtc) {
		struct intel_crtc_state *pipe_config;

		drm_modeset_lock(&crtc->base.mutex, NULL);
		pipe_config = to_intel_crtc_state(crtc->base.state);

		seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
			   crtc->base.base.id, pipe_name(crtc->pipe),
			   yesno(pipe_config->base.active),
			   pipe_config->pipe_src_w, pipe_config->pipe_src_h,
			   yesno(pipe_config->dither), pipe_config->pipe_bpp);

		if (pipe_config->base.active) {
			struct intel_plane *cursor =
				to_intel_plane(crtc->base.cursor);

			intel_crtc_info(m, crtc);

			seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x\n",
				   yesno(cursor->base.state->visible),
				   cursor->base.state->crtc_x,
				   cursor->base.state->crtc_y,
				   cursor->base.state->crtc_w,
				   cursor->base.state->crtc_h,
				   cursor->cursor.base);
			intel_scaler_info(m, crtc);
			intel_plane_info(m, crtc);
		}

		seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
			   yesno(!crtc->cpu_fifo_underrun_disabled),
			   yesno(!crtc->pch_fifo_underrun_disabled));
		drm_modeset_unlock(&crtc->base.mutex);
	}

	seq_printf(m, "\n");
	seq_printf(m, "Connector info\n");
	seq_printf(m, "--------------\n");
	mutex_lock(&dev->mode_config.mutex);
	drm_connector_list_iter_begin(dev, &conn_iter);
	drm_for_each_connector_iter(connector, &conn_iter)
		intel_connector_info(m, connector);
	drm_connector_list_iter_end(&conn_iter);
	mutex_unlock(&dev->mode_config.mutex);

	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);

	return 0;
}

static int i915_engine_info(struct seq_file *m, void *unused)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct intel_engine_cs *engine;
	intel_wakeref_t wakeref;
	struct drm_printer p;

	wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);

	seq_printf(m, "GT awake? %s [%d]\n",
		   yesno(dev_priv->gt.awake),
		   atomic_read(&dev_priv->gt.wakeref.count));
	seq_printf(m, "CS timestamp frequency: %u kHz\n",
		   RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz);

	p = drm_seq_file_printer(m);
	for_each_uabi_engine(engine, dev_priv)
		intel_engine_dump(engine, &p, "%s\n", engine->name);

	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);

	return 0;
}

static int i915_rcs_topology(struct seq_file *m, void *unused)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct drm_printer p = drm_seq_file_printer(m);

	intel_device_info_dump_topology(&RUNTIME_INFO(dev_priv)->sseu, &p);

	return 0;
}

static int i915_shrinker_info(struct seq_file *m, void *unused)
{
	struct drm_i915_private *i915 = node_to_i915(m->private);

	seq_printf(m, "seeks = %d\n", i915->mm.shrinker.seeks);
	seq_printf(m, "batch = %lu\n", i915->mm.shrinker.batch);

	return 0;
}

static int i915_shared_dplls_info(struct seq_file *m, void *unused)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct drm_device *dev = &dev_priv->drm;
	int i;

	drm_modeset_lock_all(dev);
	for (i = 0; i < dev_priv->num_shared_dpll; i++) {
		struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];

		seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->info->name,
			   pll->info->id);
		seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
			   pll->state.crtc_mask, pll->active_mask, yesno(pll->on));
		seq_printf(m, " tracked hardware state:\n");
		seq_printf(m, " dpll:    0x%08x\n", pll->state.hw_state.dpll);
		seq_printf(m, " dpll_md: 0x%08x\n",
			   pll->state.hw_state.dpll_md);
		seq_printf(m, " fp0:     0x%08x\n", pll->state.hw_state.fp0);
		seq_printf(m, " fp1:     0x%08x\n", pll->state.hw_state.fp1);
		seq_printf(m, " wrpll:   0x%08x\n", pll->state.hw_state.wrpll);
		seq_printf(m, " cfgcr0:  0x%08x\n", pll->state.hw_state.cfgcr0);
		seq_printf(m, " cfgcr1:  0x%08x\n", pll->state.hw_state.cfgcr1);
		seq_printf(m, " mg_refclkin_ctl:        0x%08x\n",
			   pll->state.hw_state.mg_refclkin_ctl);
		seq_printf(m, " mg_clktop2_coreclkctl1: 0x%08x\n",
			   pll->state.hw_state.mg_clktop2_coreclkctl1);
		seq_printf(m, " mg_clktop2_hsclkctl:    0x%08x\n",
			   pll->state.hw_state.mg_clktop2_hsclkctl);
		seq_printf(m, " mg_pll_div0:  0x%08x\n",
			   pll->state.hw_state.mg_pll_div0);
		seq_printf(m, " mg_pll_div1:  0x%08x\n",
			   pll->state.hw_state.mg_pll_div1);
		seq_printf(m, " mg_pll_lf:    0x%08x\n",
			   pll->state.hw_state.mg_pll_lf);
		seq_printf(m, " mg_pll_frac_lock: 0x%08x\n",
			   pll->state.hw_state.mg_pll_frac_lock);
		seq_printf(m, " mg_pll_ssc:   0x%08x\n",
			   pll->state.hw_state.mg_pll_ssc);
		seq_printf(m, " mg_pll_bias:  0x%08x\n",
			   pll->state.hw_state.mg_pll_bias);
		seq_printf(m, " mg_pll_tdc_coldst_bias: 0x%08x\n",
			   pll->state.hw_state.mg_pll_tdc_coldst_bias);
	}
	drm_modeset_unlock_all(dev);

	return 0;
}

static int i915_wa_registers(struct seq_file *m, void *unused)
{
	struct drm_i915_private *i915 = node_to_i915(m->private);
	struct intel_engine_cs *engine;

	for_each_uabi_engine(engine, i915) {
		const struct i915_wa_list *wal = &engine->ctx_wa_list;
		const struct i915_wa *wa;
		unsigned int count;

		count = wal->count;
		if (!count)
			continue;

		seq_printf(m, "%s: Workarounds applied: %u\n",
			   engine->name, count);

		for (wa = wal->list; count--; wa++)
			seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X\n",
				   i915_mmio_reg_offset(wa->reg),
				   wa->val, wa->mask);

		seq_printf(m, "\n");
	}

	return 0;
}

static int i915_ipc_status_show(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = m->private;

	seq_printf(m, "Isochronous Priority Control: %s\n",
			yesno(dev_priv->ipc_enabled));
	return 0;
}

static int i915_ipc_status_open(struct inode *inode, struct file *file)
{
	struct drm_i915_private *dev_priv = inode->i_private;

	if (!HAS_IPC(dev_priv))
		return -ENODEV;

	return single_open(file, i915_ipc_status_show, dev_priv);
}

static ssize_t i915_ipc_status_write(struct file *file, const char __user *ubuf,
				     size_t len, loff_t *offp)
{
	struct seq_file *m = file->private_data;
	struct drm_i915_private *dev_priv = m->private;
	intel_wakeref_t wakeref;
	bool enable;
	int ret;

	ret = kstrtobool_from_user(ubuf, len, &enable);
	if (ret < 0)
		return ret;

	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
		if (!dev_priv->ipc_enabled && enable)
			DRM_INFO("Enabling IPC: WM will be proper only after next commit\n");
		dev_priv->wm.distrust_bios_wm = true;
		dev_priv->ipc_enabled = enable;
		intel_enable_ipc(dev_priv);
	}

	return len;
}

static const struct file_operations i915_ipc_status_fops = {
	.owner = THIS_MODULE,
	.open = i915_ipc_status_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
	.write = i915_ipc_status_write
};

static int i915_ddb_info(struct seq_file *m, void *unused)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct drm_device *dev = &dev_priv->drm;
	struct skl_ddb_entry *entry;
	struct intel_crtc *crtc;

	if (INTEL_GEN(dev_priv) < 9)
		return -ENODEV;

	drm_modeset_lock_all(dev);

	seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
		enum pipe pipe = crtc->pipe;
		enum plane_id plane_id;

		seq_printf(m, "Pipe %c\n", pipe_name(pipe));

		for_each_plane_id_on_crtc(crtc, plane_id) {
			entry = &crtc_state->wm.skl.plane_ddb_y[plane_id];
			seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane_id + 1,
				   entry->start, entry->end,
				   skl_ddb_entry_size(entry));
		}

		entry = &crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR];
		seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
			   entry->end, skl_ddb_entry_size(entry));
	}

	drm_modeset_unlock_all(dev);

	return 0;
}

static void drrs_status_per_crtc(struct seq_file *m,
				 struct drm_device *dev,
				 struct intel_crtc *intel_crtc)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_drrs *drrs = &dev_priv->drrs;
	int vrefresh = 0;
	struct drm_connector *connector;
	struct drm_connector_list_iter conn_iter;

	drm_connector_list_iter_begin(dev, &conn_iter);
	drm_for_each_connector_iter(connector, &conn_iter) {
		if (connector->state->crtc != &intel_crtc->base)
			continue;

		seq_printf(m, "%s:\n", connector->name);
	}
	drm_connector_list_iter_end(&conn_iter);

	if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
		seq_puts(m, "\tVBT: DRRS_type: Static");
	else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
		seq_puts(m, "\tVBT: DRRS_type: Seamless");
	else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
		seq_puts(m, "\tVBT: DRRS_type: None");
	else
		seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");

	seq_puts(m, "\n\n");

	if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
		struct intel_panel *panel;

		mutex_lock(&drrs->mutex);
		/* DRRS Supported */
		seq_puts(m, "\tDRRS Supported: Yes\n");

		/* disable_drrs() will make drrs->dp NULL */
		if (!drrs->dp) {
			seq_puts(m, "Idleness DRRS: Disabled\n");
			if (dev_priv->psr.enabled)
				seq_puts(m,
				"\tAs PSR is enabled, DRRS is not enabled\n");
			mutex_unlock(&drrs->mutex);
			return;
		}

		panel = &drrs->dp->attached_connector->panel;
		seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
					drrs->busy_frontbuffer_bits);

		seq_puts(m, "\n\t\t");
		if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
			seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
			vrefresh = panel->fixed_mode->vrefresh;
		} else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
			seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
			vrefresh = panel->downclock_mode->vrefresh;
		} else {
			seq_printf(m, "DRRS_State: Unknown(%d)\n",
						drrs->refresh_rate_type);
			mutex_unlock(&drrs->mutex);
			return;
		}
		seq_printf(m, "\t\tVrefresh: %d", vrefresh);

		seq_puts(m, "\n\t\t");
		mutex_unlock(&drrs->mutex);
	} else {
		/* DRRS not supported. Print the VBT parameter*/
		seq_puts(m, "\tDRRS Supported : No");
	}
	seq_puts(m, "\n");
}

static int i915_drrs_status(struct seq_file *m, void *unused)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct drm_device *dev = &dev_priv->drm;
	struct intel_crtc *intel_crtc;
	int active_crtc_cnt = 0;

	drm_modeset_lock_all(dev);
	for_each_intel_crtc(dev, intel_crtc) {
		if (intel_crtc->base.state->active) {
			active_crtc_cnt++;
			seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);

			drrs_status_per_crtc(m, dev, intel_crtc);
		}
	}
	drm_modeset_unlock_all(dev);

	if (!active_crtc_cnt)
		seq_puts(m, "No active crtc found\n");

	return 0;
}

static int i915_dp_mst_info(struct seq_file *m, void *unused)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct drm_device *dev = &dev_priv->drm;
	struct intel_encoder *intel_encoder;
	struct intel_digital_port *intel_dig_port;
	struct drm_connector *connector;
	struct drm_connector_list_iter conn_iter;

	drm_connector_list_iter_begin(dev, &conn_iter);
	drm_for_each_connector_iter(connector, &conn_iter) {
		if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
			continue;

		intel_encoder = intel_attached_encoder(connector);
		if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
			continue;

		intel_dig_port = enc_to_dig_port(&intel_encoder->base);
		if (!intel_dig_port->dp.can_mst)
			continue;

		seq_printf(m, "MST Source Port %c\n",
			   port_name(intel_dig_port->base.port));
		drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
	}
	drm_connector_list_iter_end(&conn_iter);

	return 0;
}

static ssize_t i915_displayport_test_active_write(struct file *file,
						  const char __user *ubuf,
						  size_t len, loff_t *offp)
{
	char *input_buffer;
	int status = 0;
	struct drm_device *dev;
	struct drm_connector *connector;
	struct drm_connector_list_iter conn_iter;
	struct intel_dp *intel_dp;
	int val = 0;

	dev = ((struct seq_file *)file->private_data)->private;

	if (len == 0)
		return 0;

	input_buffer = memdup_user_nul(ubuf, len);
	if (IS_ERR(input_buffer))
		return PTR_ERR(input_buffer);

	DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);

	drm_connector_list_iter_begin(dev, &conn_iter);
	drm_for_each_connector_iter(connector, &conn_iter) {
		struct intel_encoder *encoder;

		if (connector->connector_type !=
		    DRM_MODE_CONNECTOR_DisplayPort)
			continue;

		encoder = to_intel_encoder(connector->encoder);
		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
			continue;

		if (encoder && connector->status == connector_status_connected) {
			intel_dp = enc_to_intel_dp(&encoder->base);
			status = kstrtoint(input_buffer, 10, &val);
			if (status < 0)
				break;
			DRM_DEBUG_DRIVER("Got %d for test active\n", val);
			/* To prevent erroneous activation of the compliance
			 * testing code, only accept an actual value of 1 here
			 */
			if (val == 1)
				intel_dp->compliance.test_active = 1;
			else
				intel_dp->compliance.test_active = 0;
		}
	}
	drm_connector_list_iter_end(&conn_iter);
	kfree(input_buffer);
	if (status < 0)
		return status;

	*offp += len;
	return len;
}

static int i915_displayport_test_active_show(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = m->private;
	struct drm_device *dev = &dev_priv->drm;
	struct drm_connector *connector;
	struct drm_connector_list_iter conn_iter;
	struct intel_dp *intel_dp;

	drm_connector_list_iter_begin(dev, &conn_iter);
	drm_for_each_connector_iter(connector, &conn_iter) {
		struct intel_encoder *encoder;

		if (connector->connector_type !=
		    DRM_MODE_CONNECTOR_DisplayPort)
			continue;

		encoder = to_intel_encoder(connector->encoder);
		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
			continue;

		if (encoder && connector->status == connector_status_connected) {
			intel_dp = enc_to_intel_dp(&encoder->base);
			if (intel_dp->compliance.test_active)
				seq_puts(m, "1");
			else
				seq_puts(m, "0");
		} else
			seq_puts(m, "0");
	}
	drm_connector_list_iter_end(&conn_iter);

	return 0;
}

static int i915_displayport_test_active_open(struct inode *inode,
					     struct file *file)
{
	return single_open(file, i915_displayport_test_active_show,
			   inode->i_private);
}

static const struct file_operations i915_displayport_test_active_fops = {
	.owner = THIS_MODULE,
	.open = i915_displayport_test_active_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
	.write = i915_displayport_test_active_write
};

static int i915_displayport_test_data_show(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = m->private;
	struct drm_device *dev = &dev_priv->drm;
	struct drm_connector *connector;
	struct drm_connector_list_iter conn_iter;
	struct intel_dp *intel_dp;

	drm_connector_list_iter_begin(dev, &conn_iter);
	drm_for_each_connector_iter(connector, &conn_iter) {
		struct intel_encoder *encoder;

		if (connector->connector_type !=
		    DRM_MODE_CONNECTOR_DisplayPort)
			continue;

		encoder = to_intel_encoder(connector->encoder);
		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
			continue;

		if (encoder && connector->status == connector_status_connected) {
			intel_dp = enc_to_intel_dp(&encoder->base);
			if (intel_dp->compliance.test_type ==
			    DP_TEST_LINK_EDID_READ)
				seq_printf(m, "%lx",
					   intel_dp->compliance.test_data.edid);
			else if (intel_dp->compliance.test_type ==
				 DP_TEST_LINK_VIDEO_PATTERN) {
				seq_printf(m, "hdisplay: %d\n",
					   intel_dp->compliance.test_data.hdisplay);
				seq_printf(m, "vdisplay: %d\n",
					   intel_dp->compliance.test_data.vdisplay);
				seq_printf(m, "bpc: %u\n",
					   intel_dp->compliance.test_data.bpc);
			}
		} else
			seq_puts(m, "0");
	}
	drm_connector_list_iter_end(&conn_iter);

	return 0;
}
DEFINE_SHOW_ATTRIBUTE(i915_displayport_test_data);

static int i915_displayport_test_type_show(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = m->private;
	struct drm_device *dev = &dev_priv->drm;
	struct drm_connector *connector;
	struct drm_connector_list_iter conn_iter;
	struct intel_dp *intel_dp;

	drm_connector_list_iter_begin(dev, &conn_iter);
	drm_for_each_connector_iter(connector, &conn_iter) {
		struct intel_encoder *encoder;

		if (connector->connector_type !=
		    DRM_MODE_CONNECTOR_DisplayPort)
			continue;

		encoder = to_intel_encoder(connector->encoder);
		if (encoder && encoder->type == INTEL_OUTPUT_DP_MST)
			continue;

		if (encoder && connector->status == connector_status_connected) {
			intel_dp = enc_to_intel_dp(&encoder->base);
			seq_printf(m, "%02lx", intel_dp->compliance.test_type);
		} else
			seq_puts(m, "0");
	}
	drm_connector_list_iter_end(&conn_iter);

	return 0;
}
DEFINE_SHOW_ATTRIBUTE(i915_displayport_test_type);

static void wm_latency_show(struct seq_file *m, const u16 wm[8])
{
	struct drm_i915_private *dev_priv = m->private;
	struct drm_device *dev = &dev_priv->drm;
	int level;
	int num_levels;

	if (IS_CHERRYVIEW(dev_priv))
		num_levels = 3;
	else if (IS_VALLEYVIEW(dev_priv))
		num_levels = 1;
	else if (IS_G4X(dev_priv))
		num_levels = 3;
	else
		num_levels = ilk_wm_max_level(dev_priv) + 1;

	drm_modeset_lock_all(dev);

	for (level = 0; level < num_levels; level++) {
		unsigned int latency = wm[level];

		/*
		 * - WM1+ latency values in 0.5us units
		 * - latencies are in us on gen9/vlv/chv
		 */
		if (INTEL_GEN(dev_priv) >= 9 ||
		    IS_VALLEYVIEW(dev_priv) ||
		    IS_CHERRYVIEW(dev_priv) ||
		    IS_G4X(dev_priv))
			latency *= 10;
		else if (level > 0)
			latency *= 5;

		seq_printf(m, "WM%d %u (%u.%u usec)\n",
			   level, wm[level], latency / 10, latency % 10);
	}

	drm_modeset_unlock_all(dev);
}

static int pri_wm_latency_show(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = m->private;
	const u16 *latencies;

	if (INTEL_GEN(dev_priv) >= 9)
		latencies = dev_priv->wm.skl_latency;
	else
		latencies = dev_priv->wm.pri_latency;

	wm_latency_show(m, latencies);

	return 0;
}

static int spr_wm_latency_show(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = m->private;
	const u16 *latencies;

	if (INTEL_GEN(dev_priv) >= 9)
		latencies = dev_priv->wm.skl_latency;
	else
		latencies = dev_priv->wm.spr_latency;

	wm_latency_show(m, latencies);

	return 0;
}

static int cur_wm_latency_show(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = m->private;
	const u16 *latencies;

	if (INTEL_GEN(dev_priv) >= 9)
		latencies = dev_priv->wm.skl_latency;
	else
		latencies = dev_priv->wm.cur_latency;

	wm_latency_show(m, latencies);

	return 0;
}

static int pri_wm_latency_open(struct inode *inode, struct file *file)
{
	struct drm_i915_private *dev_priv = inode->i_private;

	if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
		return -ENODEV;

	return single_open(file, pri_wm_latency_show, dev_priv);
}

static int spr_wm_latency_open(struct inode *inode, struct file *file)
{
	struct drm_i915_private *dev_priv = inode->i_private;

	if (HAS_GMCH(dev_priv))
		return -ENODEV;

	return single_open(file, spr_wm_latency_show, dev_priv);
}

static int cur_wm_latency_open(struct inode *inode, struct file *file)
{
	struct drm_i915_private *dev_priv = inode->i_private;

	if (HAS_GMCH(dev_priv))
		return -ENODEV;

	return single_open(file, cur_wm_latency_show, dev_priv);
}

static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
				size_t len, loff_t *offp, u16 wm[8])
{
	struct seq_file *m = file->private_data;
	struct drm_i915_private *dev_priv = m->private;
	struct drm_device *dev = &dev_priv->drm;
	u16 new[8] = { 0 };
	int num_levels;
	int level;
	int ret;
	char tmp[32];

	if (IS_CHERRYVIEW(dev_priv))
		num_levels = 3;
	else if (IS_VALLEYVIEW(dev_priv))
		num_levels = 1;
	else if (IS_G4X(dev_priv))
		num_levels = 3;
	else
		num_levels = ilk_wm_max_level(dev_priv) + 1;

	if (len >= sizeof(tmp))
		return -EINVAL;

	if (copy_from_user(tmp, ubuf, len))
		return -EFAULT;

	tmp[len] = '\0';

	ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
		     &new[0], &new[1], &new[2], &new[3],
		     &new[4], &new[5], &new[6], &new[7]);
	if (ret != num_levels)
		return -EINVAL;

	drm_modeset_lock_all(dev);

	for (level = 0; level < num_levels; level++)
		wm[level] = new[level];

	drm_modeset_unlock_all(dev);

	return len;
}


static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
				    size_t len, loff_t *offp)
{
	struct seq_file *m = file->private_data;
	struct drm_i915_private *dev_priv = m->private;
	u16 *latencies;

	if (INTEL_GEN(dev_priv) >= 9)
		latencies = dev_priv->wm.skl_latency;
	else
		latencies = dev_priv->wm.pri_latency;

	return wm_latency_write(file, ubuf, len, offp, latencies);
}

static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
				    size_t len, loff_t *offp)
{
	struct seq_file *m = file->private_data;
	struct drm_i915_private *dev_priv = m->private;
	u16 *latencies;

	if (INTEL_GEN(dev_priv) >= 9)
		latencies = dev_priv->wm.skl_latency;
	else
		latencies = dev_priv->wm.spr_latency;

	return wm_latency_write(file, ubuf, len, offp, latencies);
}

static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
				    size_t len, loff_t *offp)
{
	struct seq_file *m = file->private_data;
	struct drm_i915_private *dev_priv = m->private;
	u16 *latencies;

	if (INTEL_GEN(dev_priv) >= 9)
		latencies = dev_priv->wm.skl_latency;
	else
		latencies = dev_priv->wm.cur_latency;

	return wm_latency_write(file, ubuf, len, offp, latencies);
}

static const struct file_operations i915_pri_wm_latency_fops = {
	.owner = THIS_MODULE,
	.open = pri_wm_latency_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
	.write = pri_wm_latency_write
};

static const struct file_operations i915_spr_wm_latency_fops = {
	.owner = THIS_MODULE,
	.open = spr_wm_latency_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
	.write = spr_wm_latency_write
};

static const struct file_operations i915_cur_wm_latency_fops = {
	.owner = THIS_MODULE,
	.open = cur_wm_latency_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
	.write = cur_wm_latency_write
};

static int
i915_wedged_get(void *data, u64 *val)
{
	struct drm_i915_private *i915 = data;
	int ret = intel_gt_terminally_wedged(&i915->gt);

	switch (ret) {
	case -EIO:
		*val = 1;
		return 0;
	case 0:
		*val = 0;
		return 0;
	default:
		return ret;
	}
}

static int
i915_wedged_set(void *data, u64 val)
{
	struct drm_i915_private *i915 = data;

	/* Flush any previous reset before applying for a new one */
	wait_event(i915->gt.reset.queue,
		   !test_bit(I915_RESET_BACKOFF, &i915->gt.reset.flags));

	intel_gt_handle_error(&i915->gt, val, I915_ERROR_CAPTURE,
			      "Manually set wedged engine mask = %llx", val);
	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
			i915_wedged_get, i915_wedged_set,
			"%llu\n");

#define DROP_UNBOUND	BIT(0)
#define DROP_BOUND	BIT(1)
#define DROP_RETIRE	BIT(2)
#define DROP_ACTIVE	BIT(3)
#define DROP_FREED	BIT(4)
#define DROP_SHRINK_ALL	BIT(5)
#define DROP_IDLE	BIT(6)
#define DROP_RESET_ACTIVE	BIT(7)
#define DROP_RESET_SEQNO	BIT(8)
#define DROP_ALL (DROP_UNBOUND	| \
		  DROP_BOUND	| \
		  DROP_RETIRE	| \
		  DROP_ACTIVE	| \
		  DROP_FREED	| \
		  DROP_SHRINK_ALL |\
		  DROP_IDLE	| \
		  DROP_RESET_ACTIVE | \
		  DROP_RESET_SEQNO)
static int
i915_drop_caches_get(void *data, u64 *val)
{
	*val = DROP_ALL;

	return 0;
}

static int
i915_drop_caches_set(void *data, u64 val)
{
	struct drm_i915_private *i915 = data;

	DRM_DEBUG("Dropping caches: 0x%08llx [0x%08llx]\n",
		  val, val & DROP_ALL);

	if (val & DROP_RESET_ACTIVE &&
	    wait_for(intel_engines_are_idle(&i915->gt),
		     I915_IDLE_ENGINES_TIMEOUT))
		intel_gt_set_wedged(&i915->gt);

	/* No need to check and wait for gpu resets, only libdrm auto-restarts
	 * on ioctls on -EAGAIN. */
	if (val & (DROP_ACTIVE | DROP_IDLE | DROP_RETIRE | DROP_RESET_SEQNO)) {
		int ret;

		ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
		if (ret)
			return ret;

		/*
		 * To finish the flush of the idle_worker, we must complete
		 * the switch-to-kernel-context, which requires a double
		 * pass through wait_for_idle: first queues the switch,
		 * second waits for the switch.
		 */
		if (ret == 0 && val & (DROP_IDLE | DROP_ACTIVE))
			ret = i915_gem_wait_for_idle(i915,
						     I915_WAIT_INTERRUPTIBLE |
						     I915_WAIT_LOCKED,
						     MAX_SCHEDULE_TIMEOUT);

		if (ret == 0 && val & DROP_IDLE)
			ret = i915_gem_wait_for_idle(i915,
						     I915_WAIT_INTERRUPTIBLE |
						     I915_WAIT_LOCKED,
						     MAX_SCHEDULE_TIMEOUT);

		if (val & DROP_RETIRE)
			i915_retire_requests(i915);

		mutex_unlock(&i915->drm.struct_mutex);

		if (ret == 0 && val & DROP_IDLE)
			ret = intel_gt_pm_wait_for_idle(&i915->gt);
	}

	if (val & DROP_RESET_ACTIVE && intel_gt_terminally_wedged(&i915->gt))
		intel_gt_handle_error(&i915->gt, ALL_ENGINES, 0, NULL);

	fs_reclaim_acquire(GFP_KERNEL);
	if (val & DROP_BOUND)
		i915_gem_shrink(i915, LONG_MAX, NULL, I915_SHRINK_BOUND);

	if (val & DROP_UNBOUND)
		i915_gem_shrink(i915, LONG_MAX, NULL, I915_SHRINK_UNBOUND);

	if (val & DROP_SHRINK_ALL)
		i915_gem_shrink_all(i915);
	fs_reclaim_release(GFP_KERNEL);

	if (val & DROP_IDLE) {
		flush_delayed_work(&i915->gem.retire_work);
		flush_work(&i915->gem.idle_work);
	}

	if (val & DROP_FREED)
		i915_gem_drain_freed_objects(i915);

	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
			i915_drop_caches_get, i915_drop_caches_set,
			"0x%08llx\n");

static int
i915_cache_sharing_get(void *data, u64 *val)
{
	struct drm_i915_private *dev_priv = data;
	intel_wakeref_t wakeref;
	u32 snpcr = 0;

	if (!(IS_GEN_RANGE(dev_priv, 6, 7)))
		return -ENODEV;

	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
		snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);

	*val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;

	return 0;
}

static int
i915_cache_sharing_set(void *data, u64 val)
{
	struct drm_i915_private *dev_priv = data;
	intel_wakeref_t wakeref;

	if (!(IS_GEN_RANGE(dev_priv, 6, 7)))
		return -ENODEV;

	if (val > 3)
		return -EINVAL;

	DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
		u32 snpcr;

		/* Update the cache sharing policy here as well */
		snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
		snpcr &= ~GEN6_MBC_SNPCR_MASK;
		snpcr |= val << GEN6_MBC_SNPCR_SHIFT;
		I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
	}

	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
			i915_cache_sharing_get, i915_cache_sharing_set,
			"%llu\n");

static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
					  struct sseu_dev_info *sseu)
{
#define SS_MAX 2
	const int ss_max = SS_MAX;
	u32 sig1[SS_MAX], sig2[SS_MAX];
	int ss;

	sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
	sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
	sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
	sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);

	for (ss = 0; ss < ss_max; ss++) {
		unsigned int eu_cnt;

		if (sig1[ss] & CHV_SS_PG_ENABLE)
			/* skip disabled subslice */
			continue;

		sseu->slice_mask = BIT(0);
		sseu->subslice_mask[0] |= BIT(ss);
		eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
			 ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
			 ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
			 ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
		sseu->eu_total += eu_cnt;
		sseu->eu_per_subslice = max_t(unsigned int,
					      sseu->eu_per_subslice, eu_cnt);
	}
#undef SS_MAX
}

static void gen10_sseu_device_status(struct drm_i915_private *dev_priv,
				     struct sseu_dev_info *sseu)
{
#define SS_MAX 6
	const struct intel_runtime_info *info = RUNTIME_INFO(dev_priv);
	u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
	int s, ss;

	for (s = 0; s < info->sseu.max_slices; s++) {
		/*
		 * FIXME: Valid SS Mask respects the spec and read
		 * only valid bits for those registers, excluding reserved
		 * although this seems wrong because it would leave many
		 * subslices without ACK.
		 */
		s_reg[s] = I915_READ(GEN10_SLICE_PGCTL_ACK(s)) &
			GEN10_PGCTL_VALID_SS_MASK(s);
		eu_reg[2 * s] = I915_READ(GEN10_SS01_EU_PGCTL_ACK(s));
		eu_reg[2 * s + 1] = I915_READ(GEN10_SS23_EU_PGCTL_ACK(s));
	}

	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
		     GEN9_PGCTL_SSA_EU19_ACK |
		     GEN9_PGCTL_SSA_EU210_ACK |
		     GEN9_PGCTL_SSA_EU311_ACK;
	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
		     GEN9_PGCTL_SSB_EU19_ACK |
		     GEN9_PGCTL_SSB_EU210_ACK |
		     GEN9_PGCTL_SSB_EU311_ACK;

	for (s = 0; s < info->sseu.max_slices; s++) {
		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
			/* skip disabled slice */
			continue;

		sseu->slice_mask |= BIT(s);
		sseu->subslice_mask[s] = info->sseu.subslice_mask[s];

		for (ss = 0; ss < info->sseu.max_subslices; ss++) {
			unsigned int eu_cnt;

			if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
				/* skip disabled subslice */
				continue;

			eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] &
					       eu_mask[ss % 2]);
			sseu->eu_total += eu_cnt;
			sseu->eu_per_subslice = max_t(unsigned int,
						      sseu->eu_per_subslice,
						      eu_cnt);
		}
	}
#undef SS_MAX
}

static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
				    struct sseu_dev_info *sseu)
{
#define SS_MAX 3
	const struct intel_runtime_info *info = RUNTIME_INFO(dev_priv);
	u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
	int s, ss;

	for (s = 0; s < info->sseu.max_slices; s++) {
		s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
		eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
		eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
	}

	eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
		     GEN9_PGCTL_SSA_EU19_ACK |
		     GEN9_PGCTL_SSA_EU210_ACK |
		     GEN9_PGCTL_SSA_EU311_ACK;
	eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
		     GEN9_PGCTL_SSB_EU19_ACK |
		     GEN9_PGCTL_SSB_EU210_ACK |
		     GEN9_PGCTL_SSB_EU311_ACK;

	for (s = 0; s < info->sseu.max_slices; s++) {
		if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
			/* skip disabled slice */
			continue;

		sseu->slice_mask |= BIT(s);

		if (IS_GEN9_BC(dev_priv))
			sseu->subslice_mask[s] =
				RUNTIME_INFO(dev_priv)->sseu.subslice_mask[s];

		for (ss = 0; ss < info->sseu.max_subslices; ss++) {
			unsigned int eu_cnt;

			if (IS_GEN9_LP(dev_priv)) {
				if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
					/* skip disabled subslice */
					continue;

				sseu->subslice_mask[s] |= BIT(ss);
			}

			eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
					       eu_mask[ss%2]);
			sseu->eu_total += eu_cnt;
			sseu->eu_per_subslice = max_t(unsigned int,
						      sseu->eu_per_subslice,
						      eu_cnt);
		}
	}
#undef SS_MAX
}

static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
					 struct sseu_dev_info *sseu)
{
	u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
	int s;

	sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;

	if (sseu->slice_mask) {
		sseu->eu_per_subslice =
			RUNTIME_INFO(dev_priv)->sseu.eu_per_subslice;
		for (s = 0; s < fls(sseu->slice_mask); s++) {
			sseu->subslice_mask[s] =
				RUNTIME_INFO(dev_priv)->sseu.subslice_mask[s];
		}
		sseu->eu_total = sseu->eu_per_subslice *
				 intel_sseu_subslice_total(sseu);

		/* subtract fused off EU(s) from enabled slice(s) */
		for (s = 0; s < fls(sseu->slice_mask); s++) {
			u8 subslice_7eu =
				RUNTIME_INFO(dev_priv)->sseu.subslice_7eu[s];

			sseu->eu_total -= hweight8(subslice_7eu);
		}
	}
}

static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
				 const struct sseu_dev_info *sseu)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	const char *type = is_available_info ? "Available" : "Enabled";
	int s;

	seq_printf(m, "  %s Slice Mask: %04x\n", type,
		   sseu->slice_mask);
	seq_printf(m, "  %s Slice Total: %u\n", type,
		   hweight8(sseu->slice_mask));
	seq_printf(m, "  %s Subslice Total: %u\n", type,
		   intel_sseu_subslice_total(sseu));
	for (s = 0; s < fls(sseu->slice_mask); s++) {
		seq_printf(m, "  %s Slice%i subslices: %u\n", type,
			   s, intel_sseu_subslices_per_slice(sseu, s));
	}
	seq_printf(m, "  %s EU Total: %u\n", type,
		   sseu->eu_total);
	seq_printf(m, "  %s EU Per Subslice: %u\n", type,
		   sseu->eu_per_subslice);

	if (!is_available_info)
		return;

	seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
	if (HAS_POOLED_EU(dev_priv))
		seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);

	seq_printf(m, "  Has Slice Power Gating: %s\n",
		   yesno(sseu->has_slice_pg));
	seq_printf(m, "  Has Subslice Power Gating: %s\n",
		   yesno(sseu->has_subslice_pg));
	seq_printf(m, "  Has EU Power Gating: %s\n",
		   yesno(sseu->has_eu_pg));
}

static int i915_sseu_status(struct seq_file *m, void *unused)
{
	struct drm_i915_private *dev_priv = node_to_i915(m->private);
	struct sseu_dev_info sseu;
	intel_wakeref_t wakeref;

	if (INTEL_GEN(dev_priv) < 8)
		return -ENODEV;

	seq_puts(m, "SSEU Device Info\n");
	i915_print_sseu_info(m, true, &RUNTIME_INFO(dev_priv)->sseu);

	seq_puts(m, "SSEU Device Status\n");
	memset(&sseu, 0, sizeof(sseu));
	sseu.max_slices = RUNTIME_INFO(dev_priv)->sseu.max_slices;
	sseu.max_subslices = RUNTIME_INFO(dev_priv)->sseu.max_subslices;
	sseu.max_eus_per_subslice =
		RUNTIME_INFO(dev_priv)->sseu.max_eus_per_subslice;

	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
		if (IS_CHERRYVIEW(dev_priv))
			cherryview_sseu_device_status(dev_priv, &sseu);
		else if (IS_BROADWELL(dev_priv))
			broadwell_sseu_device_status(dev_priv, &sseu);
		else if (IS_GEN(dev_priv, 9))
			gen9_sseu_device_status(dev_priv, &sseu);
		else if (INTEL_GEN(dev_priv) >= 10)
			gen10_sseu_device_status(dev_priv, &sseu);
	}

	i915_print_sseu_info(m, false, &sseu);

	return 0;
}

static int i915_forcewake_open(struct inode *inode, struct file *file)
{
	struct drm_i915_private *i915 = inode->i_private;

	if (INTEL_GEN(i915) < 6)
		return 0;

	file->private_data =
		(void *)(uintptr_t)intel_runtime_pm_get(&i915->runtime_pm);
	intel_uncore_forcewake_user_get(&i915->uncore);

	return 0;
}

static int i915_forcewake_release(struct inode *inode, struct file *file)
{
	struct drm_i915_private *i915 = inode->i_private;

	if (INTEL_GEN(i915) < 6)
		return 0;

	intel_uncore_forcewake_user_put(&i915->uncore);
	intel_runtime_pm_put(&i915->runtime_pm,
			     (intel_wakeref_t)(uintptr_t)file->private_data);

	return 0;
}

static const struct file_operations i915_forcewake_fops = {
	.owner = THIS_MODULE,
	.open = i915_forcewake_open,
	.release = i915_forcewake_release,
};

static int i915_hpd_storm_ctl_show(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = m->private;
	struct i915_hotplug *hotplug = &dev_priv->hotplug;

	/* Synchronize with everything first in case there's been an HPD
	 * storm, but we haven't finished handling it in the kernel yet
	 */
	intel_synchronize_irq(dev_priv);
	flush_work(&dev_priv->hotplug.dig_port_work);
	flush_delayed_work(&dev_priv->hotplug.hotplug_work);

	seq_printf(m, "Threshold: %d\n", hotplug->hpd_storm_threshold);
	seq_printf(m, "Detected: %s\n",
		   yesno(delayed_work_pending(&hotplug->reenable_work)));

	return 0;
}

static ssize_t i915_hpd_storm_ctl_write(struct file *file,
					const char __user *ubuf, size_t len,
					loff_t *offp)
{
	struct seq_file *m = file->private_data;
	struct drm_i915_private *dev_priv = m->private;
	struct i915_hotplug *hotplug = &dev_priv->hotplug;
	unsigned int new_threshold;
	int i;
	char *newline;
	char tmp[16];

	if (len >= sizeof(tmp))
		return -EINVAL;

	if (copy_from_user(tmp, ubuf, len))
		return -EFAULT;

	tmp[len] = '\0';

	/* Strip newline, if any */
	newline = strchr(tmp, '\n');
	if (newline)
		*newline = '\0';

	if (strcmp(tmp, "reset") == 0)
		new_threshold = HPD_STORM_DEFAULT_THRESHOLD;
	else if (kstrtouint(tmp, 10, &new_threshold) != 0)
		return -EINVAL;

	if (new_threshold > 0)
		DRM_DEBUG_KMS("Setting HPD storm detection threshold to %d\n",
			      new_threshold);
	else
		DRM_DEBUG_KMS("Disabling HPD storm detection\n");

	spin_lock_irq(&dev_priv->irq_lock);
	hotplug->hpd_storm_threshold = new_threshold;
	/* Reset the HPD storm stats so we don't accidentally trigger a storm */
	for_each_hpd_pin(i)
		hotplug->stats[i].count = 0;
	spin_unlock_irq(&dev_priv->irq_lock);

	/* Re-enable hpd immediately if we were in an irq storm */
	flush_delayed_work(&dev_priv->hotplug.reenable_work);

	return len;
}

static int i915_hpd_storm_ctl_open(struct inode *inode, struct file *file)
{
	return single_open(file, i915_hpd_storm_ctl_show, inode->i_private);
}

static const struct file_operations i915_hpd_storm_ctl_fops = {
	.owner = THIS_MODULE,
	.open = i915_hpd_storm_ctl_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
	.write = i915_hpd_storm_ctl_write
};

static int i915_hpd_short_storm_ctl_show(struct seq_file *m, void *data)
{
	struct drm_i915_private *dev_priv = m->private;

	seq_printf(m, "Enabled: %s\n",
		   yesno(dev_priv->hotplug.hpd_short_storm_enabled));

	return 0;
}

static int
i915_hpd_short_storm_ctl_open(struct inode *inode, struct file *file)
{
	return single_open(file, i915_hpd_short_storm_ctl_show,
			   inode->i_private);
}

static ssize_t i915_hpd_short_storm_ctl_write(struct file *file,
					      const char __user *ubuf,
					      size_t len, loff_t *offp)
{
	struct seq_file *m = file->private_data;
	struct drm_i915_private *dev_priv = m->private;
	struct i915_hotplug *hotplug = &dev_priv->hotplug;
	char *newline;
	char tmp[16];
	int i;
	bool new_state;

	if (len >= sizeof(tmp))
		return -EINVAL;

	if (copy_from_user(tmp, ubuf, len))
		return -EFAULT;

	tmp[len] = '\0';

	/* Strip newline, if any */
	newline = strchr(tmp, '\n');
	if (newline)
		*newline = '\0';

	/* Reset to the "default" state for this system */
	if (strcmp(tmp, "reset") == 0)
		new_state = !HAS_DP_MST(dev_priv);
	else if (kstrtobool(tmp, &new_state) != 0)
		return -EINVAL;

	DRM_DEBUG_KMS("%sabling HPD short storm detection\n",
		      new_state ? "En" : "Dis");

	spin_lock_irq(&dev_priv->irq_lock);
	hotplug->hpd_short_storm_enabled = new_state;
	/* Reset the HPD storm stats so we don't accidentally trigger a storm */
	for_each_hpd_pin(i)
		hotplug->stats[i].count = 0;
	spin_unlock_irq(&dev_priv->irq_lock);

	/* Re-enable hpd immediately if we were in an irq storm */
	flush_delayed_work(&dev_priv->hotplug.reenable_work);

	return len;
}

static const struct file_operations i915_hpd_short_storm_ctl_fops = {
	.owner = THIS_MODULE,
	.open = i915_hpd_short_storm_ctl_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
	.write = i915_hpd_short_storm_ctl_write,
};

static int i915_drrs_ctl_set(void *data, u64 val)
{
	struct drm_i915_private *dev_priv = data;
	struct drm_device *dev = &dev_priv->drm;
	struct intel_crtc *crtc;

	if (INTEL_GEN(dev_priv) < 7)
		return -ENODEV;

	for_each_intel_crtc(dev, crtc) {
		struct drm_connector_list_iter conn_iter;
		struct intel_crtc_state *crtc_state;
		struct drm_connector *connector;
		struct drm_crtc_commit *commit;
		int ret;

		ret = drm_modeset_lock_single_interruptible(&crtc->base.mutex);
		if (ret)
			return ret;

		crtc_state = to_intel_crtc_state(crtc->base.state);

		if (!crtc_state->base.active ||
		    !crtc_state->has_drrs)
			goto out;

		commit = crtc_state->base.commit;
		if (commit) {
			ret = wait_for_completion_interruptible(&commit->hw_done);
			if (ret)
				goto out;
		}

		drm_connector_list_iter_begin(dev, &conn_iter);
		drm_for_each_connector_iter(connector, &conn_iter) {
			struct intel_encoder *encoder;
			struct intel_dp *intel_dp;

			if (!(crtc_state->base.connector_mask &
			      drm_connector_mask(connector)))
				continue;

			encoder = intel_attached_encoder(connector);
			if (encoder->type != INTEL_OUTPUT_EDP)
				continue;

			DRM_DEBUG_DRIVER("Manually %sabling DRRS. %llu\n",
						val ? "en" : "dis", val);

			intel_dp = enc_to_intel_dp(&encoder->base);
			if (val)
				intel_edp_drrs_enable(intel_dp,
						      crtc_state);
			else
				intel_edp_drrs_disable(intel_dp,
						       crtc_state);
		}
		drm_connector_list_iter_end(&conn_iter);

out:
		drm_modeset_unlock(&crtc->base.mutex);
		if (ret)
			return ret;
	}

	return 0;
}

DEFINE_SIMPLE_ATTRIBUTE(i915_drrs_ctl_fops, NULL, i915_drrs_ctl_set, "%llu\n");

static ssize_t
i915_fifo_underrun_reset_write(struct file *filp,
			       const char __user *ubuf,
			       size_t cnt, loff_t *ppos)
{
	struct drm_i915_private *dev_priv = filp->private_data;
	struct intel_crtc *intel_crtc;
	struct drm_device *dev = &dev_priv->drm;
	int ret;
	bool reset;

	ret = kstrtobool_from_user(ubuf, cnt, &reset);
	if (ret)
		return ret;

	if (!reset)
		return cnt;

	for_each_intel_crtc(dev, intel_crtc) {
		struct drm_crtc_commit *commit;
		struct intel_crtc_state *crtc_state;

		ret = drm_modeset_lock_single_interruptible(&intel_crtc->base.mutex);
		if (ret)
			return ret;

		crtc_state = to_intel_crtc_state(intel_crtc->base.state);
		commit = crtc_state->base.commit;
		if (commit) {
			ret = wait_for_completion_interruptible(&commit->hw_done);
			if (!ret)
				ret = wait_for_completion_interruptible(&commit->flip_done);
		}

		if (!ret && crtc_state->base.active) {
			DRM_DEBUG_KMS("Re-arming FIFO underruns on pipe %c\n",
				      pipe_name(intel_crtc->pipe));

			intel_crtc_arm_fifo_underrun(intel_crtc, crtc_state);
		}

		drm_modeset_unlock(&intel_crtc->base.mutex);

		if (ret)
			return ret;
	}

	ret = intel_fbc_reset_underrun(dev_priv);
	if (ret)
		return ret;

	return cnt;
}

static const struct file_operations i915_fifo_underrun_reset_ops = {
	.owner = THIS_MODULE,
	.open = simple_open,
	.write = i915_fifo_underrun_reset_write,
	.llseek = default_llseek,
};

static const struct drm_info_list i915_debugfs_list[] = {
	{"i915_capabilities", i915_capabilities, 0},
	{"i915_gem_objects", i915_gem_object_info, 0},
	{"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
	{"i915_gem_interrupt", i915_interrupt_info, 0},
	{"i915_guc_info", i915_guc_info, 0},
	{"i915_guc_load_status", i915_guc_load_status_info, 0},
	{"i915_guc_log_dump", i915_guc_log_dump, 0},
	{"i915_guc_load_err_log_dump", i915_guc_log_dump, 0, (void *)1},
	{"i915_guc_stage_pool", i915_guc_stage_pool, 0},
	{"i915_huc_load_status", i915_huc_load_status_info, 0},
	{"i915_frequency_info", i915_frequency_info, 0},
	{"i915_hangcheck_info", i915_hangcheck_info, 0},
	{"i915_drpc_info", i915_drpc_info, 0},
	{"i915_ring_freq_table", i915_ring_freq_table, 0},
	{"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
	{"i915_fbc_status", i915_fbc_status, 0},
	{"i915_ips_status", i915_ips_status, 0},
	{"i915_sr_status", i915_sr_status, 0},
	{"i915_opregion", i915_opregion, 0},
	{"i915_vbt", i915_vbt, 0},
	{"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
	{"i915_context_status", i915_context_status, 0},
	{"i915_forcewake_domains", i915_forcewake_domains, 0},
	{"i915_swizzle_info", i915_swizzle_info, 0},
	{"i915_llc", i915_llc, 0},
	{"i915_edp_psr_status", i915_edp_psr_status, 0},
	{"i915_energy_uJ", i915_energy_uJ, 0},
	{"i915_runtime_pm_status", i915_runtime_pm_status, 0},
	{"i915_power_domain_info", i915_power_domain_info, 0},
	{"i915_dmc_info", i915_dmc_info, 0},
	{"i915_display_info", i915_display_info, 0},
	{"i915_engine_info", i915_engine_info, 0},
	{"i915_rcs_topology", i915_rcs_topology, 0},
	{"i915_shrinker_info", i915_shrinker_info, 0},
	{"i915_shared_dplls_info", i915_shared_dplls_info, 0},
	{"i915_dp_mst_info", i915_dp_mst_info, 0},
	{"i915_wa_registers", i915_wa_registers, 0},
	{"i915_ddb_info", i915_ddb_info, 0},
	{"i915_sseu_status", i915_sseu_status, 0},
	{"i915_drrs_status", i915_drrs_status, 0},
	{"i915_rps_boost_info", i915_rps_boost_info, 0},
};
#define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)

static const struct i915_debugfs_files {
	const char *name;
	const struct file_operations *fops;
} i915_debugfs_files[] = {
	{"i915_wedged", &i915_wedged_fops},
	{"i915_cache_sharing", &i915_cache_sharing_fops},
	{"i915_gem_drop_caches", &i915_drop_caches_fops},
#if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
	{"i915_error_state", &i915_error_state_fops},
	{"i915_gpu_info", &i915_gpu_info_fops},
#endif
	{"i915_fifo_underrun_reset", &i915_fifo_underrun_reset_ops},
	{"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
	{"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
	{"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
	{"i915_fbc_false_color", &i915_fbc_false_color_fops},
	{"i915_dp_test_data", &i915_displayport_test_data_fops},
	{"i915_dp_test_type", &i915_displayport_test_type_fops},
	{"i915_dp_test_active", &i915_displayport_test_active_fops},
	{"i915_guc_log_level", &i915_guc_log_level_fops},
	{"i915_guc_log_relay", &i915_guc_log_relay_fops},
	{"i915_hpd_storm_ctl", &i915_hpd_storm_ctl_fops},
	{"i915_hpd_short_storm_ctl", &i915_hpd_short_storm_ctl_fops},
	{"i915_ipc_status", &i915_ipc_status_fops},
	{"i915_drrs_ctl", &i915_drrs_ctl_fops},
	{"i915_edp_psr_debug", &i915_edp_psr_debug_fops}
};

int i915_debugfs_register(struct drm_i915_private *dev_priv)
{
	struct drm_minor *minor = dev_priv->drm.primary;
	int i;

	debugfs_create_file("i915_forcewake_user", S_IRUSR, minor->debugfs_root,
			    to_i915(minor->dev), &i915_forcewake_fops);

	for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
		debugfs_create_file(i915_debugfs_files[i].name,
				    S_IRUGO | S_IWUSR,
				    minor->debugfs_root,
				    to_i915(minor->dev),
				    i915_debugfs_files[i].fops);
	}

	return drm_debugfs_create_files(i915_debugfs_list,
					I915_DEBUGFS_ENTRIES,
					minor->debugfs_root, minor);
}

struct dpcd_block {
	/* DPCD dump start address. */
	unsigned int offset;
	/* DPCD dump end address, inclusive. If unset, .size will be used. */
	unsigned int end;
	/* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
	size_t size;
	/* Only valid for eDP. */
	bool edp;
};

static const struct dpcd_block i915_dpcd_debug[] = {
	{ .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
	{ .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
	{ .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
	{ .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
	{ .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
	{ .offset = DP_SET_POWER },
	{ .offset = DP_EDP_DPCD_REV },
	{ .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
	{ .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
	{ .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
};

static int i915_dpcd_show(struct seq_file *m, void *data)
{
	struct drm_connector *connector = m->private;
	struct intel_dp *intel_dp =
		enc_to_intel_dp(&intel_attached_encoder(connector)->base);
	u8 buf[16];
	ssize_t err;
	int i;

	if (connector->status != connector_status_connected)
		return -ENODEV;

	for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
		const struct dpcd_block *b = &i915_dpcd_debug[i];
		size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);

		if (b->edp &&
		    connector->connector_type != DRM_MODE_CONNECTOR_eDP)
			continue;

		/* low tech for now */
		if (WARN_ON(size > sizeof(buf)))
			continue;

		err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
		if (err < 0)
			seq_printf(m, "%04x: ERROR %d\n", b->offset, (int)err);
		else
			seq_printf(m, "%04x: %*ph\n", b->offset, (int)err, buf);
	}

	return 0;
}
DEFINE_SHOW_ATTRIBUTE(i915_dpcd);

static int i915_panel_show(struct seq_file *m, void *data)
{
	struct drm_connector *connector = m->private;
	struct intel_dp *intel_dp =
		enc_to_intel_dp(&intel_attached_encoder(connector)->base);

	if (connector->status != connector_status_connected)
		return -ENODEV;

	seq_printf(m, "Panel power up delay: %d\n",
		   intel_dp->panel_power_up_delay);
	seq_printf(m, "Panel power down delay: %d\n",
		   intel_dp->panel_power_down_delay);
	seq_printf(m, "Backlight on delay: %d\n",
		   intel_dp->backlight_on_delay);
	seq_printf(m, "Backlight off delay: %d\n",
		   intel_dp->backlight_off_delay);

	return 0;
}
DEFINE_SHOW_ATTRIBUTE(i915_panel);

static int i915_hdcp_sink_capability_show(struct seq_file *m, void *data)
{
	struct drm_connector *connector = m->private;
	struct intel_connector *intel_connector = to_intel_connector(connector);

	if (connector->status != connector_status_connected)
		return -ENODEV;

	/* HDCP is supported by connector */
	if (!intel_connector->hdcp.shim)
		return -EINVAL;

	seq_printf(m, "%s:%d HDCP version: ", connector->name,
		   connector->base.id);
	intel_hdcp_info(m, intel_connector);

	return 0;
}
DEFINE_SHOW_ATTRIBUTE(i915_hdcp_sink_capability);

static int i915_dsc_fec_support_show(struct seq_file *m, void *data)
{
	struct drm_connector *connector = m->private;
	struct drm_device *dev = connector->dev;
	struct drm_crtc *crtc;
	struct intel_dp *intel_dp;
	struct drm_modeset_acquire_ctx ctx;
	struct intel_crtc_state *crtc_state = NULL;
	int ret = 0;
	bool try_again = false;

	drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);

	do {
		try_again = false;
		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
				       &ctx);
		if (ret) {
			if (ret == -EDEADLK && !drm_modeset_backoff(&ctx)) {
				try_again = true;
				continue;
			}
			break;
		}
		crtc = connector->state->crtc;
		if (connector->status != connector_status_connected || !crtc) {
			ret = -ENODEV;
			break;
		}
		ret = drm_modeset_lock(&crtc->mutex, &ctx);
		if (ret == -EDEADLK) {
			ret = drm_modeset_backoff(&ctx);
			if (!ret) {
				try_again = true;
				continue;
			}
			break;
		} else if (ret) {
			break;
		}
		intel_dp = enc_to_intel_dp(&intel_attached_encoder(connector)->base);
		crtc_state = to_intel_crtc_state(crtc->state);
		seq_printf(m, "DSC_Enabled: %s\n",
			   yesno(crtc_state->dsc_params.compression_enable));
		seq_printf(m, "DSC_Sink_Support: %s\n",
			   yesno(drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)));
		seq_printf(m, "Force_DSC_Enable: %s\n",
			   yesno(intel_dp->force_dsc_en));
		if (!intel_dp_is_edp(intel_dp))
			seq_printf(m, "FEC_Sink_Support: %s\n",
				   yesno(drm_dp_sink_supports_fec(intel_dp->fec_capable)));
	} while (try_again);

	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);

	return ret;
}

static ssize_t i915_dsc_fec_support_write(struct file *file,
					  const char __user *ubuf,
					  size_t len, loff_t *offp)
{
	bool dsc_enable = false;
	int ret;
	struct drm_connector *connector =
		((struct seq_file *)file->private_data)->private;
	struct intel_encoder *encoder = intel_attached_encoder(connector);
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);

	if (len == 0)
		return 0;

	DRM_DEBUG_DRIVER("Copied %zu bytes from user to force DSC\n",
			 len);

	ret = kstrtobool_from_user(ubuf, len, &dsc_enable);
	if (ret < 0)
		return ret;

	DRM_DEBUG_DRIVER("Got %s for DSC Enable\n",
			 (dsc_enable) ? "true" : "false");
	intel_dp->force_dsc_en = dsc_enable;

	*offp += len;
	return len;
}

static int i915_dsc_fec_support_open(struct inode *inode,
				     struct file *file)
{
	return single_open(file, i915_dsc_fec_support_show,
			   inode->i_private);
}

static const struct file_operations i915_dsc_fec_support_fops = {
	.owner = THIS_MODULE,
	.open = i915_dsc_fec_support_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
	.write = i915_dsc_fec_support_write
};

/**
 * i915_debugfs_connector_add - add i915 specific connector debugfs files
 * @connector: pointer to a registered drm_connector
 *
 * Cleanup will be done by drm_connector_unregister() through a call to
 * drm_debugfs_connector_remove().
 *
 * Returns 0 on success, negative error codes on error.
 */
int i915_debugfs_connector_add(struct drm_connector *connector)
{
	struct dentry *root = connector->debugfs_entry;
	struct drm_i915_private *dev_priv = to_i915(connector->dev);

	/* The connector must have been registered beforehands. */
	if (!root)
		return -ENODEV;

	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
	    connector->connector_type == DRM_MODE_CONNECTOR_eDP)
		debugfs_create_file("i915_dpcd", S_IRUGO, root,
				    connector, &i915_dpcd_fops);

	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP) {
		debugfs_create_file("i915_panel_timings", S_IRUGO, root,
				    connector, &i915_panel_fops);
		debugfs_create_file("i915_psr_sink_status", S_IRUGO, root,
				    connector, &i915_psr_sink_status_fops);
	}

	if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
	    connector->connector_type == DRM_MODE_CONNECTOR_HDMIA ||
	    connector->connector_type == DRM_MODE_CONNECTOR_HDMIB) {
		debugfs_create_file("i915_hdcp_sink_capability", S_IRUGO, root,
				    connector, &i915_hdcp_sink_capability_fops);
	}

	if (INTEL_GEN(dev_priv) >= 10 &&
	    (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
	     connector->connector_type == DRM_MODE_CONNECTOR_eDP))
		debugfs_create_file("i915_dsc_fec_support", S_IRUGO, root,
				    connector, &i915_dsc_fec_support_fops);

	return 0;
}