Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lionel Landwerlin | 1314 | 27.03% | 8 | 10.53% |
Chris Wilson | 1021 | 21.00% | 9 | 11.84% |
Jani Nikula | 557 | 11.46% | 9 | 11.84% |
Tvrtko A. Ursulin | 455 | 9.36% | 5 | 6.58% |
Kelvin Gardiner | 210 | 4.32% | 1 | 1.32% |
Oscar Mateo | 203 | 4.18% | 2 | 2.63% |
Stuart Summers | 198 | 4.07% | 2 | 2.63% |
Michal Wajdeczko | 193 | 3.97% | 4 | 5.26% |
Paulo Zanoni | 168 | 3.46% | 1 | 1.32% |
Imre Deak | 153 | 3.15% | 3 | 3.95% |
Ben Widawsky | 84 | 1.73% | 1 | 1.32% |
Ander Conselvan de Oliveira | 58 | 1.19% | 3 | 3.95% |
Lucas De Marchi | 56 | 1.15% | 3 | 3.95% |
José Roberto de Souza | 46 | 0.95% | 3 | 3.95% |
Ville Syrjälä | 26 | 0.53% | 5 | 6.58% |
Mika Kahola | 24 | 0.49% | 1 | 1.32% |
Maarten Lankhorst | 22 | 0.45% | 1 | 1.32% |
Bob Paauwe | 21 | 0.43% | 3 | 3.95% |
Rodrigo Vivi | 21 | 0.43% | 5 | 6.58% |
Daniele Ceraolo Spurio | 15 | 0.31% | 2 | 2.63% |
Michel Thierry | 8 | 0.16% | 3 | 3.95% |
Joonas Lahtinen | 4 | 0.08% | 1 | 1.32% |
James Irwin | 4 | 0.08% | 1 | 1.32% |
Total | 4861 | 76 |
/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include <drm/drm_print.h> #include "intel_device_info.h" #include "i915_drv.h" #define PLATFORM_NAME(x) [INTEL_##x] = #x static const char * const platform_names[] = { PLATFORM_NAME(I830), PLATFORM_NAME(I845G), PLATFORM_NAME(I85X), PLATFORM_NAME(I865G), PLATFORM_NAME(I915G), PLATFORM_NAME(I915GM), PLATFORM_NAME(I945G), PLATFORM_NAME(I945GM), PLATFORM_NAME(G33), PLATFORM_NAME(PINEVIEW), PLATFORM_NAME(I965G), PLATFORM_NAME(I965GM), PLATFORM_NAME(G45), PLATFORM_NAME(GM45), PLATFORM_NAME(IRONLAKE), PLATFORM_NAME(SANDYBRIDGE), PLATFORM_NAME(IVYBRIDGE), PLATFORM_NAME(VALLEYVIEW), PLATFORM_NAME(HASWELL), PLATFORM_NAME(BROADWELL), PLATFORM_NAME(CHERRYVIEW), PLATFORM_NAME(SKYLAKE), PLATFORM_NAME(BROXTON), PLATFORM_NAME(KABYLAKE), PLATFORM_NAME(GEMINILAKE), PLATFORM_NAME(COFFEELAKE), PLATFORM_NAME(CANNONLAKE), PLATFORM_NAME(ICELAKE), PLATFORM_NAME(ELKHARTLAKE), PLATFORM_NAME(TIGERLAKE), }; #undef PLATFORM_NAME const char *intel_platform_name(enum intel_platform platform) { BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS); if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) || platform_names[platform] == NULL)) return "<unknown>"; return platform_names[platform]; } void intel_device_info_dump_flags(const struct intel_device_info *info, struct drm_printer *p) { #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name)); DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG); #undef PRINT_FLAG #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name)); DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG); #undef PRINT_FLAG } static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p) { int s; drm_printf(p, "slice total: %u, mask=%04x\n", hweight8(sseu->slice_mask), sseu->slice_mask); drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu)); for (s = 0; s < sseu->max_slices; s++) { drm_printf(p, "slice%d: %u subslices, mask=%04x\n", s, intel_sseu_subslices_per_slice(sseu, s), sseu->subslice_mask[s]); } drm_printf(p, "EU total: %u\n", sseu->eu_total); drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice); drm_printf(p, "has slice power gating: %s\n", yesno(sseu->has_slice_pg)); drm_printf(p, "has subslice power gating: %s\n", yesno(sseu->has_subslice_pg)); drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg)); } void intel_device_info_dump_runtime(const struct intel_runtime_info *info, struct drm_printer *p) { sseu_dump(&info->sseu, p); drm_printf(p, "CS timestamp frequency: %u kHz\n", info->cs_timestamp_frequency_khz); } static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice, int subslice) { int subslice_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); int slice_stride = sseu->max_subslices * subslice_stride; return slice * slice_stride + subslice * subslice_stride; } static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice, int subslice) { int i, offset = sseu_eu_idx(sseu, slice, subslice); u16 eu_mask = 0; for (i = 0; i < GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); i++) { eu_mask |= ((u16)sseu->eu_mask[offset + i]) << (i * BITS_PER_BYTE); } return eu_mask; } static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice, u16 eu_mask) { int i, offset = sseu_eu_idx(sseu, slice, subslice); for (i = 0; i < GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); i++) { sseu->eu_mask[offset + i] = (eu_mask >> (BITS_PER_BYTE * i)) & 0xff; } } void intel_device_info_dump_topology(const struct sseu_dev_info *sseu, struct drm_printer *p) { int s, ss; if (sseu->max_slices == 0) { drm_printf(p, "Unavailable\n"); return; } for (s = 0; s < sseu->max_slices; s++) { drm_printf(p, "slice%d: %u subslice(s) (0x%hhx):\n", s, intel_sseu_subslices_per_slice(sseu, s), sseu->subslice_mask[s]); for (ss = 0; ss < sseu->max_subslices; ss++) { u16 enabled_eus = sseu_get_eus(sseu, s, ss); drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n", ss, hweight16(enabled_eus), enabled_eus); } } } static u16 compute_eu_total(const struct sseu_dev_info *sseu) { u16 i, total = 0; for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++) total += hweight8(sseu->eu_mask[i]); return total; } static void gen11_sseu_info_init(struct drm_i915_private *dev_priv) { struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; u8 s_en; u32 ss_en, ss_en_mask; u8 eu_en; int s; if (IS_ELKHARTLAKE(dev_priv)) { sseu->max_slices = 1; sseu->max_subslices = 4; sseu->max_eus_per_subslice = 8; } else { sseu->max_slices = 1; sseu->max_subslices = 8; sseu->max_eus_per_subslice = 8; } s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK; ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE); ss_en_mask = BIT(sseu->max_subslices) - 1; eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK); for (s = 0; s < sseu->max_slices; s++) { if (s_en & BIT(s)) { int ss_idx = sseu->max_subslices * s; int ss; sseu->slice_mask |= BIT(s); sseu->subslice_mask[s] = (ss_en >> ss_idx) & ss_en_mask; for (ss = 0; ss < sseu->max_subslices; ss++) { if (sseu->subslice_mask[s] & BIT(ss)) sseu_set_eus(sseu, s, ss, eu_en); } } } sseu->eu_per_subslice = hweight8(eu_en); sseu->eu_total = compute_eu_total(sseu); /* ICL has no power gating restrictions. */ sseu->has_slice_pg = 1; sseu->has_subslice_pg = 1; sseu->has_eu_pg = 1; } static void gen10_sseu_info_init(struct drm_i915_private *dev_priv) { struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; const u32 fuse2 = I915_READ(GEN8_FUSE2); int s, ss; const int eu_mask = 0xff; u32 subslice_mask, eu_en; sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >> GEN10_F2_S_ENA_SHIFT; sseu->max_slices = 6; sseu->max_subslices = 4; sseu->max_eus_per_subslice = 8; subslice_mask = (1 << 4) - 1; subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >> GEN10_F2_SS_DIS_SHIFT); /* * Slice0 can have up to 3 subslices, but there are only 2 in * slice1/2. */ sseu->subslice_mask[0] = subslice_mask; for (s = 1; s < sseu->max_slices; s++) sseu->subslice_mask[s] = subslice_mask & 0x3; /* Slice0 */ eu_en = ~I915_READ(GEN8_EU_DISABLE0); for (ss = 0; ss < sseu->max_subslices; ss++) sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask); /* Slice1 */ sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask); eu_en = ~I915_READ(GEN8_EU_DISABLE1); sseu_set_eus(sseu, 1, 1, eu_en & eu_mask); /* Slice2 */ sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask); sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask); /* Slice3 */ sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask); eu_en = ~I915_READ(GEN8_EU_DISABLE2); sseu_set_eus(sseu, 3, 1, eu_en & eu_mask); /* Slice4 */ sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask); sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask); /* Slice5 */ sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask); eu_en = ~I915_READ(GEN10_EU_DISABLE3); sseu_set_eus(sseu, 5, 1, eu_en & eu_mask); /* Do a second pass where we mark the subslices disabled if all their * eus are off. */ for (s = 0; s < sseu->max_slices; s++) { for (ss = 0; ss < sseu->max_subslices; ss++) { if (sseu_get_eus(sseu, s, ss) == 0) sseu->subslice_mask[s] &= ~BIT(ss); } } sseu->eu_total = compute_eu_total(sseu); /* * CNL is expected to always have a uniform distribution * of EU across subslices with the exception that any one * EU in any one subslice may be fused off for die * recovery. */ sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) : 0; /* No restrictions on Power Gating */ sseu->has_slice_pg = 1; sseu->has_subslice_pg = 1; sseu->has_eu_pg = 1; } static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv) { struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; u32 fuse; fuse = I915_READ(CHV_FUSE_GT); sseu->slice_mask = BIT(0); sseu->max_slices = 1; sseu->max_subslices = 2; sseu->max_eus_per_subslice = 8; if (!(fuse & CHV_FGT_DISABLE_SS0)) { u8 disabled_mask = ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >> CHV_FGT_EU_DIS_SS0_R0_SHIFT) | (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >> CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4); sseu->subslice_mask[0] |= BIT(0); sseu_set_eus(sseu, 0, 0, ~disabled_mask); } if (!(fuse & CHV_FGT_DISABLE_SS1)) { u8 disabled_mask = ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >> CHV_FGT_EU_DIS_SS1_R0_SHIFT) | (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >> CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4); sseu->subslice_mask[0] |= BIT(1); sseu_set_eus(sseu, 0, 1, ~disabled_mask); } sseu->eu_total = compute_eu_total(sseu); /* * CHV expected to always have a uniform distribution of EU * across subslices. */ sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? sseu->eu_total / intel_sseu_subslice_total(sseu) : 0; /* * CHV supports subslice power gating on devices with more than * one subslice, and supports EU power gating on devices with * more than one EU pair per subslice. */ sseu->has_slice_pg = 0; sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1; sseu->has_eu_pg = (sseu->eu_per_subslice > 2); } static void gen9_sseu_info_init(struct drm_i915_private *dev_priv) { struct intel_device_info *info = mkwrite_device_info(dev_priv); struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; int s, ss; u32 fuse2, eu_disable, subslice_mask; const u8 eu_mask = 0xff; fuse2 = I915_READ(GEN8_FUSE2); sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; /* BXT has a single slice and at most 3 subslices. */ sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3; sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4; sseu->max_eus_per_subslice = 8; /* * The subslice disable field is global, i.e. it applies * to each of the enabled slices. */ subslice_mask = (1 << sseu->max_subslices) - 1; subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >> GEN9_F2_SS_DIS_SHIFT); /* * Iterate through enabled slices and subslices to * count the total enabled EU. */ for (s = 0; s < sseu->max_slices; s++) { if (!(sseu->slice_mask & BIT(s))) /* skip disabled slice */ continue; sseu->subslice_mask[s] = subslice_mask; eu_disable = I915_READ(GEN9_EU_DISABLE(s)); for (ss = 0; ss < sseu->max_subslices; ss++) { int eu_per_ss; u8 eu_disabled_mask; if (!(sseu->subslice_mask[s] & BIT(ss))) /* skip disabled subslice */ continue; eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask; sseu_set_eus(sseu, s, ss, ~eu_disabled_mask); eu_per_ss = sseu->max_eus_per_subslice - hweight8(eu_disabled_mask); /* * Record which subslice(s) has(have) 7 EUs. we * can tune the hash used to spread work among * subslices if they are unbalanced. */ if (eu_per_ss == 7) sseu->subslice_7eu[s] |= BIT(ss); } } sseu->eu_total = compute_eu_total(sseu); /* * SKL is expected to always have a uniform distribution * of EU across subslices with the exception that any one * EU in any one subslice may be fused off for die * recovery. BXT is expected to be perfectly uniform in EU * distribution. */ sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) : 0; /* * SKL+ supports slice power gating on devices with more than * one slice, and supports EU power gating on devices with * more than one EU pair per subslice. BXT+ supports subslice * power gating on devices with more than one subslice, and * supports EU power gating on devices with more than one EU * pair per subslice. */ sseu->has_slice_pg = !IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1; sseu->has_subslice_pg = IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1; sseu->has_eu_pg = sseu->eu_per_subslice > 2; if (IS_GEN9_LP(dev_priv)) { #define IS_SS_DISABLED(ss) (!(sseu->subslice_mask[0] & BIT(ss))) info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3; sseu->min_eu_in_pool = 0; if (info->has_pooled_eu) { if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0)) sseu->min_eu_in_pool = 3; else if (IS_SS_DISABLED(1)) sseu->min_eu_in_pool = 6; else sseu->min_eu_in_pool = 9; } #undef IS_SS_DISABLED } } static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv) { struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; int s, ss; u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */ fuse2 = I915_READ(GEN8_FUSE2); sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; sseu->max_slices = 3; sseu->max_subslices = 3; sseu->max_eus_per_subslice = 8; /* * The subslice disable field is global, i.e. it applies * to each of the enabled slices. */ subslice_mask = GENMASK(sseu->max_subslices - 1, 0); subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >> GEN8_F2_SS_DIS_SHIFT); eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK; eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) | ((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) << (32 - GEN8_EU_DIS0_S1_SHIFT)); eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) | ((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) << (32 - GEN8_EU_DIS1_S2_SHIFT)); /* * Iterate through enabled slices and subslices to * count the total enabled EU. */ for (s = 0; s < sseu->max_slices; s++) { if (!(sseu->slice_mask & BIT(s))) /* skip disabled slice */ continue; sseu->subslice_mask[s] = subslice_mask; for (ss = 0; ss < sseu->max_subslices; ss++) { u8 eu_disabled_mask; u32 n_disabled; if (!(sseu->subslice_mask[s] & BIT(ss))) /* skip disabled subslice */ continue; eu_disabled_mask = eu_disable[s] >> (ss * sseu->max_eus_per_subslice); sseu_set_eus(sseu, s, ss, ~eu_disabled_mask); n_disabled = hweight8(eu_disabled_mask); /* * Record which subslices have 7 EUs. */ if (sseu->max_eus_per_subslice - n_disabled == 7) sseu->subslice_7eu[s] |= 1 << ss; } } sseu->eu_total = compute_eu_total(sseu); /* * BDW is expected to always have a uniform distribution of EU across * subslices with the exception that any one EU in any one subslice may * be fused off for die recovery. */ sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) : 0; /* * BDW supports slice power gating on devices with more than * one slice. */ sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1; sseu->has_subslice_pg = 0; sseu->has_eu_pg = 0; } static void haswell_sseu_info_init(struct drm_i915_private *dev_priv) { struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; u32 fuse1; int s, ss; /* * There isn't a register to tell us how many slices/subslices. We * work off the PCI-ids here. */ switch (INTEL_INFO(dev_priv)->gt) { default: MISSING_CASE(INTEL_INFO(dev_priv)->gt); /* fall through */ case 1: sseu->slice_mask = BIT(0); sseu->subslice_mask[0] = BIT(0); break; case 2: sseu->slice_mask = BIT(0); sseu->subslice_mask[0] = BIT(0) | BIT(1); break; case 3: sseu->slice_mask = BIT(0) | BIT(1); sseu->subslice_mask[0] = BIT(0) | BIT(1); sseu->subslice_mask[1] = BIT(0) | BIT(1); break; } sseu->max_slices = hweight8(sseu->slice_mask); sseu->max_subslices = hweight8(sseu->subslice_mask[0]); fuse1 = I915_READ(HSW_PAVP_FUSE1); switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) { default: MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT); /* fall through */ case HSW_F1_EU_DIS_10EUS: sseu->eu_per_subslice = 10; break; case HSW_F1_EU_DIS_8EUS: sseu->eu_per_subslice = 8; break; case HSW_F1_EU_DIS_6EUS: sseu->eu_per_subslice = 6; break; } sseu->max_eus_per_subslice = sseu->eu_per_subslice; for (s = 0; s < sseu->max_slices; s++) { for (ss = 0; ss < sseu->max_subslices; ss++) { sseu_set_eus(sseu, s, ss, (1UL << sseu->eu_per_subslice) - 1); } } sseu->eu_total = compute_eu_total(sseu); /* No powergating for you. */ sseu->has_slice_pg = 0; sseu->has_subslice_pg = 0; sseu->has_eu_pg = 0; } static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv) { u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE); u32 base_freq, frac_freq; base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >> GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1; base_freq *= 1000; frac_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >> GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT); frac_freq = 1000 / (frac_freq + 1); return base_freq + frac_freq; } static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv, u32 rpm_config_reg) { u32 f19_2_mhz = 19200; u32 f24_mhz = 24000; u32 crystal_clock = (rpm_config_reg & GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >> GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT; switch (crystal_clock) { case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ: return f19_2_mhz; case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ: return f24_mhz; default: MISSING_CASE(crystal_clock); return 0; } } static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv, u32 rpm_config_reg) { u32 f19_2_mhz = 19200; u32 f24_mhz = 24000; u32 f25_mhz = 25000; u32 f38_4_mhz = 38400; u32 crystal_clock = (rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >> GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT; switch (crystal_clock) { case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ: return f24_mhz; case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ: return f19_2_mhz; case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ: return f38_4_mhz; case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ: return f25_mhz; default: MISSING_CASE(crystal_clock); return 0; } } static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv) { u32 f12_5_mhz = 12500; u32 f19_2_mhz = 19200; u32 f24_mhz = 24000; if (INTEL_GEN(dev_priv) <= 4) { /* PRMs say: * * "The value in this register increments once every 16 * hclks." (through the “Clocking Configuration” * (“CLKCFG”) MCHBAR register) */ return dev_priv->rawclk_freq / 16; } else if (INTEL_GEN(dev_priv) <= 8) { /* PRMs say: * * "The PCU TSC counts 10ns increments; this timestamp * reflects bits 38:3 of the TSC (i.e. 80ns granularity, * rolling over every 1.5 hours). */ return f12_5_mhz; } else if (INTEL_GEN(dev_priv) <= 9) { u32 ctc_reg = I915_READ(CTC_MODE); u32 freq = 0; if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { freq = read_reference_ts_freq(dev_priv); } else { freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz; /* Now figure out how the command stream's timestamp * register increments from this frequency (it might * increment only every few clock cycle). */ freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >> CTC_SHIFT_PARAMETER_SHIFT); } return freq; } else if (INTEL_GEN(dev_priv) <= 12) { u32 ctc_reg = I915_READ(CTC_MODE); u32 freq = 0; /* First figure out the reference frequency. There are 2 ways * we can compute the frequency, either through the * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE * tells us which one we should use. */ if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { freq = read_reference_ts_freq(dev_priv); } else { u32 rpm_config_reg = I915_READ(RPM_CONFIG0); if (INTEL_GEN(dev_priv) <= 10) freq = gen10_get_crystal_clock_freq(dev_priv, rpm_config_reg); else freq = gen11_get_crystal_clock_freq(dev_priv, rpm_config_reg); /* Now figure out how the command stream's timestamp * register increments from this frequency (it might * increment only every few clock cycle). */ freq >>= 3 - ((rpm_config_reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT); } return freq; } MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n"); return 0; } #undef INTEL_VGA_DEVICE #define INTEL_VGA_DEVICE(id, info) (id) static const u16 subplatform_ult_ids[] = { INTEL_HSW_ULT_GT1_IDS(0), INTEL_HSW_ULT_GT2_IDS(0), INTEL_HSW_ULT_GT3_IDS(0), INTEL_BDW_ULT_GT1_IDS(0), INTEL_BDW_ULT_GT2_IDS(0), INTEL_BDW_ULT_GT3_IDS(0), INTEL_BDW_ULT_RSVD_IDS(0), INTEL_SKL_ULT_GT1_IDS(0), INTEL_SKL_ULT_GT2_IDS(0), INTEL_SKL_ULT_GT3_IDS(0), INTEL_KBL_ULT_GT1_IDS(0), INTEL_KBL_ULT_GT2_IDS(0), INTEL_KBL_ULT_GT3_IDS(0), INTEL_CFL_U_GT2_IDS(0), INTEL_CFL_U_GT3_IDS(0), INTEL_WHL_U_GT1_IDS(0), INTEL_WHL_U_GT2_IDS(0), INTEL_WHL_U_GT3_IDS(0), }; static const u16 subplatform_ulx_ids[] = { INTEL_HSW_ULX_GT1_IDS(0), INTEL_HSW_ULX_GT2_IDS(0), INTEL_BDW_ULX_GT1_IDS(0), INTEL_BDW_ULX_GT2_IDS(0), INTEL_BDW_ULX_GT3_IDS(0), INTEL_BDW_ULX_RSVD_IDS(0), INTEL_SKL_ULX_GT1_IDS(0), INTEL_SKL_ULX_GT2_IDS(0), INTEL_KBL_ULX_GT1_IDS(0), INTEL_KBL_ULX_GT2_IDS(0), INTEL_AML_KBL_GT2_IDS(0), INTEL_AML_CFL_GT2_IDS(0), }; static const u16 subplatform_portf_ids[] = { INTEL_CNL_PORT_F_IDS(0), INTEL_ICL_PORT_F_IDS(0), }; static bool find_devid(u16 id, const u16 *p, unsigned int num) { for (; num; num--, p++) { if (*p == id) return true; } return false; } void intel_device_info_subplatform_init(struct drm_i915_private *i915) { const struct intel_device_info *info = INTEL_INFO(i915); const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915); const unsigned int pi = __platform_mask_index(rinfo, info->platform); const unsigned int pb = __platform_mask_bit(rinfo, info->platform); u16 devid = INTEL_DEVID(i915); u32 mask = 0; /* Make sure IS_<platform> checks are working. */ RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb); /* Find and mark subplatform bits based on the PCI device id. */ if (find_devid(devid, subplatform_ult_ids, ARRAY_SIZE(subplatform_ult_ids))) { mask = BIT(INTEL_SUBPLATFORM_ULT); } else if (find_devid(devid, subplatform_ulx_ids, ARRAY_SIZE(subplatform_ulx_ids))) { mask = BIT(INTEL_SUBPLATFORM_ULX); if (IS_HASWELL(i915) || IS_BROADWELL(i915)) { /* ULX machines are also considered ULT. */ mask |= BIT(INTEL_SUBPLATFORM_ULT); } } else if (find_devid(devid, subplatform_portf_ids, ARRAY_SIZE(subplatform_portf_ids))) { mask = BIT(INTEL_SUBPLATFORM_PORTF); } GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS); RUNTIME_INFO(i915)->platform_mask[pi] |= mask; } /** * intel_device_info_runtime_init - initialize runtime info * @dev_priv: the i915 device * * Determine various intel_device_info fields at runtime. * * Use it when either: * - it's judged too laborious to fill n static structures with the limit * when a simple if statement does the job, * - run-time checks (eg read fuse/strap registers) are needed. * * This function needs to be called: * - after the MMIO has been setup as we are reading registers, * - after the PCH has been detected, * - before the first usage of the fields it can tweak. */ void intel_device_info_runtime_init(struct drm_i915_private *dev_priv) { struct intel_device_info *info = mkwrite_device_info(dev_priv); struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv); enum pipe pipe; if (INTEL_GEN(dev_priv) >= 10) { for_each_pipe(dev_priv, pipe) runtime->num_scalers[pipe] = 2; } else if (IS_GEN(dev_priv, 9)) { runtime->num_scalers[PIPE_A] = 2; runtime->num_scalers[PIPE_B] = 2; runtime->num_scalers[PIPE_C] = 1; } BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES); if (INTEL_GEN(dev_priv) >= 11) for_each_pipe(dev_priv, pipe) runtime->num_sprites[pipe] = 6; else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv)) for_each_pipe(dev_priv, pipe) runtime->num_sprites[pipe] = 3; else if (IS_BROXTON(dev_priv)) { /* * Skylake and Broxton currently don't expose the topmost plane as its * use is exclusive with the legacy cursor and we only want to expose * one of those, not both. Until we can safely expose the topmost plane * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported, * we don't expose the topmost plane at all to prevent ABI breakage * down the line. */ runtime->num_sprites[PIPE_A] = 2; runtime->num_sprites[PIPE_B] = 2; runtime->num_sprites[PIPE_C] = 1; } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { for_each_pipe(dev_priv, pipe) runtime->num_sprites[pipe] = 2; } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) { for_each_pipe(dev_priv, pipe) runtime->num_sprites[pipe] = 1; } if (i915_modparams.disable_display) { DRM_INFO("Display disabled (module parameter)\n"); info->num_pipes = 0; } else if (HAS_DISPLAY(dev_priv) && (IS_GEN_RANGE(dev_priv, 7, 8)) && HAS_PCH_SPLIT(dev_priv)) { u32 fuse_strap = I915_READ(FUSE_STRAP); u32 sfuse_strap = I915_READ(SFUSE_STRAP); /* * SFUSE_STRAP is supposed to have a bit signalling the display * is fused off. Unfortunately it seems that, at least in * certain cases, fused off display means that PCH display * reads don't land anywhere. In that case, we read 0s. * * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK * should be set when taking over after the firmware. */ if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE || sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED || (HAS_PCH_CPT(dev_priv) && !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) { DRM_INFO("Display fused off, disabling\n"); info->num_pipes = 0; } else if (fuse_strap & IVB_PIPE_C_DISABLE) { DRM_INFO("PipeC fused off\n"); info->num_pipes -= 1; } } else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) { u32 dfsm = I915_READ(SKL_DFSM); u8 enabled_mask = BIT(info->num_pipes) - 1; if (dfsm & SKL_DFSM_PIPE_A_DISABLE) enabled_mask &= ~BIT(PIPE_A); if (dfsm & SKL_DFSM_PIPE_B_DISABLE) enabled_mask &= ~BIT(PIPE_B); if (dfsm & SKL_DFSM_PIPE_C_DISABLE) enabled_mask &= ~BIT(PIPE_C); if (INTEL_GEN(dev_priv) >= 12 && (dfsm & TGL_DFSM_PIPE_D_DISABLE)) enabled_mask &= ~BIT(PIPE_D); /* * At least one pipe should be enabled and if there are * disabled pipes, they should be the last ones, with no holes * in the mask. */ if (enabled_mask == 0 || !is_power_of_2(enabled_mask + 1)) DRM_ERROR("invalid pipe fuse configuration: enabled_mask=0x%x\n", enabled_mask); else info->num_pipes = hweight8(enabled_mask); } /* Initialize slice/subslice/EU info */ if (IS_HASWELL(dev_priv)) haswell_sseu_info_init(dev_priv); else if (IS_CHERRYVIEW(dev_priv)) cherryview_sseu_info_init(dev_priv); else if (IS_BROADWELL(dev_priv)) broadwell_sseu_info_init(dev_priv); else if (IS_GEN(dev_priv, 9)) gen9_sseu_info_init(dev_priv); else if (IS_GEN(dev_priv, 10)) gen10_sseu_info_init(dev_priv); else if (INTEL_GEN(dev_priv) >= 11) gen11_sseu_info_init(dev_priv); if (IS_GEN(dev_priv, 6) && intel_vtd_active()) { DRM_INFO("Disabling ppGTT for VT-d support\n"); info->ppgtt_type = INTEL_PPGTT_NONE; } /* Initialize command stream timestamp frequency */ runtime->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv); } void intel_driver_caps_print(const struct intel_driver_caps *caps, struct drm_printer *p) { drm_printf(p, "Has logical contexts? %s\n", yesno(caps->has_logical_contexts)); drm_printf(p, "scheduler: %x\n", caps->scheduler); } /* * Determine which engines are fused off in our particular hardware. Since the * fuse register is in the blitter powerwell, we need forcewake to be ready at * this point (but later we need to prune the forcewake domains for engines that * are indeed fused off). */ void intel_device_info_init_mmio(struct drm_i915_private *dev_priv) { struct intel_device_info *info = mkwrite_device_info(dev_priv); unsigned int logical_vdbox = 0; unsigned int i; u32 media_fuse; u16 vdbox_mask; u16 vebox_mask; if (INTEL_GEN(dev_priv) < 11) return; media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE); vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK; vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >> GEN11_GT_VEBOX_DISABLE_SHIFT; for (i = 0; i < I915_MAX_VCS; i++) { if (!HAS_ENGINE(dev_priv, _VCS(i))) continue; if (!(BIT(i) & vdbox_mask)) { info->engine_mask &= ~BIT(_VCS(i)); DRM_DEBUG_DRIVER("vcs%u fused off\n", i); continue; } /* * In Gen11, only even numbered logical VDBOXes are * hooked up to an SFC (Scaler & Format Converter) unit. * In TGL each VDBOX has access to an SFC. */ if (IS_TIGERLAKE(dev_priv) || logical_vdbox++ % 2 == 0) RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i); } DRM_DEBUG_DRIVER("vdbox enable: %04x, instances: %04lx\n", vdbox_mask, VDBOX_MASK(dev_priv)); GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv)); for (i = 0; i < I915_MAX_VECS; i++) { if (!HAS_ENGINE(dev_priv, _VECS(i))) continue; if (!(BIT(i) & vebox_mask)) { info->engine_mask &= ~BIT(_VECS(i)); DRM_DEBUG_DRIVER("vecs%u fused off\n", i); } } DRM_DEBUG_DRIVER("vebox enable: %04x, instances: %04lx\n", vebox_mask, VEBOX_MASK(dev_priv)); GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv)); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1