Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jordan Crouse | 1870 | 99.63% | 2 | 66.67% |
Mamta Shukla | 7 | 0.37% | 1 | 33.33% |
Total | 1877 | 3 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2017-2018 The Linux Foundation. All rights reserved. */ #include <linux/completion.h> #include <linux/circ_buf.h> #include <linux/list.h> #include "a6xx_gmu.h" #include "a6xx_gmu.xml.h" #define HFI_MSG_ID(val) [val] = #val static const char * const a6xx_hfi_msg_id[] = { HFI_MSG_ID(HFI_H2F_MSG_INIT), HFI_MSG_ID(HFI_H2F_MSG_FW_VERSION), HFI_MSG_ID(HFI_H2F_MSG_BW_TABLE), HFI_MSG_ID(HFI_H2F_MSG_PERF_TABLE), HFI_MSG_ID(HFI_H2F_MSG_TEST), }; static int a6xx_hfi_queue_read(struct a6xx_hfi_queue *queue, u32 *data, u32 dwords) { struct a6xx_hfi_queue_header *header = queue->header; u32 i, hdr, index = header->read_index; if (header->read_index == header->write_index) { header->rx_request = 1; return 0; } hdr = queue->data[index]; /* * If we are to assume that the GMU firmware is in fact a rational actor * and is programmed to not send us a larger response than we expect * then we can also assume that if the header size is unexpectedly large * that it is due to memory corruption and/or hardware failure. In this * case the only reasonable course of action is to BUG() to help harden * the failure. */ BUG_ON(HFI_HEADER_SIZE(hdr) > dwords); for (i = 0; i < HFI_HEADER_SIZE(hdr); i++) { data[i] = queue->data[index]; index = (index + 1) % header->size; } header->read_index = index; return HFI_HEADER_SIZE(hdr); } static int a6xx_hfi_queue_write(struct a6xx_gmu *gmu, struct a6xx_hfi_queue *queue, u32 *data, u32 dwords) { struct a6xx_hfi_queue_header *header = queue->header; u32 i, space, index = header->write_index; spin_lock(&queue->lock); space = CIRC_SPACE(header->write_index, header->read_index, header->size); if (space < dwords) { header->dropped++; spin_unlock(&queue->lock); return -ENOSPC; } for (i = 0; i < dwords; i++) { queue->data[index] = data[i]; index = (index + 1) % header->size; } header->write_index = index; spin_unlock(&queue->lock); gmu_write(gmu, REG_A6XX_GMU_HOST2GMU_INTR_SET, 0x01); return 0; } static int a6xx_hfi_wait_for_ack(struct a6xx_gmu *gmu, u32 id, u32 seqnum, u32 *payload, u32 payload_size) { struct a6xx_hfi_queue *queue = &gmu->queues[HFI_RESPONSE_QUEUE]; u32 val; int ret; /* Wait for a response */ ret = gmu_poll_timeout(gmu, REG_A6XX_GMU_GMU2HOST_INTR_INFO, val, val & A6XX_GMU_GMU2HOST_INTR_INFO_MSGQ, 100, 5000); if (ret) { DRM_DEV_ERROR(gmu->dev, "Message %s id %d timed out waiting for response\n", a6xx_hfi_msg_id[id], seqnum); return -ETIMEDOUT; } /* Clear the interrupt */ gmu_write(gmu, REG_A6XX_GMU_GMU2HOST_INTR_CLR, A6XX_GMU_GMU2HOST_INTR_INFO_MSGQ); for (;;) { struct a6xx_hfi_msg_response resp; /* Get the next packet */ ret = a6xx_hfi_queue_read(queue, (u32 *) &resp, sizeof(resp) >> 2); /* If the queue is empty our response never made it */ if (!ret) { DRM_DEV_ERROR(gmu->dev, "The HFI response queue is unexpectedly empty\n"); return -ENOENT; } if (HFI_HEADER_ID(resp.header) == HFI_F2H_MSG_ERROR) { struct a6xx_hfi_msg_error *error = (struct a6xx_hfi_msg_error *) &resp; DRM_DEV_ERROR(gmu->dev, "GMU firmware error %d\n", error->code); continue; } if (seqnum != HFI_HEADER_SEQNUM(resp.ret_header)) { DRM_DEV_ERROR(gmu->dev, "Unexpected message id %d on the response queue\n", HFI_HEADER_SEQNUM(resp.ret_header)); continue; } if (resp.error) { DRM_DEV_ERROR(gmu->dev, "Message %s id %d returned error %d\n", a6xx_hfi_msg_id[id], seqnum, resp.error); return -EINVAL; } /* All is well, copy over the buffer */ if (payload && payload_size) memcpy(payload, resp.payload, min_t(u32, payload_size, sizeof(resp.payload))); return 0; } } static int a6xx_hfi_send_msg(struct a6xx_gmu *gmu, int id, void *data, u32 size, u32 *payload, u32 payload_size) { struct a6xx_hfi_queue *queue = &gmu->queues[HFI_COMMAND_QUEUE]; int ret, dwords = size >> 2; u32 seqnum; seqnum = atomic_inc_return(&queue->seqnum) % 0xfff; /* First dword of the message is the message header - fill it in */ *((u32 *) data) = (seqnum << 20) | (HFI_MSG_CMD << 16) | (dwords << 8) | id; ret = a6xx_hfi_queue_write(gmu, queue, data, dwords); if (ret) { DRM_DEV_ERROR(gmu->dev, "Unable to send message %s id %d\n", a6xx_hfi_msg_id[id], seqnum); return ret; } return a6xx_hfi_wait_for_ack(gmu, id, seqnum, payload, payload_size); } static int a6xx_hfi_send_gmu_init(struct a6xx_gmu *gmu, int boot_state) { struct a6xx_hfi_msg_gmu_init_cmd msg = { 0 }; msg.dbg_buffer_addr = (u32) gmu->debug->iova; msg.dbg_buffer_size = (u32) gmu->debug->size; msg.boot_state = boot_state; return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_INIT, &msg, sizeof(msg), NULL, 0); } static int a6xx_hfi_get_fw_version(struct a6xx_gmu *gmu, u32 *version) { struct a6xx_hfi_msg_fw_version msg = { 0 }; /* Currently supporting version 1.1 */ msg.supported_version = (1 << 28) | (1 << 16); return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_FW_VERSION, &msg, sizeof(msg), version, sizeof(*version)); } static int a6xx_hfi_send_perf_table(struct a6xx_gmu *gmu) { struct a6xx_hfi_msg_perf_table msg = { 0 }; int i; msg.num_gpu_levels = gmu->nr_gpu_freqs; msg.num_gmu_levels = gmu->nr_gmu_freqs; for (i = 0; i < gmu->nr_gpu_freqs; i++) { msg.gx_votes[i].vote = gmu->gx_arc_votes[i]; msg.gx_votes[i].freq = gmu->gpu_freqs[i] / 1000; } for (i = 0; i < gmu->nr_gmu_freqs; i++) { msg.cx_votes[i].vote = gmu->cx_arc_votes[i]; msg.cx_votes[i].freq = gmu->gmu_freqs[i] / 1000; } return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_PERF_TABLE, &msg, sizeof(msg), NULL, 0); } static int a6xx_hfi_send_bw_table(struct a6xx_gmu *gmu) { struct a6xx_hfi_msg_bw_table msg = { 0 }; /* * The sdm845 GMU doesn't do bus frequency scaling on its own but it * does need at least one entry in the list because it might be accessed * when the GMU is shutting down. Send a single "off" entry. */ msg.bw_level_num = 1; msg.ddr_cmds_num = 3; msg.ddr_wait_bitmask = 0x07; msg.ddr_cmds_addrs[0] = 0x50000; msg.ddr_cmds_addrs[1] = 0x5005c; msg.ddr_cmds_addrs[2] = 0x5000c; msg.ddr_cmds_data[0][0] = 0x40000000; msg.ddr_cmds_data[0][1] = 0x40000000; msg.ddr_cmds_data[0][2] = 0x40000000; /* * These are the CX (CNOC) votes. This is used but the values for the * sdm845 GMU are known and fixed so we can hard code them. */ msg.cnoc_cmds_num = 3; msg.cnoc_wait_bitmask = 0x05; msg.cnoc_cmds_addrs[0] = 0x50034; msg.cnoc_cmds_addrs[1] = 0x5007c; msg.cnoc_cmds_addrs[2] = 0x5004c; msg.cnoc_cmds_data[0][0] = 0x40000000; msg.cnoc_cmds_data[0][1] = 0x00000000; msg.cnoc_cmds_data[0][2] = 0x40000000; msg.cnoc_cmds_data[1][0] = 0x60000001; msg.cnoc_cmds_data[1][1] = 0x20000001; msg.cnoc_cmds_data[1][2] = 0x60000001; return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_BW_TABLE, &msg, sizeof(msg), NULL, 0); } static int a6xx_hfi_send_test(struct a6xx_gmu *gmu) { struct a6xx_hfi_msg_test msg = { 0 }; return a6xx_hfi_send_msg(gmu, HFI_H2F_MSG_TEST, &msg, sizeof(msg), NULL, 0); } int a6xx_hfi_start(struct a6xx_gmu *gmu, int boot_state) { int ret; ret = a6xx_hfi_send_gmu_init(gmu, boot_state); if (ret) return ret; ret = a6xx_hfi_get_fw_version(gmu, NULL); if (ret) return ret; /* * We have to get exchange version numbers per the sequence but at this * point th kernel driver doesn't need to know the exact version of * the GMU firmware */ ret = a6xx_hfi_send_perf_table(gmu); if (ret) return ret; ret = a6xx_hfi_send_bw_table(gmu); if (ret) return ret; /* * Let the GMU know that there won't be any more HFI messages until next * boot */ a6xx_hfi_send_test(gmu); return 0; } void a6xx_hfi_stop(struct a6xx_gmu *gmu) { int i; for (i = 0; i < ARRAY_SIZE(gmu->queues); i++) { struct a6xx_hfi_queue *queue = &gmu->queues[i]; if (!queue->header) continue; if (queue->header->read_index != queue->header->write_index) DRM_DEV_ERROR(gmu->dev, "HFI queue %d is not empty\n", i); queue->header->read_index = 0; queue->header->write_index = 0; } } static void a6xx_hfi_queue_init(struct a6xx_hfi_queue *queue, struct a6xx_hfi_queue_header *header, void *virt, u64 iova, u32 id) { spin_lock_init(&queue->lock); queue->header = header; queue->data = virt; atomic_set(&queue->seqnum, 0); /* Set up the shared memory header */ header->iova = iova; header->type = 10 << 8 | id; header->status = 1; header->size = SZ_4K >> 2; header->msg_size = 0; header->dropped = 0; header->rx_watermark = 1; header->tx_watermark = 1; header->rx_request = 1; header->tx_request = 0; header->read_index = 0; header->write_index = 0; } void a6xx_hfi_init(struct a6xx_gmu *gmu) { struct a6xx_gmu_bo *hfi = gmu->hfi; struct a6xx_hfi_queue_table_header *table = hfi->virt; struct a6xx_hfi_queue_header *headers = hfi->virt + sizeof(*table); u64 offset; int table_size; /* * The table size is the size of the table header plus all of the queue * headers */ table_size = sizeof(*table); table_size += (ARRAY_SIZE(gmu->queues) * sizeof(struct a6xx_hfi_queue_header)); table->version = 0; table->size = table_size; /* First queue header is located immediately after the table header */ table->qhdr0_offset = sizeof(*table) >> 2; table->qhdr_size = sizeof(struct a6xx_hfi_queue_header) >> 2; table->num_queues = ARRAY_SIZE(gmu->queues); table->active_queues = ARRAY_SIZE(gmu->queues); /* Command queue */ offset = SZ_4K; a6xx_hfi_queue_init(&gmu->queues[0], &headers[0], hfi->virt + offset, hfi->iova + offset, 0); /* GMU response queue */ offset += SZ_4K; a6xx_hfi_queue_init(&gmu->queues[1], &headers[1], hfi->virt + offset, hfi->iova + offset, 4); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1