Contributors: 3
Author Tokens Token Proportion Commits Commit Proportion
Archit Taneja 2148 99.68% 2 50.00%
Mamta Shukla 5 0.23% 1 25.00%
Thomas Gleixner 2 0.09% 1 25.00%
Total 2155 4


// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
 */

#include <linux/clk-provider.h>

#include "dsi_pll.h"
#include "dsi.xml.h"

/*
 * DSI PLL 28nm (8960/A family) - clock diagram (eg: DSI1):
 *
 *
 *                        +------+
 *  dsi1vco_clk ----o-----| DIV1 |---dsi1pllbit (not exposed as clock)
 *  F * byte_clk    |     +------+
 *                  | bit clock divider (F / 8)
 *                  |
 *                  |     +------+
 *                  o-----| DIV2 |---dsi0pllbyte---o---> To byte RCG
 *                  |     +------+                 | (sets parent rate)
 *                  | byte clock divider (F)       |
 *                  |                              |
 *                  |                              o---> To esc RCG
 *                  |                                (doesn't set parent rate)
 *                  |
 *                  |     +------+
 *                  o-----| DIV3 |----dsi0pll------o---> To dsi RCG
 *                        +------+                 | (sets parent rate)
 *                  dsi clock divider (F * magic)  |
 *                                                 |
 *                                                 o---> To pixel rcg
 *                                                  (doesn't set parent rate)
 */

#define POLL_MAX_READS		8000
#define POLL_TIMEOUT_US		1

#define NUM_PROVIDED_CLKS	2

#define VCO_REF_CLK_RATE	27000000
#define VCO_MIN_RATE		600000000
#define VCO_MAX_RATE		1200000000

#define DSI_BYTE_PLL_CLK	0
#define DSI_PIXEL_PLL_CLK	1

#define VCO_PREF_DIV_RATIO	27

struct pll_28nm_cached_state {
	unsigned long vco_rate;
	u8 postdiv3;
	u8 postdiv2;
	u8 postdiv1;
};

struct clk_bytediv {
	struct clk_hw hw;
	void __iomem *reg;
};

struct dsi_pll_28nm {
	struct msm_dsi_pll base;

	int id;
	struct platform_device *pdev;
	void __iomem *mmio;

	/* custom byte clock divider */
	struct clk_bytediv *bytediv;

	/* private clocks: */
	struct clk *clks[NUM_DSI_CLOCKS_MAX];
	u32 num_clks;

	/* clock-provider: */
	struct clk *provided_clks[NUM_PROVIDED_CLKS];
	struct clk_onecell_data clk_data;

	struct pll_28nm_cached_state cached_state;
};

#define to_pll_28nm(x)	container_of(x, struct dsi_pll_28nm, base)

static bool pll_28nm_poll_for_ready(struct dsi_pll_28nm *pll_28nm,
				    int nb_tries, int timeout_us)
{
	bool pll_locked = false;
	u32 val;

	while (nb_tries--) {
		val = pll_read(pll_28nm->mmio + REG_DSI_28nm_8960_PHY_PLL_RDY);
		pll_locked = !!(val & DSI_28nm_8960_PHY_PLL_RDY_PLL_RDY);

		if (pll_locked)
			break;

		udelay(timeout_us);
	}
	DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* ");

	return pll_locked;
}

/*
 * Clock Callbacks
 */
static int dsi_pll_28nm_clk_set_rate(struct clk_hw *hw, unsigned long rate,
				     unsigned long parent_rate)
{
	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
	void __iomem *base = pll_28nm->mmio;
	u32 val, temp, fb_divider;

	DBG("rate=%lu, parent's=%lu", rate, parent_rate);

	temp = rate / 10;
	val = VCO_REF_CLK_RATE / 10;
	fb_divider = (temp * VCO_PREF_DIV_RATIO) / val;
	fb_divider = fb_divider / 2 - 1;
	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_1,
			fb_divider & 0xff);

	val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2);

	val |= (fb_divider >> 8) & 0x07;

	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2,
			val);

	val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3);

	val |= (VCO_PREF_DIV_RATIO - 1) & 0x3f;

	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3,
			val);

	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_6,
			0xf);

	val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);
	val |= 0x7 << 4;
	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8,
			val);

	return 0;
}

static int dsi_pll_28nm_clk_is_enabled(struct clk_hw *hw)
{
	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);

	return pll_28nm_poll_for_ready(pll_28nm, POLL_MAX_READS,
					POLL_TIMEOUT_US);
}

static unsigned long dsi_pll_28nm_clk_recalc_rate(struct clk_hw *hw,
						  unsigned long parent_rate)
{
	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
	void __iomem *base = pll_28nm->mmio;
	unsigned long vco_rate;
	u32 status, fb_divider, temp, ref_divider;

	VERB("parent_rate=%lu", parent_rate);

	status = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0);

	if (status & DSI_28nm_8960_PHY_PLL_CTRL_0_ENABLE) {
		fb_divider = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_1);
		fb_divider &= 0xff;
		temp = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2) & 0x07;
		fb_divider = (temp << 8) | fb_divider;
		fb_divider += 1;

		ref_divider = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3);
		ref_divider &= 0x3f;
		ref_divider += 1;

		/* multiply by 2 */
		vco_rate = (parent_rate / ref_divider) * fb_divider * 2;
	} else {
		vco_rate = 0;
	}

	DBG("returning vco rate = %lu", vco_rate);

	return vco_rate;
}

static const struct clk_ops clk_ops_dsi_pll_28nm_vco = {
	.round_rate = msm_dsi_pll_helper_clk_round_rate,
	.set_rate = dsi_pll_28nm_clk_set_rate,
	.recalc_rate = dsi_pll_28nm_clk_recalc_rate,
	.prepare = msm_dsi_pll_helper_clk_prepare,
	.unprepare = msm_dsi_pll_helper_clk_unprepare,
	.is_enabled = dsi_pll_28nm_clk_is_enabled,
};

/*
 * Custom byte clock divier clk_ops
 *
 * This clock is the entry point to configuring the PLL. The user (dsi host)
 * will set this clock's rate to the desired byte clock rate. The VCO lock
 * frequency is a multiple of the byte clock rate. The multiplication factor
 * (shown as F in the diagram above) is a function of the byte clock rate.
 *
 * This custom divider clock ensures that its parent (VCO) is set to the
 * desired rate, and that the byte clock postdivider (POSTDIV2) is configured
 * accordingly
 */
#define to_clk_bytediv(_hw) container_of(_hw, struct clk_bytediv, hw)

static unsigned long clk_bytediv_recalc_rate(struct clk_hw *hw,
		unsigned long parent_rate)
{
	struct clk_bytediv *bytediv = to_clk_bytediv(hw);
	unsigned int div;

	div = pll_read(bytediv->reg) & 0xff;

	return parent_rate / (div + 1);
}

/* find multiplication factor(wrt byte clock) at which the VCO should be set */
static unsigned int get_vco_mul_factor(unsigned long byte_clk_rate)
{
	unsigned long bit_mhz;

	/* convert to bit clock in Mhz */
	bit_mhz = (byte_clk_rate * 8) / 1000000;

	if (bit_mhz < 125)
		return 64;
	else if (bit_mhz < 250)
		return 32;
	else if (bit_mhz < 600)
		return 16;
	else
		return 8;
}

static long clk_bytediv_round_rate(struct clk_hw *hw, unsigned long rate,
				   unsigned long *prate)
{
	unsigned long best_parent;
	unsigned int factor;

	factor = get_vco_mul_factor(rate);

	best_parent = rate * factor;
	*prate = clk_hw_round_rate(clk_hw_get_parent(hw), best_parent);

	return *prate / factor;
}

static int clk_bytediv_set_rate(struct clk_hw *hw, unsigned long rate,
				unsigned long parent_rate)
{
	struct clk_bytediv *bytediv = to_clk_bytediv(hw);
	u32 val;
	unsigned int factor;

	factor = get_vco_mul_factor(rate);

	val = pll_read(bytediv->reg);
	val |= (factor - 1) & 0xff;
	pll_write(bytediv->reg, val);

	return 0;
}

/* Our special byte clock divider ops */
static const struct clk_ops clk_bytediv_ops = {
	.round_rate = clk_bytediv_round_rate,
	.set_rate = clk_bytediv_set_rate,
	.recalc_rate = clk_bytediv_recalc_rate,
};

/*
 * PLL Callbacks
 */
static int dsi_pll_28nm_enable_seq(struct msm_dsi_pll *pll)
{
	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
	struct device *dev = &pll_28nm->pdev->dev;
	void __iomem *base = pll_28nm->mmio;
	bool locked;
	unsigned int bit_div, byte_div;
	int max_reads = 1000, timeout_us = 100;
	u32 val;

	DBG("id=%d", pll_28nm->id);

	/*
	 * before enabling the PLL, configure the bit clock divider since we
	 * don't expose it as a clock to the outside world
	 * 1: read back the byte clock divider that should already be set
	 * 2: divide by 8 to get bit clock divider
	 * 3: write it to POSTDIV1
	 */
	val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9);
	byte_div = val + 1;
	bit_div = byte_div / 8;

	val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);
	val &= ~0xf;
	val |= (bit_div - 1);
	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8, val);

	/* enable the PLL */
	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0,
			DSI_28nm_8960_PHY_PLL_CTRL_0_ENABLE);

	locked = pll_28nm_poll_for_ready(pll_28nm, max_reads, timeout_us);

	if (unlikely(!locked))
		DRM_DEV_ERROR(dev, "DSI PLL lock failed\n");
	else
		DBG("DSI PLL lock success");

	return locked ? 0 : -EINVAL;
}

static void dsi_pll_28nm_disable_seq(struct msm_dsi_pll *pll)
{
	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);

	DBG("id=%d", pll_28nm->id);
	pll_write(pll_28nm->mmio + REG_DSI_28nm_8960_PHY_PLL_CTRL_0, 0x00);
}

static void dsi_pll_28nm_save_state(struct msm_dsi_pll *pll)
{
	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
	struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
	void __iomem *base = pll_28nm->mmio;

	cached_state->postdiv3 =
			pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_10);
	cached_state->postdiv2 =
			pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9);
	cached_state->postdiv1 =
			pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);

	cached_state->vco_rate = clk_hw_get_rate(&pll->clk_hw);
}

static int dsi_pll_28nm_restore_state(struct msm_dsi_pll *pll)
{
	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
	struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
	void __iomem *base = pll_28nm->mmio;
	int ret;

	ret = dsi_pll_28nm_clk_set_rate(&pll->clk_hw,
					cached_state->vco_rate, 0);
	if (ret) {
		DRM_DEV_ERROR(&pll_28nm->pdev->dev,
			"restore vco rate failed. ret=%d\n", ret);
		return ret;
	}

	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_10,
			cached_state->postdiv3);
	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9,
			cached_state->postdiv2);
	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8,
			cached_state->postdiv1);

	return 0;
}

static int dsi_pll_28nm_get_provider(struct msm_dsi_pll *pll,
				struct clk **byte_clk_provider,
				struct clk **pixel_clk_provider)
{
	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);

	if (byte_clk_provider)
		*byte_clk_provider = pll_28nm->provided_clks[DSI_BYTE_PLL_CLK];
	if (pixel_clk_provider)
		*pixel_clk_provider =
				pll_28nm->provided_clks[DSI_PIXEL_PLL_CLK];

	return 0;
}

static void dsi_pll_28nm_destroy(struct msm_dsi_pll *pll)
{
	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);

	msm_dsi_pll_helper_unregister_clks(pll_28nm->pdev,
					pll_28nm->clks, pll_28nm->num_clks);
}

static int pll_28nm_register(struct dsi_pll_28nm *pll_28nm)
{
	char *clk_name, *parent_name, *vco_name;
	struct clk_init_data vco_init = {
		.parent_names = (const char *[]){ "pxo" },
		.num_parents = 1,
		.flags = CLK_IGNORE_UNUSED,
		.ops = &clk_ops_dsi_pll_28nm_vco,
	};
	struct device *dev = &pll_28nm->pdev->dev;
	struct clk **clks = pll_28nm->clks;
	struct clk **provided_clks = pll_28nm->provided_clks;
	struct clk_bytediv *bytediv;
	struct clk_init_data bytediv_init = { };
	int ret, num = 0;

	DBG("%d", pll_28nm->id);

	bytediv = devm_kzalloc(dev, sizeof(*bytediv), GFP_KERNEL);
	if (!bytediv)
		return -ENOMEM;

	vco_name = devm_kzalloc(dev, 32, GFP_KERNEL);
	if (!vco_name)
		return -ENOMEM;

	parent_name = devm_kzalloc(dev, 32, GFP_KERNEL);
	if (!parent_name)
		return -ENOMEM;

	clk_name = devm_kzalloc(dev, 32, GFP_KERNEL);
	if (!clk_name)
		return -ENOMEM;

	pll_28nm->bytediv = bytediv;

	snprintf(vco_name, 32, "dsi%dvco_clk", pll_28nm->id);
	vco_init.name = vco_name;

	pll_28nm->base.clk_hw.init = &vco_init;

	clks[num++] = clk_register(dev, &pll_28nm->base.clk_hw);

	/* prepare and register bytediv */
	bytediv->hw.init = &bytediv_init;
	bytediv->reg = pll_28nm->mmio + REG_DSI_28nm_8960_PHY_PLL_CTRL_9;

	snprintf(parent_name, 32, "dsi%dvco_clk", pll_28nm->id);
	snprintf(clk_name, 32, "dsi%dpllbyte", pll_28nm->id);

	bytediv_init.name = clk_name;
	bytediv_init.ops = &clk_bytediv_ops;
	bytediv_init.flags = CLK_SET_RATE_PARENT;
	bytediv_init.parent_names = (const char * const *) &parent_name;
	bytediv_init.num_parents = 1;

	/* DIV2 */
	clks[num++] = provided_clks[DSI_BYTE_PLL_CLK] =
			clk_register(dev, &bytediv->hw);

	snprintf(clk_name, 32, "dsi%dpll", pll_28nm->id);
	/* DIV3 */
	clks[num++] = provided_clks[DSI_PIXEL_PLL_CLK] =
			clk_register_divider(dev, clk_name,
				parent_name, 0, pll_28nm->mmio +
				REG_DSI_28nm_8960_PHY_PLL_CTRL_10,
				0, 8, 0, NULL);

	pll_28nm->num_clks = num;

	pll_28nm->clk_data.clk_num = NUM_PROVIDED_CLKS;
	pll_28nm->clk_data.clks = provided_clks;

	ret = of_clk_add_provider(dev->of_node,
			of_clk_src_onecell_get, &pll_28nm->clk_data);
	if (ret) {
		DRM_DEV_ERROR(dev, "failed to register clk provider: %d\n", ret);
		return ret;
	}

	return 0;
}

struct msm_dsi_pll *msm_dsi_pll_28nm_8960_init(struct platform_device *pdev,
					       int id)
{
	struct dsi_pll_28nm *pll_28nm;
	struct msm_dsi_pll *pll;
	int ret;

	if (!pdev)
		return ERR_PTR(-ENODEV);

	pll_28nm = devm_kzalloc(&pdev->dev, sizeof(*pll_28nm), GFP_KERNEL);
	if (!pll_28nm)
		return ERR_PTR(-ENOMEM);

	pll_28nm->pdev = pdev;
	pll_28nm->id = id + 1;

	pll_28nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL");
	if (IS_ERR_OR_NULL(pll_28nm->mmio)) {
		DRM_DEV_ERROR(&pdev->dev, "%s: failed to map pll base\n", __func__);
		return ERR_PTR(-ENOMEM);
	}

	pll = &pll_28nm->base;
	pll->min_rate = VCO_MIN_RATE;
	pll->max_rate = VCO_MAX_RATE;
	pll->get_provider = dsi_pll_28nm_get_provider;
	pll->destroy = dsi_pll_28nm_destroy;
	pll->disable_seq = dsi_pll_28nm_disable_seq;
	pll->save_state = dsi_pll_28nm_save_state;
	pll->restore_state = dsi_pll_28nm_restore_state;

	pll->en_seq_cnt = 1;
	pll->enable_seqs[0] = dsi_pll_28nm_enable_seq;

	ret = pll_28nm_register(pll_28nm);
	if (ret) {
		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
		return ERR_PTR(ret);
	}

	return pll;
}