Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Archit Taneja | 2148 | 99.68% | 2 | 50.00% |
Mamta Shukla | 5 | 0.23% | 1 | 25.00% |
Thomas Gleixner | 2 | 0.09% | 1 | 25.00% |
Total | 2155 | 4 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012-2015, The Linux Foundation. All rights reserved. */ #include <linux/clk-provider.h> #include "dsi_pll.h" #include "dsi.xml.h" /* * DSI PLL 28nm (8960/A family) - clock diagram (eg: DSI1): * * * +------+ * dsi1vco_clk ----o-----| DIV1 |---dsi1pllbit (not exposed as clock) * F * byte_clk | +------+ * | bit clock divider (F / 8) * | * | +------+ * o-----| DIV2 |---dsi0pllbyte---o---> To byte RCG * | +------+ | (sets parent rate) * | byte clock divider (F) | * | | * | o---> To esc RCG * | (doesn't set parent rate) * | * | +------+ * o-----| DIV3 |----dsi0pll------o---> To dsi RCG * +------+ | (sets parent rate) * dsi clock divider (F * magic) | * | * o---> To pixel rcg * (doesn't set parent rate) */ #define POLL_MAX_READS 8000 #define POLL_TIMEOUT_US 1 #define NUM_PROVIDED_CLKS 2 #define VCO_REF_CLK_RATE 27000000 #define VCO_MIN_RATE 600000000 #define VCO_MAX_RATE 1200000000 #define DSI_BYTE_PLL_CLK 0 #define DSI_PIXEL_PLL_CLK 1 #define VCO_PREF_DIV_RATIO 27 struct pll_28nm_cached_state { unsigned long vco_rate; u8 postdiv3; u8 postdiv2; u8 postdiv1; }; struct clk_bytediv { struct clk_hw hw; void __iomem *reg; }; struct dsi_pll_28nm { struct msm_dsi_pll base; int id; struct platform_device *pdev; void __iomem *mmio; /* custom byte clock divider */ struct clk_bytediv *bytediv; /* private clocks: */ struct clk *clks[NUM_DSI_CLOCKS_MAX]; u32 num_clks; /* clock-provider: */ struct clk *provided_clks[NUM_PROVIDED_CLKS]; struct clk_onecell_data clk_data; struct pll_28nm_cached_state cached_state; }; #define to_pll_28nm(x) container_of(x, struct dsi_pll_28nm, base) static bool pll_28nm_poll_for_ready(struct dsi_pll_28nm *pll_28nm, int nb_tries, int timeout_us) { bool pll_locked = false; u32 val; while (nb_tries--) { val = pll_read(pll_28nm->mmio + REG_DSI_28nm_8960_PHY_PLL_RDY); pll_locked = !!(val & DSI_28nm_8960_PHY_PLL_RDY_PLL_RDY); if (pll_locked) break; udelay(timeout_us); } DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* "); return pll_locked; } /* * Clock Callbacks */ static int dsi_pll_28nm_clk_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct msm_dsi_pll *pll = hw_clk_to_pll(hw); struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll); void __iomem *base = pll_28nm->mmio; u32 val, temp, fb_divider; DBG("rate=%lu, parent's=%lu", rate, parent_rate); temp = rate / 10; val = VCO_REF_CLK_RATE / 10; fb_divider = (temp * VCO_PREF_DIV_RATIO) / val; fb_divider = fb_divider / 2 - 1; pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_1, fb_divider & 0xff); val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2); val |= (fb_divider >> 8) & 0x07; pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2, val); val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3); val |= (VCO_PREF_DIV_RATIO - 1) & 0x3f; pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3, val); pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_6, 0xf); val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8); val |= 0x7 << 4; pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8, val); return 0; } static int dsi_pll_28nm_clk_is_enabled(struct clk_hw *hw) { struct msm_dsi_pll *pll = hw_clk_to_pll(hw); struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll); return pll_28nm_poll_for_ready(pll_28nm, POLL_MAX_READS, POLL_TIMEOUT_US); } static unsigned long dsi_pll_28nm_clk_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct msm_dsi_pll *pll = hw_clk_to_pll(hw); struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll); void __iomem *base = pll_28nm->mmio; unsigned long vco_rate; u32 status, fb_divider, temp, ref_divider; VERB("parent_rate=%lu", parent_rate); status = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0); if (status & DSI_28nm_8960_PHY_PLL_CTRL_0_ENABLE) { fb_divider = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_1); fb_divider &= 0xff; temp = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2) & 0x07; fb_divider = (temp << 8) | fb_divider; fb_divider += 1; ref_divider = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3); ref_divider &= 0x3f; ref_divider += 1; /* multiply by 2 */ vco_rate = (parent_rate / ref_divider) * fb_divider * 2; } else { vco_rate = 0; } DBG("returning vco rate = %lu", vco_rate); return vco_rate; } static const struct clk_ops clk_ops_dsi_pll_28nm_vco = { .round_rate = msm_dsi_pll_helper_clk_round_rate, .set_rate = dsi_pll_28nm_clk_set_rate, .recalc_rate = dsi_pll_28nm_clk_recalc_rate, .prepare = msm_dsi_pll_helper_clk_prepare, .unprepare = msm_dsi_pll_helper_clk_unprepare, .is_enabled = dsi_pll_28nm_clk_is_enabled, }; /* * Custom byte clock divier clk_ops * * This clock is the entry point to configuring the PLL. The user (dsi host) * will set this clock's rate to the desired byte clock rate. The VCO lock * frequency is a multiple of the byte clock rate. The multiplication factor * (shown as F in the diagram above) is a function of the byte clock rate. * * This custom divider clock ensures that its parent (VCO) is set to the * desired rate, and that the byte clock postdivider (POSTDIV2) is configured * accordingly */ #define to_clk_bytediv(_hw) container_of(_hw, struct clk_bytediv, hw) static unsigned long clk_bytediv_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_bytediv *bytediv = to_clk_bytediv(hw); unsigned int div; div = pll_read(bytediv->reg) & 0xff; return parent_rate / (div + 1); } /* find multiplication factor(wrt byte clock) at which the VCO should be set */ static unsigned int get_vco_mul_factor(unsigned long byte_clk_rate) { unsigned long bit_mhz; /* convert to bit clock in Mhz */ bit_mhz = (byte_clk_rate * 8) / 1000000; if (bit_mhz < 125) return 64; else if (bit_mhz < 250) return 32; else if (bit_mhz < 600) return 16; else return 8; } static long clk_bytediv_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *prate) { unsigned long best_parent; unsigned int factor; factor = get_vco_mul_factor(rate); best_parent = rate * factor; *prate = clk_hw_round_rate(clk_hw_get_parent(hw), best_parent); return *prate / factor; } static int clk_bytediv_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_bytediv *bytediv = to_clk_bytediv(hw); u32 val; unsigned int factor; factor = get_vco_mul_factor(rate); val = pll_read(bytediv->reg); val |= (factor - 1) & 0xff; pll_write(bytediv->reg, val); return 0; } /* Our special byte clock divider ops */ static const struct clk_ops clk_bytediv_ops = { .round_rate = clk_bytediv_round_rate, .set_rate = clk_bytediv_set_rate, .recalc_rate = clk_bytediv_recalc_rate, }; /* * PLL Callbacks */ static int dsi_pll_28nm_enable_seq(struct msm_dsi_pll *pll) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll); struct device *dev = &pll_28nm->pdev->dev; void __iomem *base = pll_28nm->mmio; bool locked; unsigned int bit_div, byte_div; int max_reads = 1000, timeout_us = 100; u32 val; DBG("id=%d", pll_28nm->id); /* * before enabling the PLL, configure the bit clock divider since we * don't expose it as a clock to the outside world * 1: read back the byte clock divider that should already be set * 2: divide by 8 to get bit clock divider * 3: write it to POSTDIV1 */ val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9); byte_div = val + 1; bit_div = byte_div / 8; val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8); val &= ~0xf; val |= (bit_div - 1); pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8, val); /* enable the PLL */ pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0, DSI_28nm_8960_PHY_PLL_CTRL_0_ENABLE); locked = pll_28nm_poll_for_ready(pll_28nm, max_reads, timeout_us); if (unlikely(!locked)) DRM_DEV_ERROR(dev, "DSI PLL lock failed\n"); else DBG("DSI PLL lock success"); return locked ? 0 : -EINVAL; } static void dsi_pll_28nm_disable_seq(struct msm_dsi_pll *pll) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll); DBG("id=%d", pll_28nm->id); pll_write(pll_28nm->mmio + REG_DSI_28nm_8960_PHY_PLL_CTRL_0, 0x00); } static void dsi_pll_28nm_save_state(struct msm_dsi_pll *pll) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll); struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state; void __iomem *base = pll_28nm->mmio; cached_state->postdiv3 = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_10); cached_state->postdiv2 = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9); cached_state->postdiv1 = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8); cached_state->vco_rate = clk_hw_get_rate(&pll->clk_hw); } static int dsi_pll_28nm_restore_state(struct msm_dsi_pll *pll) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll); struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state; void __iomem *base = pll_28nm->mmio; int ret; ret = dsi_pll_28nm_clk_set_rate(&pll->clk_hw, cached_state->vco_rate, 0); if (ret) { DRM_DEV_ERROR(&pll_28nm->pdev->dev, "restore vco rate failed. ret=%d\n", ret); return ret; } pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_10, cached_state->postdiv3); pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9, cached_state->postdiv2); pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8, cached_state->postdiv1); return 0; } static int dsi_pll_28nm_get_provider(struct msm_dsi_pll *pll, struct clk **byte_clk_provider, struct clk **pixel_clk_provider) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll); if (byte_clk_provider) *byte_clk_provider = pll_28nm->provided_clks[DSI_BYTE_PLL_CLK]; if (pixel_clk_provider) *pixel_clk_provider = pll_28nm->provided_clks[DSI_PIXEL_PLL_CLK]; return 0; } static void dsi_pll_28nm_destroy(struct msm_dsi_pll *pll) { struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll); msm_dsi_pll_helper_unregister_clks(pll_28nm->pdev, pll_28nm->clks, pll_28nm->num_clks); } static int pll_28nm_register(struct dsi_pll_28nm *pll_28nm) { char *clk_name, *parent_name, *vco_name; struct clk_init_data vco_init = { .parent_names = (const char *[]){ "pxo" }, .num_parents = 1, .flags = CLK_IGNORE_UNUSED, .ops = &clk_ops_dsi_pll_28nm_vco, }; struct device *dev = &pll_28nm->pdev->dev; struct clk **clks = pll_28nm->clks; struct clk **provided_clks = pll_28nm->provided_clks; struct clk_bytediv *bytediv; struct clk_init_data bytediv_init = { }; int ret, num = 0; DBG("%d", pll_28nm->id); bytediv = devm_kzalloc(dev, sizeof(*bytediv), GFP_KERNEL); if (!bytediv) return -ENOMEM; vco_name = devm_kzalloc(dev, 32, GFP_KERNEL); if (!vco_name) return -ENOMEM; parent_name = devm_kzalloc(dev, 32, GFP_KERNEL); if (!parent_name) return -ENOMEM; clk_name = devm_kzalloc(dev, 32, GFP_KERNEL); if (!clk_name) return -ENOMEM; pll_28nm->bytediv = bytediv; snprintf(vco_name, 32, "dsi%dvco_clk", pll_28nm->id); vco_init.name = vco_name; pll_28nm->base.clk_hw.init = &vco_init; clks[num++] = clk_register(dev, &pll_28nm->base.clk_hw); /* prepare and register bytediv */ bytediv->hw.init = &bytediv_init; bytediv->reg = pll_28nm->mmio + REG_DSI_28nm_8960_PHY_PLL_CTRL_9; snprintf(parent_name, 32, "dsi%dvco_clk", pll_28nm->id); snprintf(clk_name, 32, "dsi%dpllbyte", pll_28nm->id); bytediv_init.name = clk_name; bytediv_init.ops = &clk_bytediv_ops; bytediv_init.flags = CLK_SET_RATE_PARENT; bytediv_init.parent_names = (const char * const *) &parent_name; bytediv_init.num_parents = 1; /* DIV2 */ clks[num++] = provided_clks[DSI_BYTE_PLL_CLK] = clk_register(dev, &bytediv->hw); snprintf(clk_name, 32, "dsi%dpll", pll_28nm->id); /* DIV3 */ clks[num++] = provided_clks[DSI_PIXEL_PLL_CLK] = clk_register_divider(dev, clk_name, parent_name, 0, pll_28nm->mmio + REG_DSI_28nm_8960_PHY_PLL_CTRL_10, 0, 8, 0, NULL); pll_28nm->num_clks = num; pll_28nm->clk_data.clk_num = NUM_PROVIDED_CLKS; pll_28nm->clk_data.clks = provided_clks; ret = of_clk_add_provider(dev->of_node, of_clk_src_onecell_get, &pll_28nm->clk_data); if (ret) { DRM_DEV_ERROR(dev, "failed to register clk provider: %d\n", ret); return ret; } return 0; } struct msm_dsi_pll *msm_dsi_pll_28nm_8960_init(struct platform_device *pdev, int id) { struct dsi_pll_28nm *pll_28nm; struct msm_dsi_pll *pll; int ret; if (!pdev) return ERR_PTR(-ENODEV); pll_28nm = devm_kzalloc(&pdev->dev, sizeof(*pll_28nm), GFP_KERNEL); if (!pll_28nm) return ERR_PTR(-ENOMEM); pll_28nm->pdev = pdev; pll_28nm->id = id + 1; pll_28nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL"); if (IS_ERR_OR_NULL(pll_28nm->mmio)) { DRM_DEV_ERROR(&pdev->dev, "%s: failed to map pll base\n", __func__); return ERR_PTR(-ENOMEM); } pll = &pll_28nm->base; pll->min_rate = VCO_MIN_RATE; pll->max_rate = VCO_MAX_RATE; pll->get_provider = dsi_pll_28nm_get_provider; pll->destroy = dsi_pll_28nm_destroy; pll->disable_seq = dsi_pll_28nm_disable_seq; pll->save_state = dsi_pll_28nm_save_state; pll->restore_state = dsi_pll_28nm_restore_state; pll->en_seq_cnt = 1; pll->enable_seqs[0] = dsi_pll_28nm_enable_seq; ret = pll_28nm_register(pll_28nm); if (ret) { DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret); return ERR_PTR(ret); } return pll; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1