Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexandre Courbot | 2411 | 83.51% | 20 | 68.97% |
Ben Skeggs | 399 | 13.82% | 7 | 24.14% |
Vince Hsu | 75 | 2.60% | 1 | 3.45% |
Nico Pitre | 2 | 0.07% | 1 | 3.45% |
Total | 2887 | 29 |
/* * Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. * * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c * */ #include "priv.h" #include "gk20a.h" #include <core/tegra.h> #include <subdev/timer.h> static const u8 _pl_to_div[] = { /* PL: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 */ /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32, }; static u32 pl_to_div(u32 pl) { if (pl >= ARRAY_SIZE(_pl_to_div)) return 1; return _pl_to_div[pl]; } static u32 div_to_pl(u32 div) { u32 pl; for (pl = 0; pl < ARRAY_SIZE(_pl_to_div) - 1; pl++) { if (_pl_to_div[pl] >= div) return pl; } return ARRAY_SIZE(_pl_to_div) - 1; } static const struct gk20a_clk_pllg_params gk20a_pllg_params = { .min_vco = 1000000, .max_vco = 2064000, .min_u = 12000, .max_u = 38000, .min_m = 1, .max_m = 255, .min_n = 8, .max_n = 255, .min_pl = 1, .max_pl = 32, }; void gk20a_pllg_read_mnp(struct gk20a_clk *clk, struct gk20a_pll *pll) { struct nvkm_device *device = clk->base.subdev.device; u32 val; val = nvkm_rd32(device, GPCPLL_COEFF); pll->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH); pll->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH); pll->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH); } void gk20a_pllg_write_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll) { struct nvkm_device *device = clk->base.subdev.device; u32 val; val = (pll->m & MASK(GPCPLL_COEFF_M_WIDTH)) << GPCPLL_COEFF_M_SHIFT; val |= (pll->n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT; val |= (pll->pl & MASK(GPCPLL_COEFF_P_WIDTH)) << GPCPLL_COEFF_P_SHIFT; nvkm_wr32(device, GPCPLL_COEFF, val); } u32 gk20a_pllg_calc_rate(struct gk20a_clk *clk, struct gk20a_pll *pll) { u32 rate; u32 divider; rate = clk->parent_rate * pll->n; divider = pll->m * clk->pl_to_div(pll->pl); return rate / divider / 2; } int gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate, struct gk20a_pll *pll) { struct nvkm_subdev *subdev = &clk->base.subdev; u32 target_clk_f, ref_clk_f, target_freq; u32 min_vco_f, max_vco_f; u32 low_pl, high_pl, best_pl; u32 target_vco_f; u32 best_m, best_n; u32 best_delta = ~0; u32 pl; target_clk_f = rate * 2 / KHZ; ref_clk_f = clk->parent_rate / KHZ; target_vco_f = target_clk_f + target_clk_f / 50; max_vco_f = max(clk->params->max_vco, target_vco_f); min_vco_f = clk->params->min_vco; best_m = clk->params->max_m; best_n = clk->params->min_n; best_pl = clk->params->min_pl; /* min_pl <= high_pl <= max_pl */ high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f; high_pl = min(high_pl, clk->params->max_pl); high_pl = max(high_pl, clk->params->min_pl); high_pl = clk->div_to_pl(high_pl); /* min_pl <= low_pl <= max_pl */ low_pl = min_vco_f / target_vco_f; low_pl = min(low_pl, clk->params->max_pl); low_pl = max(low_pl, clk->params->min_pl); low_pl = clk->div_to_pl(low_pl); nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl, clk->pl_to_div(low_pl), high_pl, clk->pl_to_div(high_pl)); /* Select lowest possible VCO */ for (pl = low_pl; pl <= high_pl; pl++) { u32 m, n, n2; target_vco_f = target_clk_f * clk->pl_to_div(pl); for (m = clk->params->min_m; m <= clk->params->max_m; m++) { u32 u_f = ref_clk_f / m; if (u_f < clk->params->min_u) break; if (u_f > clk->params->max_u) continue; n = (target_vco_f * m) / ref_clk_f; n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f; if (n > clk->params->max_n) break; for (; n <= n2; n++) { u32 vco_f; if (n < clk->params->min_n) continue; if (n > clk->params->max_n) break; vco_f = ref_clk_f * n / m; if (vco_f >= min_vco_f && vco_f <= max_vco_f) { u32 delta, lwv; lwv = (vco_f + (clk->pl_to_div(pl) / 2)) / clk->pl_to_div(pl); delta = abs(lwv - target_clk_f); if (delta < best_delta) { best_delta = delta; best_m = m; best_n = n; best_pl = pl; if (best_delta == 0) goto found_match; } } } } } found_match: WARN_ON(best_delta == ~0); if (best_delta != 0) nvkm_debug(subdev, "no best match for target @ %dMHz on gpc_pll", target_clk_f / KHZ); pll->m = best_m; pll->n = best_n; pll->pl = best_pl; target_freq = gk20a_pllg_calc_rate(clk, pll); nvkm_debug(subdev, "actual target freq %d KHz, M %d, N %d, PL %d(div%d)\n", target_freq / KHZ, pll->m, pll->n, pll->pl, clk->pl_to_div(pll->pl)); return 0; } static int gk20a_pllg_slide(struct gk20a_clk *clk, u32 n) { struct nvkm_subdev *subdev = &clk->base.subdev; struct nvkm_device *device = subdev->device; struct gk20a_pll pll; int ret = 0; /* get old coefficients */ gk20a_pllg_read_mnp(clk, &pll); /* do nothing if NDIV is the same */ if (n == pll.n) return 0; /* pll slowdown mode */ nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT), BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT)); /* new ndiv ready for ramp */ pll.n = n; udelay(1); gk20a_pllg_write_mnp(clk, &pll); /* dynamic ramp to new ndiv */ udelay(1); nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT)); /* wait for ramping to complete */ if (nvkm_wait_usec(device, 500, GPC_BCAST_NDIV_SLOWDOWN_DEBUG, GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK, GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK) < 0) ret = -ETIMEDOUT; /* exit slowdown mode */ nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) | BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0); nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN); return ret; } static int gk20a_pllg_enable(struct gk20a_clk *clk) { struct nvkm_device *device = clk->base.subdev.device; u32 val; nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE); nvkm_rd32(device, GPCPLL_CFG); /* enable lock detection */ val = nvkm_rd32(device, GPCPLL_CFG); if (val & GPCPLL_CFG_LOCK_DET_OFF) { val &= ~GPCPLL_CFG_LOCK_DET_OFF; nvkm_wr32(device, GPCPLL_CFG, val); } /* wait for lock */ if (nvkm_wait_usec(device, 300, GPCPLL_CFG, GPCPLL_CFG_LOCK, GPCPLL_CFG_LOCK) < 0) return -ETIMEDOUT; /* switch to VCO mode */ nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), BIT(SEL_VCO_GPC2CLK_OUT_SHIFT)); return 0; } static void gk20a_pllg_disable(struct gk20a_clk *clk) { struct nvkm_device *device = clk->base.subdev.device; /* put PLL in bypass before disabling it */ nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0); nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0); nvkm_rd32(device, GPCPLL_CFG); } static int gk20a_pllg_program_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll) { struct nvkm_subdev *subdev = &clk->base.subdev; struct nvkm_device *device = subdev->device; struct gk20a_pll cur_pll; int ret; gk20a_pllg_read_mnp(clk, &cur_pll); /* split VCO-to-bypass jump in half by setting out divider 1:2 */ nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT); /* Intentional 2nd write to assure linear divider operation */ nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT); nvkm_rd32(device, GPC2CLK_OUT); udelay(2); gk20a_pllg_disable(clk); gk20a_pllg_write_mnp(clk, pll); ret = gk20a_pllg_enable(clk); if (ret) return ret; /* restore out divider 1:1 */ udelay(2); nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT); /* Intentional 2nd write to assure linear divider operation */ nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT); nvkm_rd32(device, GPC2CLK_OUT); return 0; } static int gk20a_pllg_program_mnp_slide(struct gk20a_clk *clk, const struct gk20a_pll *pll) { struct gk20a_pll cur_pll; int ret; if (gk20a_pllg_is_enabled(clk)) { gk20a_pllg_read_mnp(clk, &cur_pll); /* just do NDIV slide if there is no change to M and PL */ if (pll->m == cur_pll.m && pll->pl == cur_pll.pl) return gk20a_pllg_slide(clk, pll->n); /* slide down to current NDIV_LO */ cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll); ret = gk20a_pllg_slide(clk, cur_pll.n); if (ret) return ret; } /* program MNP with the new clock parameters and new NDIV_LO */ cur_pll = *pll; cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll); ret = gk20a_pllg_program_mnp(clk, &cur_pll); if (ret) return ret; /* slide up to new NDIV */ return gk20a_pllg_slide(clk, pll->n); } static struct nvkm_pstate gk20a_pstates[] = { { .base = { .domain[nv_clk_src_gpc] = 72000, .voltage = 0, }, }, { .base = { .domain[nv_clk_src_gpc] = 108000, .voltage = 1, }, }, { .base = { .domain[nv_clk_src_gpc] = 180000, .voltage = 2, }, }, { .base = { .domain[nv_clk_src_gpc] = 252000, .voltage = 3, }, }, { .base = { .domain[nv_clk_src_gpc] = 324000, .voltage = 4, }, }, { .base = { .domain[nv_clk_src_gpc] = 396000, .voltage = 5, }, }, { .base = { .domain[nv_clk_src_gpc] = 468000, .voltage = 6, }, }, { .base = { .domain[nv_clk_src_gpc] = 540000, .voltage = 7, }, }, { .base = { .domain[nv_clk_src_gpc] = 612000, .voltage = 8, }, }, { .base = { .domain[nv_clk_src_gpc] = 648000, .voltage = 9, }, }, { .base = { .domain[nv_clk_src_gpc] = 684000, .voltage = 10, }, }, { .base = { .domain[nv_clk_src_gpc] = 708000, .voltage = 11, }, }, { .base = { .domain[nv_clk_src_gpc] = 756000, .voltage = 12, }, }, { .base = { .domain[nv_clk_src_gpc] = 804000, .voltage = 13, }, }, { .base = { .domain[nv_clk_src_gpc] = 852000, .voltage = 14, }, }, }; int gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src) { struct gk20a_clk *clk = gk20a_clk(base); struct nvkm_subdev *subdev = &clk->base.subdev; struct nvkm_device *device = subdev->device; struct gk20a_pll pll; switch (src) { case nv_clk_src_crystal: return device->crystal; case nv_clk_src_gpc: gk20a_pllg_read_mnp(clk, &pll); return gk20a_pllg_calc_rate(clk, &pll) / GK20A_CLK_GPC_MDIV; default: nvkm_error(subdev, "invalid clock source %d\n", src); return -EINVAL; } } int gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate) { struct gk20a_clk *clk = gk20a_clk(base); return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] * GK20A_CLK_GPC_MDIV, &clk->pll); } int gk20a_clk_prog(struct nvkm_clk *base) { struct gk20a_clk *clk = gk20a_clk(base); int ret; ret = gk20a_pllg_program_mnp_slide(clk, &clk->pll); if (ret) ret = gk20a_pllg_program_mnp(clk, &clk->pll); return ret; } void gk20a_clk_tidy(struct nvkm_clk *base) { } int gk20a_clk_setup_slide(struct gk20a_clk *clk) { struct nvkm_subdev *subdev = &clk->base.subdev; struct nvkm_device *device = subdev->device; u32 step_a, step_b; switch (clk->parent_rate) { case 12000000: case 12800000: case 13000000: step_a = 0x2b; step_b = 0x0b; break; case 19200000: step_a = 0x12; step_b = 0x08; break; case 38400000: step_a = 0x04; step_b = 0x05; break; default: nvkm_error(subdev, "invalid parent clock rate %u KHz", clk->parent_rate / KHZ); return -EINVAL; } nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT, step_a << GPCPLL_CFG2_PLL_STEPA_SHIFT); nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT, step_b << GPCPLL_CFG3_PLL_STEPB_SHIFT); return 0; } void gk20a_clk_fini(struct nvkm_clk *base) { struct nvkm_device *device = base->subdev.device; struct gk20a_clk *clk = gk20a_clk(base); /* slide to VCO min */ if (gk20a_pllg_is_enabled(clk)) { struct gk20a_pll pll; u32 n_lo; gk20a_pllg_read_mnp(clk, &pll); n_lo = gk20a_pllg_n_lo(clk, &pll); gk20a_pllg_slide(clk, n_lo); } gk20a_pllg_disable(clk); /* set IDDQ */ nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 1); } static int gk20a_clk_init(struct nvkm_clk *base) { struct gk20a_clk *clk = gk20a_clk(base); struct nvkm_subdev *subdev = &clk->base.subdev; struct nvkm_device *device = subdev->device; int ret; /* get out from IDDQ */ nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 0); nvkm_rd32(device, GPCPLL_CFG); udelay(5); nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL); ret = gk20a_clk_setup_slide(clk); if (ret) return ret; /* Start with lowest frequency */ base->func->calc(base, &base->func->pstates[0].base); ret = base->func->prog(&clk->base); if (ret) { nvkm_error(subdev, "cannot initialize clock\n"); return ret; } return 0; } static const struct nvkm_clk_func gk20a_clk = { .init = gk20a_clk_init, .fini = gk20a_clk_fini, .read = gk20a_clk_read, .calc = gk20a_clk_calc, .prog = gk20a_clk_prog, .tidy = gk20a_clk_tidy, .pstates = gk20a_pstates, .nr_pstates = ARRAY_SIZE(gk20a_pstates), .domains = { { nv_clk_src_crystal, 0xff }, { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV }, { nv_clk_src_max } } }; int gk20a_clk_ctor(struct nvkm_device *device, int index, const struct nvkm_clk_func *func, const struct gk20a_clk_pllg_params *params, struct gk20a_clk *clk) { struct nvkm_device_tegra *tdev = device->func->tegra(device); int ret; int i; /* Finish initializing the pstates */ for (i = 0; i < func->nr_pstates; i++) { INIT_LIST_HEAD(&func->pstates[i].list); func->pstates[i].pstate = i + 1; } clk->params = params; clk->parent_rate = clk_get_rate(tdev->clk); ret = nvkm_clk_ctor(func, device, index, true, &clk->base); if (ret) return ret; nvkm_debug(&clk->base.subdev, "parent clock rate: %d Khz\n", clk->parent_rate / KHZ); return 0; } int gk20a_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk) { struct gk20a_clk *clk; int ret; clk = kzalloc(sizeof(*clk), GFP_KERNEL); if (!clk) return -ENOMEM; *pclk = &clk->base; ret = gk20a_clk_ctor(device, index, &gk20a_clk, &gk20a_pllg_params, clk); clk->pl_to_div = pl_to_div; clk->div_to_pl = div_to_pl; return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1