Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Steve Longerbeam | 7706 | 66.12% | 11 | 30.56% |
Philipp Zabel | 3935 | 33.77% | 22 | 61.11% |
Lucas Stach | 10 | 0.09% | 1 | 2.78% |
Thomas Gleixner | 2 | 0.02% | 1 | 2.78% |
Wei Yongjun | 1 | 0.01% | 1 | 2.78% |
Total | 11654 | 36 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2012-2016 Mentor Graphics Inc. * * Queued image conversion support, with tiling and rotation. */ #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <video/imx-ipu-image-convert.h> #include "ipu-prv.h" /* * The IC Resizer has a restriction that the output frame from the * resizer must be 1024 or less in both width (pixels) and height * (lines). * * The image converter attempts to split up a conversion when * the desired output (converted) frame resolution exceeds the * IC resizer limit of 1024 in either dimension. * * If either dimension of the output frame exceeds the limit, the * dimension is split into 1, 2, or 4 equal stripes, for a maximum * of 4*4 or 16 tiles. A conversion is then carried out for each * tile (but taking care to pass the full frame stride length to * the DMA channel's parameter memory!). IDMA double-buffering is used * to convert each tile back-to-back when possible (see note below * when double_buffering boolean is set). * * Note that the input frame must be split up into the same number * of tiles as the output frame: * * +---------+-----+ * +-----+---+ | A | B | * | A | B | | | | * +-----+---+ --> +---------+-----+ * | C | D | | C | D | * +-----+---+ | | | * +---------+-----+ * * Clockwise 90° rotations are handled by first rescaling into a * reusable temporary tile buffer and then rotating with the 8x8 * block rotator, writing to the correct destination: * * +-----+-----+ * | | | * +-----+---+ +---------+ | C | A | * | A | B | | A,B, | | | | | * +-----+---+ --> | C,D | | --> | | | * | C | D | +---------+ +-----+-----+ * +-----+---+ | D | B | * | | | * +-----+-----+ * * If the 8x8 block rotator is used, horizontal or vertical flipping * is done during the rotation step, otherwise flipping is done * during the scaling step. * With rotation or flipping, tile order changes between input and * output image. Tiles are numbered row major from top left to bottom * right for both input and output image. */ #define MAX_STRIPES_W 4 #define MAX_STRIPES_H 4 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H) #define MIN_W 16 #define MIN_H 8 #define MAX_W 4096 #define MAX_H 4096 enum ipu_image_convert_type { IMAGE_CONVERT_IN = 0, IMAGE_CONVERT_OUT, }; struct ipu_image_convert_dma_buf { void *virt; dma_addr_t phys; unsigned long len; }; struct ipu_image_convert_dma_chan { int in; int out; int rot_in; int rot_out; int vdi_in_p; int vdi_in; int vdi_in_n; }; /* dimensions of one tile */ struct ipu_image_tile { u32 width; u32 height; u32 left; u32 top; /* size and strides are in bytes */ u32 size; u32 stride; u32 rot_stride; /* start Y or packed offset of this tile */ u32 offset; /* offset from start to tile in U plane, for planar formats */ u32 u_off; /* offset from start to tile in V plane, for planar formats */ u32 v_off; }; struct ipu_image_convert_image { struct ipu_image base; enum ipu_image_convert_type type; const struct ipu_image_pixfmt *fmt; unsigned int stride; /* # of rows (horizontal stripes) if dest height is > 1024 */ unsigned int num_rows; /* # of columns (vertical stripes) if dest width is > 1024 */ unsigned int num_cols; struct ipu_image_tile tile[MAX_TILES]; }; struct ipu_image_pixfmt { u32 fourcc; /* V4L2 fourcc */ int bpp; /* total bpp */ int uv_width_dec; /* decimation in width for U/V planes */ int uv_height_dec; /* decimation in height for U/V planes */ bool planar; /* planar format */ bool uv_swapped; /* U and V planes are swapped */ bool uv_packed; /* partial planar (U and V in same plane) */ }; struct ipu_image_convert_ctx; struct ipu_image_convert_chan; struct ipu_image_convert_priv; struct ipu_image_convert_ctx { struct ipu_image_convert_chan *chan; ipu_image_convert_cb_t complete; void *complete_context; /* Source/destination image data and rotation mode */ struct ipu_image_convert_image in; struct ipu_image_convert_image out; struct ipu_ic_csc csc; enum ipu_rotate_mode rot_mode; u32 downsize_coeff_h; u32 downsize_coeff_v; u32 image_resize_coeff_h; u32 image_resize_coeff_v; u32 resize_coeffs_h[MAX_STRIPES_W]; u32 resize_coeffs_v[MAX_STRIPES_H]; /* intermediate buffer for rotation */ struct ipu_image_convert_dma_buf rot_intermediate[2]; /* current buffer number for double buffering */ int cur_buf_num; bool aborting; struct completion aborted; /* can we use double-buffering for this conversion operation? */ bool double_buffering; /* num_rows * num_cols */ unsigned int num_tiles; /* next tile to process */ unsigned int next_tile; /* where to place converted tile in dest image */ unsigned int out_tile_map[MAX_TILES]; struct list_head list; }; struct ipu_image_convert_chan { struct ipu_image_convert_priv *priv; enum ipu_ic_task ic_task; const struct ipu_image_convert_dma_chan *dma_ch; struct ipu_ic *ic; struct ipuv3_channel *in_chan; struct ipuv3_channel *out_chan; struct ipuv3_channel *rotation_in_chan; struct ipuv3_channel *rotation_out_chan; /* the IPU end-of-frame irqs */ int out_eof_irq; int rot_out_eof_irq; spinlock_t irqlock; /* list of convert contexts */ struct list_head ctx_list; /* queue of conversion runs */ struct list_head pending_q; /* queue of completed runs */ struct list_head done_q; /* the current conversion run */ struct ipu_image_convert_run *current_run; }; struct ipu_image_convert_priv { struct ipu_image_convert_chan chan[IC_NUM_TASKS]; struct ipu_soc *ipu; }; static const struct ipu_image_convert_dma_chan image_convert_dma_chan[IC_NUM_TASKS] = { [IC_TASK_VIEWFINDER] = { .in = IPUV3_CHANNEL_MEM_IC_PRP_VF, .out = IPUV3_CHANNEL_IC_PRP_VF_MEM, .rot_in = IPUV3_CHANNEL_MEM_ROT_VF, .rot_out = IPUV3_CHANNEL_ROT_VF_MEM, .vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV, .vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR, .vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT, }, [IC_TASK_POST_PROCESSOR] = { .in = IPUV3_CHANNEL_MEM_IC_PP, .out = IPUV3_CHANNEL_IC_PP_MEM, .rot_in = IPUV3_CHANNEL_MEM_ROT_PP, .rot_out = IPUV3_CHANNEL_ROT_PP_MEM, }, }; static const struct ipu_image_pixfmt image_convert_formats[] = { { .fourcc = V4L2_PIX_FMT_RGB565, .bpp = 16, }, { .fourcc = V4L2_PIX_FMT_RGB24, .bpp = 24, }, { .fourcc = V4L2_PIX_FMT_BGR24, .bpp = 24, }, { .fourcc = V4L2_PIX_FMT_RGB32, .bpp = 32, }, { .fourcc = V4L2_PIX_FMT_BGR32, .bpp = 32, }, { .fourcc = V4L2_PIX_FMT_XRGB32, .bpp = 32, }, { .fourcc = V4L2_PIX_FMT_XBGR32, .bpp = 32, }, { .fourcc = V4L2_PIX_FMT_BGRX32, .bpp = 32, }, { .fourcc = V4L2_PIX_FMT_RGBX32, .bpp = 32, }, { .fourcc = V4L2_PIX_FMT_YUYV, .bpp = 16, .uv_width_dec = 2, .uv_height_dec = 1, }, { .fourcc = V4L2_PIX_FMT_UYVY, .bpp = 16, .uv_width_dec = 2, .uv_height_dec = 1, }, { .fourcc = V4L2_PIX_FMT_YUV420, .bpp = 12, .planar = true, .uv_width_dec = 2, .uv_height_dec = 2, }, { .fourcc = V4L2_PIX_FMT_YVU420, .bpp = 12, .planar = true, .uv_width_dec = 2, .uv_height_dec = 2, .uv_swapped = true, }, { .fourcc = V4L2_PIX_FMT_NV12, .bpp = 12, .planar = true, .uv_width_dec = 2, .uv_height_dec = 2, .uv_packed = true, }, { .fourcc = V4L2_PIX_FMT_YUV422P, .bpp = 16, .planar = true, .uv_width_dec = 2, .uv_height_dec = 1, }, { .fourcc = V4L2_PIX_FMT_NV16, .bpp = 16, .planar = true, .uv_width_dec = 2, .uv_height_dec = 1, .uv_packed = true, }, }; static const struct ipu_image_pixfmt *get_format(u32 fourcc) { const struct ipu_image_pixfmt *ret = NULL; unsigned int i; for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) { if (image_convert_formats[i].fourcc == fourcc) { ret = &image_convert_formats[i]; break; } } return ret; } static void dump_format(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *ic_image) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; dev_dbg(priv->ipu->dev, "task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n", chan->ic_task, ctx, ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input", ic_image->base.pix.width, ic_image->base.pix.height, ic_image->num_cols, ic_image->num_rows, ic_image->fmt->fourcc & 0xff, (ic_image->fmt->fourcc >> 8) & 0xff, (ic_image->fmt->fourcc >> 16) & 0xff, (ic_image->fmt->fourcc >> 24) & 0xff); } int ipu_image_convert_enum_format(int index, u32 *fourcc) { const struct ipu_image_pixfmt *fmt; if (index >= (int)ARRAY_SIZE(image_convert_formats)) return -EINVAL; /* Format found */ fmt = &image_convert_formats[index]; *fourcc = fmt->fourcc; return 0; } EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format); static void free_dma_buf(struct ipu_image_convert_priv *priv, struct ipu_image_convert_dma_buf *buf) { if (buf->virt) dma_free_coherent(priv->ipu->dev, buf->len, buf->virt, buf->phys); buf->virt = NULL; buf->phys = 0; } static int alloc_dma_buf(struct ipu_image_convert_priv *priv, struct ipu_image_convert_dma_buf *buf, int size) { buf->len = PAGE_ALIGN(size); buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys, GFP_DMA | GFP_KERNEL); if (!buf->virt) { dev_err(priv->ipu->dev, "failed to alloc dma buffer\n"); return -ENOMEM; } return 0; } static inline int num_stripes(int dim) { return (dim - 1) / 1024 + 1; } /* * Calculate downsizing coefficients, which are the same for all tiles, * and initial bilinear resizing coefficients, which are used to find the * best seam positions. * Also determine the number of tiles necessary to guarantee that no tile * is larger than 1024 pixels in either dimension at the output and between * IC downsizing and main processing sections. */ static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx, struct ipu_image *in, struct ipu_image *out) { u32 downsized_width = in->rect.width; u32 downsized_height = in->rect.height; u32 downsize_coeff_v = 0; u32 downsize_coeff_h = 0; u32 resized_width = out->rect.width; u32 resized_height = out->rect.height; u32 resize_coeff_h; u32 resize_coeff_v; u32 cols; u32 rows; if (ipu_rot_mode_is_irt(ctx->rot_mode)) { resized_width = out->rect.height; resized_height = out->rect.width; } /* Do not let invalid input lead to an endless loop below */ if (WARN_ON(resized_width == 0 || resized_height == 0)) return -EINVAL; while (downsized_width >= resized_width * 2) { downsized_width >>= 1; downsize_coeff_h++; } while (downsized_height >= resized_height * 2) { downsized_height >>= 1; downsize_coeff_v++; } /* * Calculate the bilinear resizing coefficients that could be used if * we were converting with a single tile. The bottom right output pixel * should sample as close as possible to the bottom right input pixel * out of the decimator, but not overshoot it: */ resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1); resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1); /* * Both the output of the IC downsizing section before being passed to * the IC main processing section and the final output of the IC main * processing section must be <= 1024 pixels in both dimensions. */ cols = num_stripes(max_t(u32, downsized_width, resized_width)); rows = num_stripes(max_t(u32, downsized_height, resized_height)); dev_dbg(ctx->chan->priv->ipu->dev, "%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n", __func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v, resize_coeff_v, cols, rows); if (downsize_coeff_h > 2 || downsize_coeff_v > 2 || resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff) return -EINVAL; ctx->downsize_coeff_h = downsize_coeff_h; ctx->downsize_coeff_v = downsize_coeff_v; ctx->image_resize_coeff_h = resize_coeff_h; ctx->image_resize_coeff_v = resize_coeff_v; ctx->in.num_cols = cols; ctx->in.num_rows = rows; return 0; } #define round_closest(x, y) round_down((x) + (y)/2, (y)) /* * Find the best aligned seam position for the given column / row index. * Rotation and image offsets are out of scope. * * @index: column / row index, used to calculate valid interval * @in_edge: input right / bottom edge * @out_edge: output right / bottom edge * @in_align: input alignment, either horizontal 8-byte line start address * alignment, or pixel alignment due to image format * @out_align: output alignment, either horizontal 8-byte line start address * alignment, or pixel alignment due to image format or rotator * block size * @in_burst: horizontal input burst size in case of horizontal flip * @out_burst: horizontal output burst size or rotator block size * @downsize_coeff: downsizing section coefficient * @resize_coeff: main processing section resizing coefficient * @_in_seam: aligned input seam position return value * @_out_seam: aligned output seam position return value */ static void find_best_seam(struct ipu_image_convert_ctx *ctx, unsigned int index, unsigned int in_edge, unsigned int out_edge, unsigned int in_align, unsigned int out_align, unsigned int in_burst, unsigned int out_burst, unsigned int downsize_coeff, unsigned int resize_coeff, u32 *_in_seam, u32 *_out_seam) { struct device *dev = ctx->chan->priv->ipu->dev; unsigned int out_pos; /* Input / output seam position candidates */ unsigned int out_seam = 0; unsigned int in_seam = 0; unsigned int min_diff = UINT_MAX; unsigned int out_start; unsigned int out_end; unsigned int in_start; unsigned int in_end; /* Start within 1024 pixels of the right / bottom edge */ out_start = max_t(int, index * out_align, out_edge - 1024); /* End before having to add more columns to the left / rows above */ out_end = min_t(unsigned int, out_edge, index * 1024 + 1); /* * Limit input seam position to make sure that the downsized input tile * to the right or bottom does not exceed 1024 pixels. */ in_start = max_t(int, index * in_align, in_edge - (1024 << downsize_coeff)); in_end = min_t(unsigned int, in_edge, index * (1024 << downsize_coeff) + 1); /* * Output tiles must start at a multiple of 8 bytes horizontally and * possibly at an even line horizontally depending on the pixel format. * Only consider output aligned positions for the seam. */ out_start = round_up(out_start, out_align); for (out_pos = out_start; out_pos < out_end; out_pos += out_align) { unsigned int in_pos; unsigned int in_pos_aligned; unsigned int in_pos_rounded; unsigned int abs_diff; /* * Tiles in the right row / bottom column may not be allowed to * overshoot horizontally / vertically. out_burst may be the * actual DMA burst size, or the rotator block size. */ if ((out_burst > 1) && (out_edge - out_pos) % out_burst) continue; /* * Input sample position, corresponding to out_pos, 19.13 fixed * point. */ in_pos = (out_pos * resize_coeff) << downsize_coeff; /* * The closest input sample position that we could actually * start the input tile at, 19.13 fixed point. */ in_pos_aligned = round_closest(in_pos, 8192U * in_align); /* Convert 19.13 fixed point to integer */ in_pos_rounded = in_pos_aligned / 8192U; if (in_pos_rounded < in_start) continue; if (in_pos_rounded >= in_end) break; if ((in_burst > 1) && (in_edge - in_pos_rounded) % in_burst) continue; if (in_pos < in_pos_aligned) abs_diff = in_pos_aligned - in_pos; else abs_diff = in_pos - in_pos_aligned; if (abs_diff < min_diff) { in_seam = in_pos_rounded; out_seam = out_pos; min_diff = abs_diff; } } *_out_seam = out_seam; *_in_seam = in_seam; dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n", __func__, out_seam, out_align, out_start, out_end, in_seam, in_align, in_start, in_end, min_diff / 8192, DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192)); } /* * Tile left edges are required to be aligned to multiples of 8 bytes * by the IDMAC. */ static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt) { if (fmt->planar) return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec; else return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8; } /* * Tile top edge alignment is only limited by chroma subsampling. */ static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt) { return fmt->uv_height_dec > 1 ? 2 : 1; } static inline u32 tile_width_align(enum ipu_image_convert_type type, const struct ipu_image_pixfmt *fmt, enum ipu_rotate_mode rot_mode) { if (type == IMAGE_CONVERT_IN) { /* * The IC burst reads 8 pixels at a time. Reading beyond the * end of the line is usually acceptable. Those pixels are * ignored, unless the IC has to write the scaled line in * reverse. */ return (!ipu_rot_mode_is_irt(rot_mode) && (rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2; } /* * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled * formats to guarantee 8-byte aligned line start addresses in the * chroma planes when IRT is used. Align to 8x8 pixel IRT block size * for all other formats. */ return (ipu_rot_mode_is_irt(rot_mode) && fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8; } static inline u32 tile_height_align(enum ipu_image_convert_type type, const struct ipu_image_pixfmt *fmt, enum ipu_rotate_mode rot_mode) { if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode)) return 2; /* * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled * formats to guarantee 8-byte aligned line start addresses in the * chroma planes when IRT is used. Align to 8x8 pixel IRT block size * for all other formats. */ return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8; } /* * Fill in left position and width and for all tiles in an input column, and * for all corresponding output tiles. If the 90° rotator is used, the output * tiles are in a row, and output tile top position and height are set. */ static void fill_tile_column(struct ipu_image_convert_ctx *ctx, unsigned int col, struct ipu_image_convert_image *in, unsigned int in_left, unsigned int in_width, struct ipu_image_convert_image *out, unsigned int out_left, unsigned int out_width) { unsigned int row, tile_idx; struct ipu_image_tile *in_tile, *out_tile; for (row = 0; row < in->num_rows; row++) { tile_idx = in->num_cols * row + col; in_tile = &in->tile[tile_idx]; out_tile = &out->tile[ctx->out_tile_map[tile_idx]]; in_tile->left = in_left; in_tile->width = in_width; if (ipu_rot_mode_is_irt(ctx->rot_mode)) { out_tile->top = out_left; out_tile->height = out_width; } else { out_tile->left = out_left; out_tile->width = out_width; } } } /* * Fill in top position and height and for all tiles in an input row, and * for all corresponding output tiles. If the 90° rotator is used, the output * tiles are in a column, and output tile left position and width are set. */ static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row, struct ipu_image_convert_image *in, unsigned int in_top, unsigned int in_height, struct ipu_image_convert_image *out, unsigned int out_top, unsigned int out_height) { unsigned int col, tile_idx; struct ipu_image_tile *in_tile, *out_tile; for (col = 0; col < in->num_cols; col++) { tile_idx = in->num_cols * row + col; in_tile = &in->tile[tile_idx]; out_tile = &out->tile[ctx->out_tile_map[tile_idx]]; in_tile->top = in_top; in_tile->height = in_height; if (ipu_rot_mode_is_irt(ctx->rot_mode)) { out_tile->left = out_top; out_tile->width = out_height; } else { out_tile->top = out_top; out_tile->height = out_height; } } } /* * Find the best horizontal and vertical seam positions to split into tiles. * Minimize the fractional part of the input sampling position for the * top / left pixels of each tile. */ static void find_seams(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *in, struct ipu_image_convert_image *out) { struct device *dev = ctx->chan->priv->ipu->dev; unsigned int resized_width = out->base.rect.width; unsigned int resized_height = out->base.rect.height; unsigned int col; unsigned int row; unsigned int in_left_align = tile_left_align(in->fmt); unsigned int in_top_align = tile_top_align(in->fmt); unsigned int out_left_align = tile_left_align(out->fmt); unsigned int out_top_align = tile_top_align(out->fmt); unsigned int out_width_align = tile_width_align(out->type, out->fmt, ctx->rot_mode); unsigned int out_height_align = tile_height_align(out->type, out->fmt, ctx->rot_mode); unsigned int in_right = in->base.rect.width; unsigned int in_bottom = in->base.rect.height; unsigned int out_right = out->base.rect.width; unsigned int out_bottom = out->base.rect.height; unsigned int flipped_out_left; unsigned int flipped_out_top; if (ipu_rot_mode_is_irt(ctx->rot_mode)) { /* Switch width/height and align top left to IRT block size */ resized_width = out->base.rect.height; resized_height = out->base.rect.width; out_left_align = out_height_align; out_top_align = out_width_align; out_width_align = out_left_align; out_height_align = out_top_align; out_right = out->base.rect.height; out_bottom = out->base.rect.width; } for (col = in->num_cols - 1; col > 0; col--) { bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) || !(ctx->rot_mode & IPU_ROT_BIT_HFLIP); bool allow_out_overshoot = (col < in->num_cols - 1) && !(ctx->rot_mode & IPU_ROT_BIT_HFLIP); unsigned int in_left; unsigned int out_left; /* * Align input width to burst length if the scaling step flips * horizontally. */ find_best_seam(ctx, col, in_right, out_right, in_left_align, out_left_align, allow_in_overshoot ? 1 : 8 /* burst length */, allow_out_overshoot ? 1 : out_width_align, ctx->downsize_coeff_h, ctx->image_resize_coeff_h, &in_left, &out_left); if (ctx->rot_mode & IPU_ROT_BIT_HFLIP) flipped_out_left = resized_width - out_right; else flipped_out_left = out_left; fill_tile_column(ctx, col, in, in_left, in_right - in_left, out, flipped_out_left, out_right - out_left); dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col, in_left, in_right - in_left, flipped_out_left, out_right - out_left); in_right = in_left; out_right = out_left; } flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ? resized_width - out_right : 0; fill_tile_column(ctx, 0, in, 0, in_right, out, flipped_out_left, out_right); dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__, in_right, flipped_out_left, out_right); for (row = in->num_rows - 1; row > 0; row--) { bool allow_overshoot = row < in->num_rows - 1; unsigned int in_top; unsigned int out_top; find_best_seam(ctx, row, in_bottom, out_bottom, in_top_align, out_top_align, 1, allow_overshoot ? 1 : out_height_align, ctx->downsize_coeff_v, ctx->image_resize_coeff_v, &in_top, &out_top); if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^ ipu_rot_mode_is_irt(ctx->rot_mode)) flipped_out_top = resized_height - out_bottom; else flipped_out_top = out_top; fill_tile_row(ctx, row, in, in_top, in_bottom - in_top, out, flipped_out_top, out_bottom - out_top); dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row, in_top, in_bottom - in_top, flipped_out_top, out_bottom - out_top); in_bottom = in_top; out_bottom = out_top; } if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^ ipu_rot_mode_is_irt(ctx->rot_mode)) flipped_out_top = resized_height - out_bottom; else flipped_out_top = 0; fill_tile_row(ctx, 0, in, 0, in_bottom, out, flipped_out_top, out_bottom); dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__, in_bottom, flipped_out_top, out_bottom); } static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *image) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; unsigned int max_width = 1024; unsigned int max_height = 1024; unsigned int i; if (image->type == IMAGE_CONVERT_IN) { /* Up to 4096x4096 input tile size */ max_width <<= ctx->downsize_coeff_h; max_height <<= ctx->downsize_coeff_v; } for (i = 0; i < ctx->num_tiles; i++) { struct ipu_image_tile *tile; const unsigned int row = i / image->num_cols; const unsigned int col = i % image->num_cols; if (image->type == IMAGE_CONVERT_OUT) tile = &image->tile[ctx->out_tile_map[i]]; else tile = &image->tile[i]; tile->size = ((tile->height * image->fmt->bpp) >> 3) * tile->width; if (image->fmt->planar) { tile->stride = tile->width; tile->rot_stride = tile->height; } else { tile->stride = (image->fmt->bpp * tile->width) >> 3; tile->rot_stride = (image->fmt->bpp * tile->height) >> 3; } dev_dbg(priv->ipu->dev, "task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n", chan->ic_task, ctx, image->type == IMAGE_CONVERT_IN ? "Input" : "Output", row, col, tile->width, tile->height, tile->left, tile->top); if (!tile->width || tile->width > max_width || !tile->height || tile->height > max_height) { dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n", image->type == IMAGE_CONVERT_IN ? "input" : "output", tile->width, tile->height); return -EINVAL; } } return 0; } /* * Use the rotation transformation to find the tile coordinates * (row, col) of a tile in the destination frame that corresponds * to the given tile coordinates of a source frame. The destination * coordinate is then converted to a tile index. */ static int transform_tile_index(struct ipu_image_convert_ctx *ctx, int src_row, int src_col) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_image *s_image = &ctx->in; struct ipu_image_convert_image *d_image = &ctx->out; int dst_row, dst_col; /* with no rotation it's a 1:1 mapping */ if (ctx->rot_mode == IPU_ROTATE_NONE) return src_row * s_image->num_cols + src_col; /* * before doing the transform, first we have to translate * source row,col for an origin in the center of s_image */ src_row = src_row * 2 - (s_image->num_rows - 1); src_col = src_col * 2 - (s_image->num_cols - 1); /* do the rotation transform */ if (ctx->rot_mode & IPU_ROT_BIT_90) { dst_col = -src_row; dst_row = src_col; } else { dst_col = src_col; dst_row = src_row; } /* apply flip */ if (ctx->rot_mode & IPU_ROT_BIT_HFLIP) dst_col = -dst_col; if (ctx->rot_mode & IPU_ROT_BIT_VFLIP) dst_row = -dst_row; dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n", chan->ic_task, ctx, src_col, src_row, dst_col, dst_row); /* * finally translate dest row,col using an origin in upper * left of d_image */ dst_row += d_image->num_rows - 1; dst_col += d_image->num_cols - 1; dst_row /= 2; dst_col /= 2; return dst_row * d_image->num_cols + dst_col; } /* * Fill the out_tile_map[] with transformed destination tile indeces. */ static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx) { struct ipu_image_convert_image *s_image = &ctx->in; unsigned int row, col, tile = 0; for (row = 0; row < s_image->num_rows; row++) { for (col = 0; col < s_image->num_cols; col++) { ctx->out_tile_map[tile] = transform_tile_index(ctx, row, col); tile++; } } } static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *image) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; const struct ipu_image_pixfmt *fmt = image->fmt; unsigned int row, col, tile = 0; u32 H, top, y_stride, uv_stride; u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp; u32 y_row_off, y_col_off, y_off; u32 y_size, uv_size; /* setup some convenience vars */ H = image->base.pix.height; y_stride = image->stride; uv_stride = y_stride / fmt->uv_width_dec; if (fmt->uv_packed) uv_stride *= 2; y_size = H * y_stride; uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec); for (row = 0; row < image->num_rows; row++) { top = image->tile[tile].top; y_row_off = top * y_stride; uv_row_off = (top * uv_stride) / fmt->uv_height_dec; for (col = 0; col < image->num_cols; col++) { y_col_off = image->tile[tile].left; uv_col_off = y_col_off / fmt->uv_width_dec; if (fmt->uv_packed) uv_col_off *= 2; y_off = y_row_off + y_col_off; uv_off = uv_row_off + uv_col_off; u_off = y_size - y_off + uv_off; v_off = (fmt->uv_packed) ? 0 : u_off + uv_size; if (fmt->uv_swapped) { tmp = u_off; u_off = v_off; v_off = tmp; } image->tile[tile].offset = y_off; image->tile[tile].u_off = u_off; image->tile[tile++].v_off = v_off; if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) { dev_err(priv->ipu->dev, "task %u: ctx %p: %s@[%d,%d]: " "y_off %08x, u_off %08x, v_off %08x\n", chan->ic_task, ctx, image->type == IMAGE_CONVERT_IN ? "Input" : "Output", row, col, y_off, u_off, v_off); return -EINVAL; } } } return 0; } static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *image) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; const struct ipu_image_pixfmt *fmt = image->fmt; unsigned int row, col, tile = 0; u32 bpp, stride, offset; u32 row_off, col_off; /* setup some convenience vars */ stride = image->stride; bpp = fmt->bpp; for (row = 0; row < image->num_rows; row++) { row_off = image->tile[tile].top * stride; for (col = 0; col < image->num_cols; col++) { col_off = (image->tile[tile].left * bpp) >> 3; offset = row_off + col_off; image->tile[tile].offset = offset; image->tile[tile].u_off = 0; image->tile[tile++].v_off = 0; if (offset & 0x7) { dev_err(priv->ipu->dev, "task %u: ctx %p: %s@[%d,%d]: " "phys %08x\n", chan->ic_task, ctx, image->type == IMAGE_CONVERT_IN ? "Input" : "Output", row, col, row_off + col_off); return -EINVAL; } } } return 0; } static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *image) { if (image->fmt->planar) return calc_tile_offsets_planar(ctx, image); return calc_tile_offsets_packed(ctx, image); } /* * Calculate the resizing ratio for the IC main processing section given input * size, fixed downsizing coefficient, and output size. * Either round to closest for the next tile's first pixel to minimize seams * and distortion (for all but right column / bottom row), or round down to * avoid sampling beyond the edges of the input image for this tile's last * pixel. * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff. */ static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff, u32 output_size, bool allow_overshoot) { u32 downsized = input_size >> downsize_coeff; if (allow_overshoot) return DIV_ROUND_CLOSEST(8192 * downsized, output_size); else return 8192 * (downsized - 1) / (output_size - 1); } /* * Slightly modify resize coefficients per tile to hide the bilinear * interpolator reset at tile borders, shifting the right / bottom edge * by up to a half input pixel. This removes noticeable seams between * tiles at higher upscaling factors. */ static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_tile *in_tile, *out_tile; unsigned int col, row, tile_idx; unsigned int last_output; for (col = 0; col < ctx->in.num_cols; col++) { bool closest = (col < ctx->in.num_cols - 1) && !(ctx->rot_mode & IPU_ROT_BIT_HFLIP); u32 resized_width; u32 resize_coeff_h; u32 in_width; tile_idx = col; in_tile = &ctx->in.tile[tile_idx]; out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; if (ipu_rot_mode_is_irt(ctx->rot_mode)) resized_width = out_tile->height; else resized_width = out_tile->width; resize_coeff_h = calc_resize_coeff(in_tile->width, ctx->downsize_coeff_h, resized_width, closest); dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n", __func__, col, resize_coeff_h); /* * With the horizontal scaling factor known, round up resized * width (output width or height) to burst size. */ resized_width = round_up(resized_width, 8); /* * Calculate input width from the last accessed input pixel * given resized width and scaling coefficients. Round up to * burst size. */ last_output = resized_width - 1; if (closest && ((last_output * resize_coeff_h) % 8192)) last_output++; in_width = round_up( (DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1) << ctx->downsize_coeff_h, 8); for (row = 0; row < ctx->in.num_rows; row++) { tile_idx = row * ctx->in.num_cols + col; in_tile = &ctx->in.tile[tile_idx]; out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; if (ipu_rot_mode_is_irt(ctx->rot_mode)) out_tile->height = resized_width; else out_tile->width = resized_width; in_tile->width = in_width; } ctx->resize_coeffs_h[col] = resize_coeff_h; } for (row = 0; row < ctx->in.num_rows; row++) { bool closest = (row < ctx->in.num_rows - 1) && !(ctx->rot_mode & IPU_ROT_BIT_VFLIP); u32 resized_height; u32 resize_coeff_v; u32 in_height; tile_idx = row * ctx->in.num_cols; in_tile = &ctx->in.tile[tile_idx]; out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; if (ipu_rot_mode_is_irt(ctx->rot_mode)) resized_height = out_tile->width; else resized_height = out_tile->height; resize_coeff_v = calc_resize_coeff(in_tile->height, ctx->downsize_coeff_v, resized_height, closest); dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n", __func__, row, resize_coeff_v); /* * With the vertical scaling factor known, round up resized * height (output width or height) to IDMAC limitations. */ resized_height = round_up(resized_height, 2); /* * Calculate input width from the last accessed input pixel * given resized height and scaling coefficients. Align to * IDMAC restrictions. */ last_output = resized_height - 1; if (closest && ((last_output * resize_coeff_v) % 8192)) last_output++; in_height = round_up( (DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1) << ctx->downsize_coeff_v, 2); for (col = 0; col < ctx->in.num_cols; col++) { tile_idx = row * ctx->in.num_cols + col; in_tile = &ctx->in.tile[tile_idx]; out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; if (ipu_rot_mode_is_irt(ctx->rot_mode)) out_tile->width = resized_height; else out_tile->height = resized_height; in_tile->height = in_height; } ctx->resize_coeffs_v[row] = resize_coeff_v; } } /* * return the number of runs in given queue (pending_q or done_q) * for this context. hold irqlock when calling. */ static int get_run_count(struct ipu_image_convert_ctx *ctx, struct list_head *q) { struct ipu_image_convert_run *run; int count = 0; lockdep_assert_held(&ctx->chan->irqlock); list_for_each_entry(run, q, list) { if (run->ctx == ctx) count++; } return count; } static void convert_stop(struct ipu_image_convert_run *run) { struct ipu_image_convert_ctx *ctx = run->ctx; struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n", __func__, chan->ic_task, ctx, run); /* disable IC tasks and the channels */ ipu_ic_task_disable(chan->ic); ipu_idmac_disable_channel(chan->in_chan); ipu_idmac_disable_channel(chan->out_chan); if (ipu_rot_mode_is_irt(ctx->rot_mode)) { ipu_idmac_disable_channel(chan->rotation_in_chan); ipu_idmac_disable_channel(chan->rotation_out_chan); ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan); } ipu_ic_disable(chan->ic); } static void init_idmac_channel(struct ipu_image_convert_ctx *ctx, struct ipuv3_channel *channel, struct ipu_image_convert_image *image, enum ipu_rotate_mode rot_mode, bool rot_swap_width_height, unsigned int tile) { struct ipu_image_convert_chan *chan = ctx->chan; unsigned int burst_size; u32 width, height, stride; dma_addr_t addr0, addr1 = 0; struct ipu_image tile_image; unsigned int tile_idx[2]; if (image->type == IMAGE_CONVERT_OUT) { tile_idx[0] = ctx->out_tile_map[tile]; tile_idx[1] = ctx->out_tile_map[1]; } else { tile_idx[0] = tile; tile_idx[1] = 1; } if (rot_swap_width_height) { width = image->tile[tile_idx[0]].height; height = image->tile[tile_idx[0]].width; stride = image->tile[tile_idx[0]].rot_stride; addr0 = ctx->rot_intermediate[0].phys; if (ctx->double_buffering) addr1 = ctx->rot_intermediate[1].phys; } else { width = image->tile[tile_idx[0]].width; height = image->tile[tile_idx[0]].height; stride = image->stride; addr0 = image->base.phys0 + image->tile[tile_idx[0]].offset; if (ctx->double_buffering) addr1 = image->base.phys0 + image->tile[tile_idx[1]].offset; } ipu_cpmem_zero(channel); memset(&tile_image, 0, sizeof(tile_image)); tile_image.pix.width = tile_image.rect.width = width; tile_image.pix.height = tile_image.rect.height = height; tile_image.pix.bytesperline = stride; tile_image.pix.pixelformat = image->fmt->fourcc; tile_image.phys0 = addr0; tile_image.phys1 = addr1; if (image->fmt->planar && !rot_swap_width_height) { tile_image.u_offset = image->tile[tile_idx[0]].u_off; tile_image.v_offset = image->tile[tile_idx[0]].v_off; } ipu_cpmem_set_image(channel, &tile_image); if (rot_mode) ipu_cpmem_set_rotation(channel, rot_mode); /* * Skip writing U and V components to odd rows in the output * channels for planar 4:2:0. */ if ((channel == chan->out_chan || channel == chan->rotation_out_chan) && image->fmt->planar && image->fmt->uv_height_dec == 2) ipu_cpmem_skip_odd_chroma_rows(channel); if (channel == chan->rotation_in_chan || channel == chan->rotation_out_chan) { burst_size = 8; ipu_cpmem_set_block_mode(channel); } else burst_size = (width % 16) ? 8 : 16; ipu_cpmem_set_burstsize(channel, burst_size); ipu_ic_task_idma_init(chan->ic, channel, width, height, burst_size, rot_mode); /* * Setting a non-zero AXI ID collides with the PRG AXI snooping, so * only do this when there is no PRG present. */ if (!channel->ipu->prg_priv) ipu_cpmem_set_axi_id(channel, 1); ipu_idmac_set_double_buffer(channel, ctx->double_buffering); } static int convert_start(struct ipu_image_convert_run *run, unsigned int tile) { struct ipu_image_convert_ctx *ctx = run->ctx; struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_image *s_image = &ctx->in; struct ipu_image_convert_image *d_image = &ctx->out; unsigned int dst_tile = ctx->out_tile_map[tile]; unsigned int dest_width, dest_height; unsigned int col, row; u32 rsc; int ret; dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n", __func__, chan->ic_task, ctx, run, tile, dst_tile); if (ipu_rot_mode_is_irt(ctx->rot_mode)) { /* swap width/height for resizer */ dest_width = d_image->tile[dst_tile].height; dest_height = d_image->tile[dst_tile].width; } else { dest_width = d_image->tile[dst_tile].width; dest_height = d_image->tile[dst_tile].height; } row = tile / s_image->num_cols; col = tile % s_image->num_cols; rsc = (ctx->downsize_coeff_v << 30) | (ctx->resize_coeffs_v[row] << 16) | (ctx->downsize_coeff_h << 14) | (ctx->resize_coeffs_h[col]); dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n", __func__, s_image->tile[tile].width, s_image->tile[tile].height, dest_width, dest_height, rsc); /* setup the IC resizer and CSC */ ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc, s_image->tile[tile].width, s_image->tile[tile].height, dest_width, dest_height, rsc); if (ret) { dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret); return ret; } /* init the source MEM-->IC PP IDMAC channel */ init_idmac_channel(ctx, chan->in_chan, s_image, IPU_ROTATE_NONE, false, tile); if (ipu_rot_mode_is_irt(ctx->rot_mode)) { /* init the IC PP-->MEM IDMAC channel */ init_idmac_channel(ctx, chan->out_chan, d_image, IPU_ROTATE_NONE, true, tile); /* init the MEM-->IC PP ROT IDMAC channel */ init_idmac_channel(ctx, chan->rotation_in_chan, d_image, ctx->rot_mode, true, tile); /* init the destination IC PP ROT-->MEM IDMAC channel */ init_idmac_channel(ctx, chan->rotation_out_chan, d_image, IPU_ROTATE_NONE, false, tile); /* now link IC PP-->MEM to MEM-->IC PP ROT */ ipu_idmac_link(chan->out_chan, chan->rotation_in_chan); } else { /* init the destination IC PP-->MEM IDMAC channel */ init_idmac_channel(ctx, chan->out_chan, d_image, ctx->rot_mode, false, tile); } /* enable the IC */ ipu_ic_enable(chan->ic); /* set buffers ready */ ipu_idmac_select_buffer(chan->in_chan, 0); ipu_idmac_select_buffer(chan->out_chan, 0); if (ipu_rot_mode_is_irt(ctx->rot_mode)) ipu_idmac_select_buffer(chan->rotation_out_chan, 0); if (ctx->double_buffering) { ipu_idmac_select_buffer(chan->in_chan, 1); ipu_idmac_select_buffer(chan->out_chan, 1); if (ipu_rot_mode_is_irt(ctx->rot_mode)) ipu_idmac_select_buffer(chan->rotation_out_chan, 1); } /* enable the channels! */ ipu_idmac_enable_channel(chan->in_chan); ipu_idmac_enable_channel(chan->out_chan); if (ipu_rot_mode_is_irt(ctx->rot_mode)) { ipu_idmac_enable_channel(chan->rotation_in_chan); ipu_idmac_enable_channel(chan->rotation_out_chan); } ipu_ic_task_enable(chan->ic); ipu_cpmem_dump(chan->in_chan); ipu_cpmem_dump(chan->out_chan); if (ipu_rot_mode_is_irt(ctx->rot_mode)) { ipu_cpmem_dump(chan->rotation_in_chan); ipu_cpmem_dump(chan->rotation_out_chan); } ipu_dump(priv->ipu); return 0; } /* hold irqlock when calling */ static int do_run(struct ipu_image_convert_run *run) { struct ipu_image_convert_ctx *ctx = run->ctx; struct ipu_image_convert_chan *chan = ctx->chan; lockdep_assert_held(&chan->irqlock); ctx->in.base.phys0 = run->in_phys; ctx->out.base.phys0 = run->out_phys; ctx->cur_buf_num = 0; ctx->next_tile = 1; /* remove run from pending_q and set as current */ list_del(&run->list); chan->current_run = run; return convert_start(run, 0); } /* hold irqlock when calling */ static void run_next(struct ipu_image_convert_chan *chan) { struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_run *run, *tmp; int ret; lockdep_assert_held(&chan->irqlock); list_for_each_entry_safe(run, tmp, &chan->pending_q, list) { /* skip contexts that are aborting */ if (run->ctx->aborting) { dev_dbg(priv->ipu->dev, "%s: task %u: skipping aborting ctx %p run %p\n", __func__, chan->ic_task, run->ctx, run); continue; } ret = do_run(run); if (!ret) break; /* * something went wrong with start, add the run * to done q and continue to the next run in the * pending q. */ run->status = ret; list_add_tail(&run->list, &chan->done_q); chan->current_run = NULL; } } static void empty_done_q(struct ipu_image_convert_chan *chan) { struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_run *run; unsigned long flags; spin_lock_irqsave(&chan->irqlock, flags); while (!list_empty(&chan->done_q)) { run = list_entry(chan->done_q.next, struct ipu_image_convert_run, list); list_del(&run->list); dev_dbg(priv->ipu->dev, "%s: task %u: completing ctx %p run %p with %d\n", __func__, chan->ic_task, run->ctx, run, run->status); /* call the completion callback and free the run */ spin_unlock_irqrestore(&chan->irqlock, flags); run->ctx->complete(run, run->ctx->complete_context); spin_lock_irqsave(&chan->irqlock, flags); } spin_unlock_irqrestore(&chan->irqlock, flags); } /* * the bottom half thread clears out the done_q, calling the * completion handler for each. */ static irqreturn_t do_bh(int irq, void *dev_id) { struct ipu_image_convert_chan *chan = dev_id; struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_ctx *ctx; unsigned long flags; dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__, chan->ic_task); empty_done_q(chan); spin_lock_irqsave(&chan->irqlock, flags); /* * the done_q is cleared out, signal any contexts * that are aborting that abort can complete. */ list_for_each_entry(ctx, &chan->ctx_list, list) { if (ctx->aborting) { dev_dbg(priv->ipu->dev, "%s: task %u: signaling abort for ctx %p\n", __func__, chan->ic_task, ctx); complete_all(&ctx->aborted); } } spin_unlock_irqrestore(&chan->irqlock, flags); dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__, chan->ic_task); return IRQ_HANDLED; } static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx) { unsigned int cur_tile = ctx->next_tile - 1; unsigned int next_tile = ctx->next_tile; if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] != ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] || ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] != ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] || ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width || ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height || ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width || ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height) return true; return false; } /* hold irqlock when calling */ static irqreturn_t do_irq(struct ipu_image_convert_run *run) { struct ipu_image_convert_ctx *ctx = run->ctx; struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_tile *src_tile, *dst_tile; struct ipu_image_convert_image *s_image = &ctx->in; struct ipu_image_convert_image *d_image = &ctx->out; struct ipuv3_channel *outch; unsigned int dst_idx; lockdep_assert_held(&chan->irqlock); outch = ipu_rot_mode_is_irt(ctx->rot_mode) ? chan->rotation_out_chan : chan->out_chan; /* * It is difficult to stop the channel DMA before the channels * enter the paused state. Without double-buffering the channels * are always in a paused state when the EOF irq occurs, so it * is safe to stop the channels now. For double-buffering we * just ignore the abort until the operation completes, when it * is safe to shut down. */ if (ctx->aborting && !ctx->double_buffering) { convert_stop(run); run->status = -EIO; goto done; } if (ctx->next_tile == ctx->num_tiles) { /* * the conversion is complete */ convert_stop(run); run->status = 0; goto done; } /* * not done, place the next tile buffers. */ if (!ctx->double_buffering) { if (ic_settings_changed(ctx)) { convert_stop(run); convert_start(run, ctx->next_tile); } else { src_tile = &s_image->tile[ctx->next_tile]; dst_idx = ctx->out_tile_map[ctx->next_tile]; dst_tile = &d_image->tile[dst_idx]; ipu_cpmem_set_buffer(chan->in_chan, 0, s_image->base.phys0 + src_tile->offset); ipu_cpmem_set_buffer(outch, 0, d_image->base.phys0 + dst_tile->offset); if (s_image->fmt->planar) ipu_cpmem_set_uv_offset(chan->in_chan, src_tile->u_off, src_tile->v_off); if (d_image->fmt->planar) ipu_cpmem_set_uv_offset(outch, dst_tile->u_off, dst_tile->v_off); ipu_idmac_select_buffer(chan->in_chan, 0); ipu_idmac_select_buffer(outch, 0); } } else if (ctx->next_tile < ctx->num_tiles - 1) { src_tile = &s_image->tile[ctx->next_tile + 1]; dst_idx = ctx->out_tile_map[ctx->next_tile + 1]; dst_tile = &d_image->tile[dst_idx]; ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num, s_image->base.phys0 + src_tile->offset); ipu_cpmem_set_buffer(outch, ctx->cur_buf_num, d_image->base.phys0 + dst_tile->offset); ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num); ipu_idmac_select_buffer(outch, ctx->cur_buf_num); ctx->cur_buf_num ^= 1; } ctx->next_tile++; return IRQ_HANDLED; done: list_add_tail(&run->list, &chan->done_q); chan->current_run = NULL; run_next(chan); return IRQ_WAKE_THREAD; } static irqreturn_t norotate_irq(int irq, void *data) { struct ipu_image_convert_chan *chan = data; struct ipu_image_convert_ctx *ctx; struct ipu_image_convert_run *run; unsigned long flags; irqreturn_t ret; spin_lock_irqsave(&chan->irqlock, flags); /* get current run and its context */ run = chan->current_run; if (!run) { ret = IRQ_NONE; goto out; } ctx = run->ctx; if (ipu_rot_mode_is_irt(ctx->rot_mode)) { /* this is a rotation operation, just ignore */ spin_unlock_irqrestore(&chan->irqlock, flags); return IRQ_HANDLED; } ret = do_irq(run); out: spin_unlock_irqrestore(&chan->irqlock, flags); return ret; } static irqreturn_t rotate_irq(int irq, void *data) { struct ipu_image_convert_chan *chan = data; struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_ctx *ctx; struct ipu_image_convert_run *run; unsigned long flags; irqreturn_t ret; spin_lock_irqsave(&chan->irqlock, flags); /* get current run and its context */ run = chan->current_run; if (!run) { ret = IRQ_NONE; goto out; } ctx = run->ctx; if (!ipu_rot_mode_is_irt(ctx->rot_mode)) { /* this was NOT a rotation operation, shouldn't happen */ dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n"); spin_unlock_irqrestore(&chan->irqlock, flags); return IRQ_HANDLED; } ret = do_irq(run); out: spin_unlock_irqrestore(&chan->irqlock, flags); return ret; } /* * try to force the completion of runs for this ctx. Called when * abort wait times out in ipu_image_convert_abort(). */ static void force_abort(struct ipu_image_convert_ctx *ctx) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_run *run; unsigned long flags; spin_lock_irqsave(&chan->irqlock, flags); run = chan->current_run; if (run && run->ctx == ctx) { convert_stop(run); run->status = -EIO; list_add_tail(&run->list, &chan->done_q); chan->current_run = NULL; run_next(chan); } spin_unlock_irqrestore(&chan->irqlock, flags); empty_done_q(chan); } static void release_ipu_resources(struct ipu_image_convert_chan *chan) { if (chan->out_eof_irq >= 0) free_irq(chan->out_eof_irq, chan); if (chan->rot_out_eof_irq >= 0) free_irq(chan->rot_out_eof_irq, chan); if (!IS_ERR_OR_NULL(chan->in_chan)) ipu_idmac_put(chan->in_chan); if (!IS_ERR_OR_NULL(chan->out_chan)) ipu_idmac_put(chan->out_chan); if (!IS_ERR_OR_NULL(chan->rotation_in_chan)) ipu_idmac_put(chan->rotation_in_chan); if (!IS_ERR_OR_NULL(chan->rotation_out_chan)) ipu_idmac_put(chan->rotation_out_chan); if (!IS_ERR_OR_NULL(chan->ic)) ipu_ic_put(chan->ic); chan->in_chan = chan->out_chan = chan->rotation_in_chan = chan->rotation_out_chan = NULL; chan->out_eof_irq = chan->rot_out_eof_irq = -1; } static int get_ipu_resources(struct ipu_image_convert_chan *chan) { const struct ipu_image_convert_dma_chan *dma = chan->dma_ch; struct ipu_image_convert_priv *priv = chan->priv; int ret; /* get IC */ chan->ic = ipu_ic_get(priv->ipu, chan->ic_task); if (IS_ERR(chan->ic)) { dev_err(priv->ipu->dev, "could not acquire IC\n"); ret = PTR_ERR(chan->ic); goto err; } /* get IDMAC channels */ chan->in_chan = ipu_idmac_get(priv->ipu, dma->in); chan->out_chan = ipu_idmac_get(priv->ipu, dma->out); if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) { dev_err(priv->ipu->dev, "could not acquire idmac channels\n"); ret = -EBUSY; goto err; } chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in); chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out); if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) { dev_err(priv->ipu->dev, "could not acquire idmac rotation channels\n"); ret = -EBUSY; goto err; } /* acquire the EOF interrupts */ chan->out_eof_irq = ipu_idmac_channel_irq(priv->ipu, chan->out_chan, IPU_IRQ_EOF); ret = request_threaded_irq(chan->out_eof_irq, norotate_irq, do_bh, 0, "ipu-ic", chan); if (ret < 0) { dev_err(priv->ipu->dev, "could not acquire irq %d\n", chan->out_eof_irq); chan->out_eof_irq = -1; goto err; } chan->rot_out_eof_irq = ipu_idmac_channel_irq(priv->ipu, chan->rotation_out_chan, IPU_IRQ_EOF); ret = request_threaded_irq(chan->rot_out_eof_irq, rotate_irq, do_bh, 0, "ipu-ic", chan); if (ret < 0) { dev_err(priv->ipu->dev, "could not acquire irq %d\n", chan->rot_out_eof_irq); chan->rot_out_eof_irq = -1; goto err; } return 0; err: release_ipu_resources(chan); return ret; } static int fill_image(struct ipu_image_convert_ctx *ctx, struct ipu_image_convert_image *ic_image, struct ipu_image *image, enum ipu_image_convert_type type) { struct ipu_image_convert_priv *priv = ctx->chan->priv; ic_image->base = *image; ic_image->type = type; ic_image->fmt = get_format(image->pix.pixelformat); if (!ic_image->fmt) { dev_err(priv->ipu->dev, "pixelformat not supported for %s\n", type == IMAGE_CONVERT_OUT ? "Output" : "Input"); return -EINVAL; } if (ic_image->fmt->planar) ic_image->stride = ic_image->base.pix.width; else ic_image->stride = ic_image->base.pix.bytesperline; return 0; } /* borrowed from drivers/media/v4l2-core/v4l2-common.c */ static unsigned int clamp_align(unsigned int x, unsigned int min, unsigned int max, unsigned int align) { /* Bits that must be zero to be aligned */ unsigned int mask = ~((1 << align) - 1); /* Clamp to aligned min and max */ x = clamp(x, (min + ~mask) & mask, max & mask); /* Round to nearest aligned value */ if (align) x = (x + (1 << (align - 1))) & mask; return x; } /* Adjusts input/output images to IPU restrictions */ void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out, enum ipu_rotate_mode rot_mode) { const struct ipu_image_pixfmt *infmt, *outfmt; u32 w_align_out, h_align_out; u32 w_align_in, h_align_in; infmt = get_format(in->pix.pixelformat); outfmt = get_format(out->pix.pixelformat); /* set some default pixel formats if needed */ if (!infmt) { in->pix.pixelformat = V4L2_PIX_FMT_RGB24; infmt = get_format(V4L2_PIX_FMT_RGB24); } if (!outfmt) { out->pix.pixelformat = V4L2_PIX_FMT_RGB24; outfmt = get_format(V4L2_PIX_FMT_RGB24); } /* image converter does not handle fields */ in->pix.field = out->pix.field = V4L2_FIELD_NONE; /* resizer cannot downsize more than 4:1 */ if (ipu_rot_mode_is_irt(rot_mode)) { out->pix.height = max_t(__u32, out->pix.height, in->pix.width / 4); out->pix.width = max_t(__u32, out->pix.width, in->pix.height / 4); } else { out->pix.width = max_t(__u32, out->pix.width, in->pix.width / 4); out->pix.height = max_t(__u32, out->pix.height, in->pix.height / 4); } /* align input width/height */ w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt, rot_mode)); h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt, rot_mode)); in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W, w_align_in); in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H, h_align_in); /* align output width/height */ w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt, rot_mode)); h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt, rot_mode)); out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W, w_align_out); out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H, h_align_out); /* set input/output strides and image sizes */ in->pix.bytesperline = infmt->planar ? clamp_align(in->pix.width, 2 << w_align_in, MAX_W, w_align_in) : clamp_align((in->pix.width * infmt->bpp) >> 3, ((2 << w_align_in) * infmt->bpp) >> 3, (MAX_W * infmt->bpp) >> 3, w_align_in); in->pix.sizeimage = infmt->planar ? (in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 : in->pix.height * in->pix.bytesperline; out->pix.bytesperline = outfmt->planar ? out->pix.width : (out->pix.width * outfmt->bpp) >> 3; out->pix.sizeimage = outfmt->planar ? (out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 : out->pix.height * out->pix.bytesperline; } EXPORT_SYMBOL_GPL(ipu_image_convert_adjust); /* * this is used by ipu_image_convert_prepare() to verify set input and * output images are valid before starting the conversion. Clients can * also call it before calling ipu_image_convert_prepare(). */ int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out, enum ipu_rotate_mode rot_mode) { struct ipu_image testin, testout; testin = *in; testout = *out; ipu_image_convert_adjust(&testin, &testout, rot_mode); if (testin.pix.width != in->pix.width || testin.pix.height != in->pix.height || testout.pix.width != out->pix.width || testout.pix.height != out->pix.height) return -EINVAL; return 0; } EXPORT_SYMBOL_GPL(ipu_image_convert_verify); /* * Call ipu_image_convert_prepare() to prepare for the conversion of * given images and rotation mode. Returns a new conversion context. */ struct ipu_image_convert_ctx * ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task, struct ipu_image *in, struct ipu_image *out, enum ipu_rotate_mode rot_mode, ipu_image_convert_cb_t complete, void *complete_context) { struct ipu_image_convert_priv *priv = ipu->image_convert_priv; struct ipu_image_convert_image *s_image, *d_image; struct ipu_image_convert_chan *chan; struct ipu_image_convert_ctx *ctx; unsigned long flags; unsigned int i; bool get_res; int ret; if (!in || !out || !complete || (ic_task != IC_TASK_VIEWFINDER && ic_task != IC_TASK_POST_PROCESSOR)) return ERR_PTR(-EINVAL); /* verify the in/out images before continuing */ ret = ipu_image_convert_verify(in, out, rot_mode); if (ret) { dev_err(priv->ipu->dev, "%s: in/out formats invalid\n", __func__); return ERR_PTR(ret); } chan = &priv->chan[ic_task]; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return ERR_PTR(-ENOMEM); dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__, chan->ic_task, ctx); ctx->chan = chan; init_completion(&ctx->aborted); ctx->rot_mode = rot_mode; /* Sets ctx->in.num_rows/cols as well */ ret = calc_image_resize_coefficients(ctx, in, out); if (ret) goto out_free; s_image = &ctx->in; d_image = &ctx->out; /* set tiling and rotation */ if (ipu_rot_mode_is_irt(rot_mode)) { d_image->num_rows = s_image->num_cols; d_image->num_cols = s_image->num_rows; } else { d_image->num_rows = s_image->num_rows; d_image->num_cols = s_image->num_cols; } ctx->num_tiles = d_image->num_cols * d_image->num_rows; ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN); if (ret) goto out_free; ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT); if (ret) goto out_free; calc_out_tile_map(ctx); find_seams(ctx, s_image, d_image); ret = calc_tile_dimensions(ctx, s_image); if (ret) goto out_free; ret = calc_tile_offsets(ctx, s_image); if (ret) goto out_free; calc_tile_dimensions(ctx, d_image); ret = calc_tile_offsets(ctx, d_image); if (ret) goto out_free; calc_tile_resize_coefficients(ctx); ret = ipu_ic_calc_csc(&ctx->csc, s_image->base.pix.ycbcr_enc, s_image->base.pix.quantization, ipu_pixelformat_to_colorspace(s_image->fmt->fourcc), d_image->base.pix.ycbcr_enc, d_image->base.pix.quantization, ipu_pixelformat_to_colorspace(d_image->fmt->fourcc)); if (ret) goto out_free; dump_format(ctx, s_image); dump_format(ctx, d_image); ctx->complete = complete; ctx->complete_context = complete_context; /* * Can we use double-buffering for this operation? If there is * only one tile (the whole image can be converted in a single * operation) there's no point in using double-buffering. Also, * the IPU's IDMAC channels allow only a single U and V plane * offset shared between both buffers, but these offsets change * for every tile, and therefore would have to be updated for * each buffer which is not possible. So double-buffering is * impossible when either the source or destination images are * a planar format (YUV420, YUV422P, etc.). Further, differently * sized tiles or different resizing coefficients per tile * prevent double-buffering as well. */ ctx->double_buffering = (ctx->num_tiles > 1 && !s_image->fmt->planar && !d_image->fmt->planar); for (i = 1; i < ctx->num_tiles; i++) { if (ctx->in.tile[i].width != ctx->in.tile[0].width || ctx->in.tile[i].height != ctx->in.tile[0].height || ctx->out.tile[i].width != ctx->out.tile[0].width || ctx->out.tile[i].height != ctx->out.tile[0].height) { ctx->double_buffering = false; break; } } for (i = 1; i < ctx->in.num_cols; i++) { if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) { ctx->double_buffering = false; break; } } for (i = 1; i < ctx->in.num_rows; i++) { if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) { ctx->double_buffering = false; break; } } if (ipu_rot_mode_is_irt(ctx->rot_mode)) { unsigned long intermediate_size = d_image->tile[0].size; for (i = 1; i < ctx->num_tiles; i++) { if (d_image->tile[i].size > intermediate_size) intermediate_size = d_image->tile[i].size; } ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0], intermediate_size); if (ret) goto out_free; if (ctx->double_buffering) { ret = alloc_dma_buf(priv, &ctx->rot_intermediate[1], intermediate_size); if (ret) goto out_free_dmabuf0; } } spin_lock_irqsave(&chan->irqlock, flags); get_res = list_empty(&chan->ctx_list); list_add_tail(&ctx->list, &chan->ctx_list); spin_unlock_irqrestore(&chan->irqlock, flags); if (get_res) { ret = get_ipu_resources(chan); if (ret) goto out_free_dmabuf1; } return ctx; out_free_dmabuf1: free_dma_buf(priv, &ctx->rot_intermediate[1]); spin_lock_irqsave(&chan->irqlock, flags); list_del(&ctx->list); spin_unlock_irqrestore(&chan->irqlock, flags); out_free_dmabuf0: free_dma_buf(priv, &ctx->rot_intermediate[0]); out_free: kfree(ctx); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(ipu_image_convert_prepare); /* * Carry out a single image conversion run. Only the physaddr's of the input * and output image buffers are needed. The conversion context must have * been created previously with ipu_image_convert_prepare(). */ int ipu_image_convert_queue(struct ipu_image_convert_run *run) { struct ipu_image_convert_chan *chan; struct ipu_image_convert_priv *priv; struct ipu_image_convert_ctx *ctx; unsigned long flags; int ret = 0; if (!run || !run->ctx || !run->in_phys || !run->out_phys) return -EINVAL; ctx = run->ctx; chan = ctx->chan; priv = chan->priv; dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__, chan->ic_task, ctx, run); INIT_LIST_HEAD(&run->list); spin_lock_irqsave(&chan->irqlock, flags); if (ctx->aborting) { ret = -EIO; goto unlock; } list_add_tail(&run->list, &chan->pending_q); if (!chan->current_run) { ret = do_run(run); if (ret) chan->current_run = NULL; } unlock: spin_unlock_irqrestore(&chan->irqlock, flags); return ret; } EXPORT_SYMBOL_GPL(ipu_image_convert_queue); /* Abort any active or pending conversions for this context */ static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_run *run, *active_run, *tmp; unsigned long flags; int run_count, ret; spin_lock_irqsave(&chan->irqlock, flags); /* move all remaining pending runs in this context to done_q */ list_for_each_entry_safe(run, tmp, &chan->pending_q, list) { if (run->ctx != ctx) continue; run->status = -EIO; list_move_tail(&run->list, &chan->done_q); } run_count = get_run_count(ctx, &chan->done_q); active_run = (chan->current_run && chan->current_run->ctx == ctx) ? chan->current_run : NULL; if (active_run) reinit_completion(&ctx->aborted); ctx->aborting = true; spin_unlock_irqrestore(&chan->irqlock, flags); if (!run_count && !active_run) { dev_dbg(priv->ipu->dev, "%s: task %u: no abort needed for ctx %p\n", __func__, chan->ic_task, ctx); return; } if (!active_run) { empty_done_q(chan); return; } dev_dbg(priv->ipu->dev, "%s: task %u: wait for completion: %d runs\n", __func__, chan->ic_task, run_count); ret = wait_for_completion_timeout(&ctx->aborted, msecs_to_jiffies(10000)); if (ret == 0) { dev_warn(priv->ipu->dev, "%s: timeout\n", __func__); force_abort(ctx); } } void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx) { __ipu_image_convert_abort(ctx); ctx->aborting = false; } EXPORT_SYMBOL_GPL(ipu_image_convert_abort); /* Unprepare image conversion context */ void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx) { struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_priv *priv = chan->priv; unsigned long flags; bool put_res; /* make sure no runs are hanging around */ __ipu_image_convert_abort(ctx); dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__, chan->ic_task, ctx); spin_lock_irqsave(&chan->irqlock, flags); list_del(&ctx->list); put_res = list_empty(&chan->ctx_list); spin_unlock_irqrestore(&chan->irqlock, flags); if (put_res) release_ipu_resources(chan); free_dma_buf(priv, &ctx->rot_intermediate[1]); free_dma_buf(priv, &ctx->rot_intermediate[0]); kfree(ctx); } EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare); /* * "Canned" asynchronous single image conversion. Allocates and returns * a new conversion run. On successful return the caller must free the * run and call ipu_image_convert_unprepare() after conversion completes. */ struct ipu_image_convert_run * ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task, struct ipu_image *in, struct ipu_image *out, enum ipu_rotate_mode rot_mode, ipu_image_convert_cb_t complete, void *complete_context) { struct ipu_image_convert_ctx *ctx; struct ipu_image_convert_run *run; int ret; ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode, complete, complete_context); if (IS_ERR(ctx)) return ERR_CAST(ctx); run = kzalloc(sizeof(*run), GFP_KERNEL); if (!run) { ipu_image_convert_unprepare(ctx); return ERR_PTR(-ENOMEM); } run->ctx = ctx; run->in_phys = in->phys0; run->out_phys = out->phys0; ret = ipu_image_convert_queue(run); if (ret) { ipu_image_convert_unprepare(ctx); kfree(run); return ERR_PTR(ret); } return run; } EXPORT_SYMBOL_GPL(ipu_image_convert); /* "Canned" synchronous single image conversion */ static void image_convert_sync_complete(struct ipu_image_convert_run *run, void *data) { struct completion *comp = data; complete(comp); } int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task, struct ipu_image *in, struct ipu_image *out, enum ipu_rotate_mode rot_mode) { struct ipu_image_convert_run *run; struct completion comp; int ret; init_completion(&comp); run = ipu_image_convert(ipu, ic_task, in, out, rot_mode, image_convert_sync_complete, &comp); if (IS_ERR(run)) return PTR_ERR(run); ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000)); ret = (ret == 0) ? -ETIMEDOUT : 0; ipu_image_convert_unprepare(run->ctx); kfree(run); return ret; } EXPORT_SYMBOL_GPL(ipu_image_convert_sync); int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev) { struct ipu_image_convert_priv *priv; int i; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; ipu->image_convert_priv = priv; priv->ipu = ipu; for (i = 0; i < IC_NUM_TASKS; i++) { struct ipu_image_convert_chan *chan = &priv->chan[i]; chan->ic_task = i; chan->priv = priv; chan->dma_ch = &image_convert_dma_chan[i]; chan->out_eof_irq = -1; chan->rot_out_eof_irq = -1; spin_lock_init(&chan->irqlock); INIT_LIST_HEAD(&chan->ctx_list); INIT_LIST_HEAD(&chan->pending_q); INIT_LIST_HEAD(&chan->done_q); } return 0; } void ipu_image_convert_exit(struct ipu_soc *ipu) { }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1