Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jean Delvare | 1176 | 74.76% | 14 | 42.42% |
Guenter Roeck | 319 | 20.28% | 4 | 12.12% |
Frans Meulenbroeks | 27 | 1.72% | 1 | 3.03% |
Mark M. Hoffman | 19 | 1.21% | 3 | 9.09% |
Ingo Molnar | 6 | 0.38% | 1 | 3.03% |
Greg Kroah-Hartman | 6 | 0.38% | 1 | 3.03% |
Jordan Crouse | 4 | 0.25% | 1 | 3.03% |
Yani Ioannou | 4 | 0.25% | 1 | 3.03% |
Alexey Dobriyan | 3 | 0.19% | 1 | 3.03% |
Julia Lawall | 2 | 0.13% | 1 | 3.03% |
Thomas Gleixner | 2 | 0.13% | 1 | 3.03% |
Laurent Riffard | 2 | 0.13% | 1 | 3.03% |
Steven Cole | 1 | 0.06% | 1 | 3.03% |
Axel Lin | 1 | 0.06% | 1 | 3.03% |
Tony Jones | 1 | 0.06% | 1 | 3.03% |
Total | 1573 | 33 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * lm83.c - Part of lm_sensors, Linux kernel modules for hardware * monitoring * Copyright (C) 2003-2009 Jean Delvare <jdelvare@suse.de> * * Heavily inspired from the lm78, lm75 and adm1021 drivers. The LM83 is * a sensor chip made by National Semiconductor. It reports up to four * temperatures (its own plus up to three external ones) with a 1 deg * resolution and a 3-4 deg accuracy. Complete datasheet can be obtained * from National's website at: * http://www.national.com/pf/LM/LM83.html * Since the datasheet omits to give the chip stepping code, I give it * here: 0x03 (at register 0xff). * * Also supports the LM82 temp sensor, which is basically a stripped down * model of the LM83. Datasheet is here: * http://www.national.com/pf/LM/LM82.html */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/jiffies.h> #include <linux/i2c.h> #include <linux/hwmon-sysfs.h> #include <linux/hwmon.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/sysfs.h> /* * Addresses to scan * Address is selected using 2 three-level pins, resulting in 9 possible * addresses. */ static const unsigned short normal_i2c[] = { 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x4c, 0x4d, 0x4e, I2C_CLIENT_END }; enum chips { lm83, lm82 }; /* * The LM83 registers * Manufacturer ID is 0x01 for National Semiconductor. */ #define LM83_REG_R_MAN_ID 0xFE #define LM83_REG_R_CHIP_ID 0xFF #define LM83_REG_R_CONFIG 0x03 #define LM83_REG_W_CONFIG 0x09 #define LM83_REG_R_STATUS1 0x02 #define LM83_REG_R_STATUS2 0x35 #define LM83_REG_R_LOCAL_TEMP 0x00 #define LM83_REG_R_LOCAL_HIGH 0x05 #define LM83_REG_W_LOCAL_HIGH 0x0B #define LM83_REG_R_REMOTE1_TEMP 0x30 #define LM83_REG_R_REMOTE1_HIGH 0x38 #define LM83_REG_W_REMOTE1_HIGH 0x50 #define LM83_REG_R_REMOTE2_TEMP 0x01 #define LM83_REG_R_REMOTE2_HIGH 0x07 #define LM83_REG_W_REMOTE2_HIGH 0x0D #define LM83_REG_R_REMOTE3_TEMP 0x31 #define LM83_REG_R_REMOTE3_HIGH 0x3A #define LM83_REG_W_REMOTE3_HIGH 0x52 #define LM83_REG_R_TCRIT 0x42 #define LM83_REG_W_TCRIT 0x5A /* * Conversions and various macros * The LM83 uses signed 8-bit values with LSB = 1 degree Celsius. */ #define TEMP_FROM_REG(val) ((val) * 1000) #define TEMP_TO_REG(val) ((val) <= -128000 ? -128 : \ (val) >= 127000 ? 127 : \ (val) < 0 ? ((val) - 500) / 1000 : \ ((val) + 500) / 1000) static const u8 LM83_REG_R_TEMP[] = { LM83_REG_R_LOCAL_TEMP, LM83_REG_R_REMOTE1_TEMP, LM83_REG_R_REMOTE2_TEMP, LM83_REG_R_REMOTE3_TEMP, LM83_REG_R_LOCAL_HIGH, LM83_REG_R_REMOTE1_HIGH, LM83_REG_R_REMOTE2_HIGH, LM83_REG_R_REMOTE3_HIGH, LM83_REG_R_TCRIT, }; static const u8 LM83_REG_W_HIGH[] = { LM83_REG_W_LOCAL_HIGH, LM83_REG_W_REMOTE1_HIGH, LM83_REG_W_REMOTE2_HIGH, LM83_REG_W_REMOTE3_HIGH, LM83_REG_W_TCRIT, }; /* * Client data (each client gets its own) */ struct lm83_data { struct i2c_client *client; const struct attribute_group *groups[3]; struct mutex update_lock; char valid; /* zero until following fields are valid */ unsigned long last_updated; /* in jiffies */ /* registers values */ s8 temp[9]; /* 0..3: input 1-4, 4..7: high limit 1-4, 8 : critical limit */ u16 alarms; /* bitvector, combined */ }; static struct lm83_data *lm83_update_device(struct device *dev) { struct lm83_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ * 2) || !data->valid) { int nr; dev_dbg(&client->dev, "Updating lm83 data.\n"); for (nr = 0; nr < 9; nr++) { data->temp[nr] = i2c_smbus_read_byte_data(client, LM83_REG_R_TEMP[nr]); } data->alarms = i2c_smbus_read_byte_data(client, LM83_REG_R_STATUS1) + (i2c_smbus_read_byte_data(client, LM83_REG_R_STATUS2) << 8); data->last_updated = jiffies; data->valid = 1; } mutex_unlock(&data->update_lock); return data; } /* * Sysfs stuff */ static ssize_t temp_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm83_data *data = lm83_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[attr->index])); } static ssize_t temp_store(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm83_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int nr = attr->index; int err; err = kstrtol(buf, 10, &val); if (err < 0) return err; mutex_lock(&data->update_lock); data->temp[nr] = TEMP_TO_REG(val); i2c_smbus_write_byte_data(client, LM83_REG_W_HIGH[nr - 4], data->temp[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t alarms_show(struct device *dev, struct device_attribute *dummy, char *buf) { struct lm83_data *data = lm83_update_device(dev); return sprintf(buf, "%d\n", data->alarms); } static ssize_t alarm_show(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct lm83_data *data = lm83_update_device(dev); int bitnr = attr->index; return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1); } static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0); static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1); static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2); static SENSOR_DEVICE_ATTR_RO(temp4_input, temp, 3); static SENSOR_DEVICE_ATTR_RW(temp1_max, temp, 4); static SENSOR_DEVICE_ATTR_RW(temp2_max, temp, 5); static SENSOR_DEVICE_ATTR_RW(temp3_max, temp, 6); static SENSOR_DEVICE_ATTR_RW(temp4_max, temp, 7); static SENSOR_DEVICE_ATTR_RO(temp1_crit, temp, 8); static SENSOR_DEVICE_ATTR_RO(temp2_crit, temp, 8); static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp, 8); static SENSOR_DEVICE_ATTR_RO(temp4_crit, temp, 8); /* Individual alarm files */ static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 0); static SENSOR_DEVICE_ATTR_RO(temp3_crit_alarm, alarm, 1); static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 2); static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, alarm, 4); static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6); static SENSOR_DEVICE_ATTR_RO(temp2_crit_alarm, alarm, 8); static SENSOR_DEVICE_ATTR_RO(temp4_crit_alarm, alarm, 9); static SENSOR_DEVICE_ATTR_RO(temp4_fault, alarm, 10); static SENSOR_DEVICE_ATTR_RO(temp4_max_alarm, alarm, 12); static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 13); static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 15); /* Raw alarm file for compatibility */ static DEVICE_ATTR_RO(alarms); static struct attribute *lm83_attributes[] = { &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_temp3_input.dev_attr.attr, &sensor_dev_attr_temp1_max.dev_attr.attr, &sensor_dev_attr_temp3_max.dev_attr.attr, &sensor_dev_attr_temp1_crit.dev_attr.attr, &sensor_dev_attr_temp3_crit.dev_attr.attr, &sensor_dev_attr_temp1_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp3_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp3_fault.dev_attr.attr, &sensor_dev_attr_temp3_max_alarm.dev_attr.attr, &sensor_dev_attr_temp1_max_alarm.dev_attr.attr, &dev_attr_alarms.attr, NULL }; static const struct attribute_group lm83_group = { .attrs = lm83_attributes, }; static struct attribute *lm83_attributes_opt[] = { &sensor_dev_attr_temp2_input.dev_attr.attr, &sensor_dev_attr_temp4_input.dev_attr.attr, &sensor_dev_attr_temp2_max.dev_attr.attr, &sensor_dev_attr_temp4_max.dev_attr.attr, &sensor_dev_attr_temp2_crit.dev_attr.attr, &sensor_dev_attr_temp4_crit.dev_attr.attr, &sensor_dev_attr_temp2_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp4_crit_alarm.dev_attr.attr, &sensor_dev_attr_temp4_fault.dev_attr.attr, &sensor_dev_attr_temp4_max_alarm.dev_attr.attr, &sensor_dev_attr_temp2_fault.dev_attr.attr, &sensor_dev_attr_temp2_max_alarm.dev_attr.attr, NULL }; static const struct attribute_group lm83_group_opt = { .attrs = lm83_attributes_opt, }; /* * Real code */ /* Return 0 if detection is successful, -ENODEV otherwise */ static int lm83_detect(struct i2c_client *new_client, struct i2c_board_info *info) { struct i2c_adapter *adapter = new_client->adapter; const char *name; u8 man_id, chip_id; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; /* Detection */ if ((i2c_smbus_read_byte_data(new_client, LM83_REG_R_STATUS1) & 0xA8) || (i2c_smbus_read_byte_data(new_client, LM83_REG_R_STATUS2) & 0x48) || (i2c_smbus_read_byte_data(new_client, LM83_REG_R_CONFIG) & 0x41)) { dev_dbg(&adapter->dev, "LM83 detection failed at 0x%02x\n", new_client->addr); return -ENODEV; } /* Identification */ man_id = i2c_smbus_read_byte_data(new_client, LM83_REG_R_MAN_ID); if (man_id != 0x01) /* National Semiconductor */ return -ENODEV; chip_id = i2c_smbus_read_byte_data(new_client, LM83_REG_R_CHIP_ID); switch (chip_id) { case 0x03: name = "lm83"; break; case 0x01: name = "lm82"; break; default: /* identification failed */ dev_info(&adapter->dev, "Unsupported chip (man_id=0x%02X, chip_id=0x%02X)\n", man_id, chip_id); return -ENODEV; } strlcpy(info->type, name, I2C_NAME_SIZE); return 0; } static int lm83_probe(struct i2c_client *new_client, const struct i2c_device_id *id) { struct device *hwmon_dev; struct lm83_data *data; data = devm_kzalloc(&new_client->dev, sizeof(struct lm83_data), GFP_KERNEL); if (!data) return -ENOMEM; data->client = new_client; mutex_init(&data->update_lock); /* * Register sysfs hooks * The LM82 can only monitor one external diode which is * at the same register as the LM83 temp3 entry - so we * declare 1 and 3 common, and then 2 and 4 only for the LM83. */ data->groups[0] = &lm83_group; if (id->driver_data == lm83) data->groups[1] = &lm83_group_opt; hwmon_dev = devm_hwmon_device_register_with_groups(&new_client->dev, new_client->name, data, data->groups); return PTR_ERR_OR_ZERO(hwmon_dev); } /* * Driver data (common to all clients) */ static const struct i2c_device_id lm83_id[] = { { "lm83", lm83 }, { "lm82", lm82 }, { } }; MODULE_DEVICE_TABLE(i2c, lm83_id); static struct i2c_driver lm83_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "lm83", }, .probe = lm83_probe, .id_table = lm83_id, .detect = lm83_detect, .address_list = normal_i2c, }; module_i2c_driver(lm83_driver); MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>"); MODULE_DESCRIPTION("LM83 driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1