Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Steve Wise | 2889 | 99.55% | 13 | 76.47% |
FUJITA Tomonori | 6 | 0.21% | 1 | 5.88% |
Erez Alfasi | 5 | 0.17% | 1 | 5.88% |
Roland Dreier | 1 | 0.03% | 1 | 5.88% |
Uwe Kleine-König | 1 | 0.03% | 1 | 5.88% |
Total | 2902 | 17 |
/* * Copyright (c) 2006 Chelsio, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef __CXIO_WR_H__ #define __CXIO_WR_H__ #include <asm/io.h> #include <linux/pci.h> #include <linux/timer.h> #include "firmware_exports.h" #define T3_MAX_SGE 4 #define T3_MAX_INLINE 64 #define T3_STAG0_PBL_SIZE (2 * T3_MAX_SGE << 3) #define T3_STAG0_MAX_PBE_LEN (128 * 1024 * 1024) #define T3_STAG0_PAGE_SHIFT 15 #define Q_EMPTY(rptr,wptr) ((rptr)==(wptr)) #define Q_FULL(rptr,wptr,size_log2) ( (((wptr)-(rptr))>>(size_log2)) && \ ((rptr)!=(wptr)) ) #define Q_GENBIT(ptr,size_log2) (!(((ptr)>>size_log2)&0x1)) #define Q_FREECNT(rptr,wptr,size_log2) ((1UL<<size_log2)-((wptr)-(rptr))) #define Q_COUNT(rptr,wptr) ((wptr)-(rptr)) #define Q_PTR2IDX(ptr,size_log2) (ptr & ((1UL<<size_log2)-1)) static inline void ring_doorbell(void __iomem *doorbell, u32 qpid) { writel(((1<<31) | qpid), doorbell); } #define SEQ32_GE(x,y) (!( (((u32) (x)) - ((u32) (y))) & 0x80000000 )) enum t3_wr_flags { T3_COMPLETION_FLAG = 0x01, T3_NOTIFY_FLAG = 0x02, T3_SOLICITED_EVENT_FLAG = 0x04, T3_READ_FENCE_FLAG = 0x08, T3_LOCAL_FENCE_FLAG = 0x10 } __packed; enum t3_wr_opcode { T3_WR_BP = FW_WROPCODE_RI_BYPASS, T3_WR_SEND = FW_WROPCODE_RI_SEND, T3_WR_WRITE = FW_WROPCODE_RI_RDMA_WRITE, T3_WR_READ = FW_WROPCODE_RI_RDMA_READ, T3_WR_INV_STAG = FW_WROPCODE_RI_LOCAL_INV, T3_WR_BIND = FW_WROPCODE_RI_BIND_MW, T3_WR_RCV = FW_WROPCODE_RI_RECEIVE, T3_WR_INIT = FW_WROPCODE_RI_RDMA_INIT, T3_WR_QP_MOD = FW_WROPCODE_RI_MODIFY_QP, T3_WR_FASTREG = FW_WROPCODE_RI_FASTREGISTER_MR } __packed; enum t3_rdma_opcode { T3_RDMA_WRITE, /* IETF RDMAP v1.0 ... */ T3_READ_REQ, T3_READ_RESP, T3_SEND, T3_SEND_WITH_INV, T3_SEND_WITH_SE, T3_SEND_WITH_SE_INV, T3_TERMINATE, T3_RDMA_INIT, /* CHELSIO RI specific ... */ T3_BIND_MW, T3_FAST_REGISTER, T3_LOCAL_INV, T3_QP_MOD, T3_BYPASS, T3_RDMA_READ_REQ_WITH_INV, } __packed; static inline enum t3_rdma_opcode wr2opcode(enum t3_wr_opcode wrop) { switch (wrop) { case T3_WR_BP: return T3_BYPASS; case T3_WR_SEND: return T3_SEND; case T3_WR_WRITE: return T3_RDMA_WRITE; case T3_WR_READ: return T3_READ_REQ; case T3_WR_INV_STAG: return T3_LOCAL_INV; case T3_WR_BIND: return T3_BIND_MW; case T3_WR_INIT: return T3_RDMA_INIT; case T3_WR_QP_MOD: return T3_QP_MOD; case T3_WR_FASTREG: return T3_FAST_REGISTER; default: break; } return -1; } /* Work request id */ union t3_wrid { struct { u32 hi; u32 low; } id0; u64 id1; }; #define WRID(wrid) (wrid.id1) #define WRID_GEN(wrid) (wrid.id0.wr_gen) #define WRID_IDX(wrid) (wrid.id0.wr_idx) #define WRID_LO(wrid) (wrid.id0.wr_lo) struct fw_riwrh { __be32 op_seop_flags; __be32 gen_tid_len; }; #define S_FW_RIWR_OP 24 #define M_FW_RIWR_OP 0xff #define V_FW_RIWR_OP(x) ((x) << S_FW_RIWR_OP) #define G_FW_RIWR_OP(x) ((((x) >> S_FW_RIWR_OP)) & M_FW_RIWR_OP) #define S_FW_RIWR_SOPEOP 22 #define M_FW_RIWR_SOPEOP 0x3 #define V_FW_RIWR_SOPEOP(x) ((x) << S_FW_RIWR_SOPEOP) #define S_FW_RIWR_FLAGS 8 #define M_FW_RIWR_FLAGS 0x3fffff #define V_FW_RIWR_FLAGS(x) ((x) << S_FW_RIWR_FLAGS) #define G_FW_RIWR_FLAGS(x) ((((x) >> S_FW_RIWR_FLAGS)) & M_FW_RIWR_FLAGS) #define S_FW_RIWR_TID 8 #define V_FW_RIWR_TID(x) ((x) << S_FW_RIWR_TID) #define S_FW_RIWR_LEN 0 #define V_FW_RIWR_LEN(x) ((x) << S_FW_RIWR_LEN) #define S_FW_RIWR_GEN 31 #define V_FW_RIWR_GEN(x) ((x) << S_FW_RIWR_GEN) struct t3_sge { __be32 stag; __be32 len; __be64 to; }; /* If num_sgle is zero, flit 5+ contains immediate data.*/ struct t3_send_wr { struct fw_riwrh wrh; /* 0 */ union t3_wrid wrid; /* 1 */ u8 rdmaop; /* 2 */ u8 reserved[3]; __be32 rem_stag; __be32 plen; /* 3 */ __be32 num_sgle; struct t3_sge sgl[T3_MAX_SGE]; /* 4+ */ }; #define T3_MAX_FASTREG_DEPTH 10 #define T3_MAX_FASTREG_FRAG 10 struct t3_fastreg_wr { struct fw_riwrh wrh; /* 0 */ union t3_wrid wrid; /* 1 */ __be32 stag; /* 2 */ __be32 len; __be32 va_base_hi; /* 3 */ __be32 va_base_lo_fbo; __be32 page_type_perms; /* 4 */ __be32 reserved1; __be64 pbl_addrs[0]; /* 5+ */ }; /* * If a fastreg wr spans multiple wqes, then the 2nd fragment look like this. */ struct t3_pbl_frag { struct fw_riwrh wrh; /* 0 */ __be64 pbl_addrs[14]; /* 1..14 */ }; #define S_FR_PAGE_COUNT 24 #define M_FR_PAGE_COUNT 0xff #define V_FR_PAGE_COUNT(x) ((x) << S_FR_PAGE_COUNT) #define G_FR_PAGE_COUNT(x) ((((x) >> S_FR_PAGE_COUNT)) & M_FR_PAGE_COUNT) #define S_FR_PAGE_SIZE 16 #define M_FR_PAGE_SIZE 0x1f #define V_FR_PAGE_SIZE(x) ((x) << S_FR_PAGE_SIZE) #define G_FR_PAGE_SIZE(x) ((((x) >> S_FR_PAGE_SIZE)) & M_FR_PAGE_SIZE) #define S_FR_TYPE 8 #define M_FR_TYPE 0x1 #define V_FR_TYPE(x) ((x) << S_FR_TYPE) #define G_FR_TYPE(x) ((((x) >> S_FR_TYPE)) & M_FR_TYPE) #define S_FR_PERMS 0 #define M_FR_PERMS 0xff #define V_FR_PERMS(x) ((x) << S_FR_PERMS) #define G_FR_PERMS(x) ((((x) >> S_FR_PERMS)) & M_FR_PERMS) struct t3_local_inv_wr { struct fw_riwrh wrh; /* 0 */ union t3_wrid wrid; /* 1 */ __be32 stag; /* 2 */ __be32 reserved; }; struct t3_rdma_write_wr { struct fw_riwrh wrh; /* 0 */ union t3_wrid wrid; /* 1 */ u8 rdmaop; /* 2 */ u8 reserved[3]; __be32 stag_sink; __be64 to_sink; /* 3 */ __be32 plen; /* 4 */ __be32 num_sgle; struct t3_sge sgl[T3_MAX_SGE]; /* 5+ */ }; struct t3_rdma_read_wr { struct fw_riwrh wrh; /* 0 */ union t3_wrid wrid; /* 1 */ u8 rdmaop; /* 2 */ u8 local_inv; u8 reserved[2]; __be32 rem_stag; __be64 rem_to; /* 3 */ __be32 local_stag; /* 4 */ __be32 local_len; __be64 local_to; /* 5 */ }; struct t3_bind_mw_wr { struct fw_riwrh wrh; /* 0 */ union t3_wrid wrid; /* 1 */ u16 reserved; /* 2 */ u8 type; u8 perms; __be32 mr_stag; __be32 mw_stag; /* 3 */ __be32 mw_len; __be64 mw_va; /* 4 */ __be32 mr_pbl_addr; /* 5 */ u8 reserved2[3]; u8 mr_pagesz; }; struct t3_receive_wr { struct fw_riwrh wrh; /* 0 */ union t3_wrid wrid; /* 1 */ u8 pagesz[T3_MAX_SGE]; __be32 num_sgle; /* 2 */ struct t3_sge sgl[T3_MAX_SGE]; /* 3+ */ __be32 pbl_addr[T3_MAX_SGE]; }; struct t3_bypass_wr { struct fw_riwrh wrh; union t3_wrid wrid; /* 1 */ }; struct t3_modify_qp_wr { struct fw_riwrh wrh; /* 0 */ union t3_wrid wrid; /* 1 */ __be32 flags; /* 2 */ __be32 quiesce; /* 2 */ __be32 max_ird; /* 3 */ __be32 max_ord; /* 3 */ __be64 sge_cmd; /* 4 */ __be64 ctx1; /* 5 */ __be64 ctx0; /* 6 */ }; enum t3_modify_qp_flags { MODQP_QUIESCE = 0x01, MODQP_MAX_IRD = 0x02, MODQP_MAX_ORD = 0x04, MODQP_WRITE_EC = 0x08, MODQP_READ_EC = 0x10, }; enum t3_mpa_attrs { uP_RI_MPA_RX_MARKER_ENABLE = 0x1, uP_RI_MPA_TX_MARKER_ENABLE = 0x2, uP_RI_MPA_CRC_ENABLE = 0x4, uP_RI_MPA_IETF_ENABLE = 0x8 } __packed; enum t3_qp_caps { uP_RI_QP_RDMA_READ_ENABLE = 0x01, uP_RI_QP_RDMA_WRITE_ENABLE = 0x02, uP_RI_QP_BIND_ENABLE = 0x04, uP_RI_QP_FAST_REGISTER_ENABLE = 0x08, uP_RI_QP_STAG0_ENABLE = 0x10 } __packed; enum rdma_init_rtr_types { RTR_READ = 1, RTR_WRITE = 2, RTR_SEND = 3, }; #define S_RTR_TYPE 2 #define M_RTR_TYPE 0x3 #define V_RTR_TYPE(x) ((x) << S_RTR_TYPE) #define G_RTR_TYPE(x) ((((x) >> S_RTR_TYPE)) & M_RTR_TYPE) #define S_CHAN 4 #define M_CHAN 0x3 #define V_CHAN(x) ((x) << S_CHAN) #define G_CHAN(x) ((((x) >> S_CHAN)) & M_CHAN) struct t3_rdma_init_attr { u32 tid; u32 qpid; u32 pdid; u32 scqid; u32 rcqid; u32 rq_addr; u32 rq_size; enum t3_mpa_attrs mpaattrs; enum t3_qp_caps qpcaps; u16 tcp_emss; u32 ord; u32 ird; u64 qp_dma_addr; u32 qp_dma_size; enum rdma_init_rtr_types rtr_type; u16 flags; u16 rqe_count; u32 irs; u32 chan; }; struct t3_rdma_init_wr { struct fw_riwrh wrh; /* 0 */ union t3_wrid wrid; /* 1 */ __be32 qpid; /* 2 */ __be32 pdid; __be32 scqid; /* 3 */ __be32 rcqid; __be32 rq_addr; /* 4 */ __be32 rq_size; u8 mpaattrs; /* 5 */ u8 qpcaps; __be16 ulpdu_size; __be16 flags_rtr_type; __be16 rqe_count; __be32 ord; /* 6 */ __be32 ird; __be64 qp_dma_addr; /* 7 */ __be32 qp_dma_size; /* 8 */ __be32 irs; }; struct t3_genbit { u64 flit[15]; __be64 genbit; }; struct t3_wq_in_err { u64 flit[13]; u64 err; }; enum rdma_init_wr_flags { MPA_INITIATOR = (1<<0), PRIV_QP = (1<<1), }; union t3_wr { struct t3_send_wr send; struct t3_rdma_write_wr write; struct t3_rdma_read_wr read; struct t3_receive_wr recv; struct t3_fastreg_wr fastreg; struct t3_pbl_frag pbl_frag; struct t3_local_inv_wr local_inv; struct t3_bind_mw_wr bind; struct t3_bypass_wr bypass; struct t3_rdma_init_wr init; struct t3_modify_qp_wr qp_mod; struct t3_genbit genbit; struct t3_wq_in_err wq_in_err; __be64 flit[16]; }; #define T3_SQ_CQE_FLIT 13 #define T3_SQ_COOKIE_FLIT 14 #define T3_RQ_COOKIE_FLIT 13 #define T3_RQ_CQE_FLIT 14 static inline enum t3_wr_opcode fw_riwrh_opcode(struct fw_riwrh *wqe) { return G_FW_RIWR_OP(be32_to_cpu(wqe->op_seop_flags)); } enum t3_wr_hdr_bits { T3_EOP = 1, T3_SOP = 2, T3_SOPEOP = T3_EOP|T3_SOP, }; static inline void build_fw_riwrh(struct fw_riwrh *wqe, enum t3_wr_opcode op, enum t3_wr_flags flags, u8 genbit, u32 tid, u8 len, u8 sopeop) { wqe->op_seop_flags = cpu_to_be32(V_FW_RIWR_OP(op) | V_FW_RIWR_SOPEOP(sopeop) | V_FW_RIWR_FLAGS(flags)); wmb(); wqe->gen_tid_len = cpu_to_be32(V_FW_RIWR_GEN(genbit) | V_FW_RIWR_TID(tid) | V_FW_RIWR_LEN(len)); /* 2nd gen bit... */ ((union t3_wr *)wqe)->genbit.genbit = cpu_to_be64(genbit); } /* * T3 ULP2_TX commands */ enum t3_utx_mem_op { T3_UTX_MEM_READ = 2, T3_UTX_MEM_WRITE = 3 }; /* T3 MC7 RDMA TPT entry format */ enum tpt_mem_type { TPT_NON_SHARED_MR = 0x0, TPT_SHARED_MR = 0x1, TPT_MW = 0x2, TPT_MW_RELAXED_PROTECTION = 0x3 }; enum tpt_addr_type { TPT_ZBTO = 0, TPT_VATO = 1 }; enum tpt_mem_perm { TPT_MW_BIND = 0x10, TPT_LOCAL_READ = 0x8, TPT_LOCAL_WRITE = 0x4, TPT_REMOTE_READ = 0x2, TPT_REMOTE_WRITE = 0x1 }; struct tpt_entry { __be32 valid_stag_pdid; __be32 flags_pagesize_qpid; __be32 rsvd_pbl_addr; __be32 len; __be32 va_hi; __be32 va_low_or_fbo; __be32 rsvd_bind_cnt_or_pstag; __be32 rsvd_pbl_size; }; #define S_TPT_VALID 31 #define V_TPT_VALID(x) ((x) << S_TPT_VALID) #define F_TPT_VALID V_TPT_VALID(1U) #define S_TPT_STAG_KEY 23 #define M_TPT_STAG_KEY 0xFF #define V_TPT_STAG_KEY(x) ((x) << S_TPT_STAG_KEY) #define G_TPT_STAG_KEY(x) (((x) >> S_TPT_STAG_KEY) & M_TPT_STAG_KEY) #define S_TPT_STAG_STATE 22 #define V_TPT_STAG_STATE(x) ((x) << S_TPT_STAG_STATE) #define F_TPT_STAG_STATE V_TPT_STAG_STATE(1U) #define S_TPT_STAG_TYPE 20 #define M_TPT_STAG_TYPE 0x3 #define V_TPT_STAG_TYPE(x) ((x) << S_TPT_STAG_TYPE) #define G_TPT_STAG_TYPE(x) (((x) >> S_TPT_STAG_TYPE) & M_TPT_STAG_TYPE) #define S_TPT_PDID 0 #define M_TPT_PDID 0xFFFFF #define V_TPT_PDID(x) ((x) << S_TPT_PDID) #define G_TPT_PDID(x) (((x) >> S_TPT_PDID) & M_TPT_PDID) #define S_TPT_PERM 28 #define M_TPT_PERM 0xF #define V_TPT_PERM(x) ((x) << S_TPT_PERM) #define G_TPT_PERM(x) (((x) >> S_TPT_PERM) & M_TPT_PERM) #define S_TPT_REM_INV_DIS 27 #define V_TPT_REM_INV_DIS(x) ((x) << S_TPT_REM_INV_DIS) #define F_TPT_REM_INV_DIS V_TPT_REM_INV_DIS(1U) #define S_TPT_ADDR_TYPE 26 #define V_TPT_ADDR_TYPE(x) ((x) << S_TPT_ADDR_TYPE) #define F_TPT_ADDR_TYPE V_TPT_ADDR_TYPE(1U) #define S_TPT_MW_BIND_ENABLE 25 #define V_TPT_MW_BIND_ENABLE(x) ((x) << S_TPT_MW_BIND_ENABLE) #define F_TPT_MW_BIND_ENABLE V_TPT_MW_BIND_ENABLE(1U) #define S_TPT_PAGE_SIZE 20 #define M_TPT_PAGE_SIZE 0x1F #define V_TPT_PAGE_SIZE(x) ((x) << S_TPT_PAGE_SIZE) #define G_TPT_PAGE_SIZE(x) (((x) >> S_TPT_PAGE_SIZE) & M_TPT_PAGE_SIZE) #define S_TPT_PBL_ADDR 0 #define M_TPT_PBL_ADDR 0x1FFFFFFF #define V_TPT_PBL_ADDR(x) ((x) << S_TPT_PBL_ADDR) #define G_TPT_PBL_ADDR(x) (((x) >> S_TPT_PBL_ADDR) & M_TPT_PBL_ADDR) #define S_TPT_QPID 0 #define M_TPT_QPID 0xFFFFF #define V_TPT_QPID(x) ((x) << S_TPT_QPID) #define G_TPT_QPID(x) (((x) >> S_TPT_QPID) & M_TPT_QPID) #define S_TPT_PSTAG 0 #define M_TPT_PSTAG 0xFFFFFF #define V_TPT_PSTAG(x) ((x) << S_TPT_PSTAG) #define G_TPT_PSTAG(x) (((x) >> S_TPT_PSTAG) & M_TPT_PSTAG) #define S_TPT_PBL_SIZE 0 #define M_TPT_PBL_SIZE 0xFFFFF #define V_TPT_PBL_SIZE(x) ((x) << S_TPT_PBL_SIZE) #define G_TPT_PBL_SIZE(x) (((x) >> S_TPT_PBL_SIZE) & M_TPT_PBL_SIZE) /* * CQE defs */ struct t3_cqe { __be32 header; __be32 len; union { struct { __be32 stag; __be32 msn; } rcqe; struct { u32 wrid_hi; u32 wrid_low; } scqe; } u; }; #define S_CQE_OOO 31 #define M_CQE_OOO 0x1 #define G_CQE_OOO(x) ((((x) >> S_CQE_OOO)) & M_CQE_OOO) #define V_CEQ_OOO(x) ((x)<<S_CQE_OOO) #define S_CQE_QPID 12 #define M_CQE_QPID 0x7FFFF #define G_CQE_QPID(x) ((((x) >> S_CQE_QPID)) & M_CQE_QPID) #define V_CQE_QPID(x) ((x)<<S_CQE_QPID) #define S_CQE_SWCQE 11 #define M_CQE_SWCQE 0x1 #define G_CQE_SWCQE(x) ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE) #define V_CQE_SWCQE(x) ((x)<<S_CQE_SWCQE) #define S_CQE_GENBIT 10 #define M_CQE_GENBIT 0x1 #define G_CQE_GENBIT(x) (((x) >> S_CQE_GENBIT) & M_CQE_GENBIT) #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT) #define S_CQE_STATUS 5 #define M_CQE_STATUS 0x1F #define G_CQE_STATUS(x) ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS) #define V_CQE_STATUS(x) ((x)<<S_CQE_STATUS) #define S_CQE_TYPE 4 #define M_CQE_TYPE 0x1 #define G_CQE_TYPE(x) ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE) #define V_CQE_TYPE(x) ((x)<<S_CQE_TYPE) #define S_CQE_OPCODE 0 #define M_CQE_OPCODE 0xF #define G_CQE_OPCODE(x) ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE) #define V_CQE_OPCODE(x) ((x)<<S_CQE_OPCODE) #define SW_CQE(x) (G_CQE_SWCQE(be32_to_cpu((x).header))) #define CQE_OOO(x) (G_CQE_OOO(be32_to_cpu((x).header))) #define CQE_QPID(x) (G_CQE_QPID(be32_to_cpu((x).header))) #define CQE_GENBIT(x) (G_CQE_GENBIT(be32_to_cpu((x).header))) #define CQE_TYPE(x) (G_CQE_TYPE(be32_to_cpu((x).header))) #define SQ_TYPE(x) (CQE_TYPE((x))) #define RQ_TYPE(x) (!CQE_TYPE((x))) #define CQE_STATUS(x) (G_CQE_STATUS(be32_to_cpu((x).header))) #define CQE_OPCODE(x) (G_CQE_OPCODE(be32_to_cpu((x).header))) #define CQE_SEND_OPCODE(x)( \ (G_CQE_OPCODE(be32_to_cpu((x).header)) == T3_SEND) || \ (G_CQE_OPCODE(be32_to_cpu((x).header)) == T3_SEND_WITH_SE) || \ (G_CQE_OPCODE(be32_to_cpu((x).header)) == T3_SEND_WITH_INV) || \ (G_CQE_OPCODE(be32_to_cpu((x).header)) == T3_SEND_WITH_SE_INV)) #define CQE_LEN(x) (be32_to_cpu((x).len)) /* used for RQ completion processing */ #define CQE_WRID_STAG(x) (be32_to_cpu((x).u.rcqe.stag)) #define CQE_WRID_MSN(x) (be32_to_cpu((x).u.rcqe.msn)) /* used for SQ completion processing */ #define CQE_WRID_SQ_WPTR(x) ((x).u.scqe.wrid_hi) #define CQE_WRID_WPTR(x) ((x).u.scqe.wrid_low) /* generic accessor macros */ #define CQE_WRID_HI(x) ((x).u.scqe.wrid_hi) #define CQE_WRID_LOW(x) ((x).u.scqe.wrid_low) #define TPT_ERR_SUCCESS 0x0 #define TPT_ERR_STAG 0x1 /* STAG invalid: either the */ /* STAG is offlimt, being 0, */ /* or STAG_key mismatch */ #define TPT_ERR_PDID 0x2 /* PDID mismatch */ #define TPT_ERR_QPID 0x3 /* QPID mismatch */ #define TPT_ERR_ACCESS 0x4 /* Invalid access right */ #define TPT_ERR_WRAP 0x5 /* Wrap error */ #define TPT_ERR_BOUND 0x6 /* base and bounds voilation */ #define TPT_ERR_INVALIDATE_SHARED_MR 0x7 /* attempt to invalidate a */ /* shared memory region */ #define TPT_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8 /* attempt to invalidate a */ /* shared memory region */ #define TPT_ERR_ECC 0x9 /* ECC error detected */ #define TPT_ERR_ECC_PSTAG 0xA /* ECC error detected when */ /* reading PSTAG for a MW */ /* Invalidate */ #define TPT_ERR_PBL_ADDR_BOUND 0xB /* pbl addr out of bounds: */ /* software error */ #define TPT_ERR_SWFLUSH 0xC /* SW FLUSHED */ #define TPT_ERR_CRC 0x10 /* CRC error */ #define TPT_ERR_MARKER 0x11 /* Marker error */ #define TPT_ERR_PDU_LEN_ERR 0x12 /* invalid PDU length */ #define TPT_ERR_OUT_OF_RQE 0x13 /* out of RQE */ #define TPT_ERR_DDP_VERSION 0x14 /* wrong DDP version */ #define TPT_ERR_RDMA_VERSION 0x15 /* wrong RDMA version */ #define TPT_ERR_OPCODE 0x16 /* invalid rdma opcode */ #define TPT_ERR_DDP_QUEUE_NUM 0x17 /* invalid ddp queue number */ #define TPT_ERR_MSN 0x18 /* MSN error */ #define TPT_ERR_TBIT 0x19 /* tag bit not set correctly */ #define TPT_ERR_MO 0x1A /* MO not 0 for TERMINATE */ /* or READ_REQ */ #define TPT_ERR_MSN_GAP 0x1B #define TPT_ERR_MSN_RANGE 0x1C #define TPT_ERR_IRD_OVERFLOW 0x1D #define TPT_ERR_RQE_ADDR_BOUND 0x1E /* RQE addr out of bounds: */ /* software error */ #define TPT_ERR_INTERNAL_ERR 0x1F /* internal error (opcode */ /* mismatch) */ struct t3_swsq { __u64 wr_id; struct t3_cqe cqe; __u32 sq_wptr; __be32 read_len; int opcode; int complete; int signaled; }; struct t3_swrq { __u64 wr_id; __u32 pbl_addr; }; /* * A T3 WQ implements both the SQ and RQ. */ struct t3_wq { union t3_wr *queue; /* DMA accessible memory */ dma_addr_t dma_addr; /* DMA address for HW */ DEFINE_DMA_UNMAP_ADDR(mapping); /* unmap kruft */ u32 error; /* 1 once we go to ERROR */ u32 qpid; u32 wptr; /* idx to next available WR slot */ u32 size_log2; /* total wq size */ struct t3_swsq *sq; /* SW SQ */ struct t3_swsq *oldest_read; /* tracks oldest pending read */ u32 sq_wptr; /* sq_wptr - sq_rptr == count of */ u32 sq_rptr; /* pending wrs */ u32 sq_size_log2; /* sq size */ struct t3_swrq *rq; /* SW RQ (holds consumer wr_ids */ u32 rq_wptr; /* rq_wptr - rq_rptr == count of */ u32 rq_rptr; /* pending wrs */ struct t3_swrq *rq_oldest_wr; /* oldest wr on the SW RQ */ u32 rq_size_log2; /* rq size */ u32 rq_addr; /* rq adapter address */ void __iomem *doorbell; /* kernel db */ u64 udb; /* user db if any */ struct cxio_rdev *rdev; }; struct t3_cq { u32 cqid; u32 rptr; u32 wptr; u32 size_log2; dma_addr_t dma_addr; DEFINE_DMA_UNMAP_ADDR(mapping); struct t3_cqe *queue; struct t3_cqe *sw_queue; u32 sw_rptr; u32 sw_wptr; }; #define CQ_VLD_ENTRY(ptr,size_log2,cqe) (Q_GENBIT(ptr,size_log2) == \ CQE_GENBIT(*cqe)) struct t3_cq_status_page { u32 cq_err; }; static inline int cxio_cq_in_error(struct t3_cq *cq) { return ((struct t3_cq_status_page *) &cq->queue[1 << cq->size_log2])->cq_err; } static inline void cxio_set_cq_in_error(struct t3_cq *cq) { ((struct t3_cq_status_page *) &cq->queue[1 << cq->size_log2])->cq_err = 1; } static inline void cxio_set_wq_in_error(struct t3_wq *wq) { wq->queue->wq_in_err.err |= 1; } static inline void cxio_disable_wq_db(struct t3_wq *wq) { wq->queue->wq_in_err.err |= 2; } static inline void cxio_enable_wq_db(struct t3_wq *wq) { wq->queue->wq_in_err.err &= ~2; } static inline int cxio_wq_db_enabled(struct t3_wq *wq) { return !(wq->queue->wq_in_err.err & 2); } static inline struct t3_cqe *cxio_next_hw_cqe(struct t3_cq *cq) { struct t3_cqe *cqe; cqe = cq->queue + (Q_PTR2IDX(cq->rptr, cq->size_log2)); if (CQ_VLD_ENTRY(cq->rptr, cq->size_log2, cqe)) return cqe; return NULL; } static inline struct t3_cqe *cxio_next_sw_cqe(struct t3_cq *cq) { struct t3_cqe *cqe; if (!Q_EMPTY(cq->sw_rptr, cq->sw_wptr)) { cqe = cq->sw_queue + (Q_PTR2IDX(cq->sw_rptr, cq->size_log2)); return cqe; } return NULL; } static inline struct t3_cqe *cxio_next_cqe(struct t3_cq *cq) { struct t3_cqe *cqe; if (!Q_EMPTY(cq->sw_rptr, cq->sw_wptr)) { cqe = cq->sw_queue + (Q_PTR2IDX(cq->sw_rptr, cq->size_log2)); return cqe; } cqe = cq->queue + (Q_PTR2IDX(cq->rptr, cq->size_log2)); if (CQ_VLD_ENTRY(cq->rptr, cq->size_log2, cqe)) return cqe; return NULL; } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1