Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lee Jones | 1606 | 37.15% | 12 | 36.36% |
Johan Palsson | 1520 | 35.16% | 2 | 6.06% |
Arun Murthy | 714 | 16.52% | 1 | 3.03% |
Daniel Willerud | 222 | 5.14% | 3 | 9.09% |
Kalle Komierowski | 157 | 3.63% | 3 | 9.09% |
Axel Lin | 44 | 1.02% | 1 | 3.03% |
Michel Jaouen | 23 | 0.53% | 1 | 3.03% |
Jonas Aaberg | 14 | 0.32% | 1 | 3.03% |
Jingoo Han | 9 | 0.21% | 2 | 6.06% |
Fabio Estevam | 4 | 0.09% | 1 | 3.03% |
Linus Walleij | 3 | 0.07% | 1 | 3.03% |
Thomas Gleixner | 2 | 0.05% | 1 | 3.03% |
Rafael J. Wysocki | 2 | 0.05% | 2 | 6.06% |
Paul Gortmaker | 2 | 0.05% | 1 | 3.03% |
Arnd Bergmann | 1 | 0.02% | 1 | 3.03% |
Total | 4323 | 33 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) ST-Ericsson SA 2010 * * Author: Arun R Murthy <arun.murthy@stericsson.com> * Author: Daniel Willerud <daniel.willerud@stericsson.com> * Author: Johan Palsson <johan.palsson@stericsson.com> * Author: M'boumba Cedric Madianga */ #include <linux/init.h> #include <linux/device.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/delay.h> #include <linux/pm_runtime.h> #include <linux/platform_device.h> #include <linux/completion.h> #include <linux/regulator/consumer.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/mfd/abx500.h> #include <linux/mfd/abx500/ab8500.h> #include <linux/mfd/abx500/ab8500-gpadc.h> /* * GPADC register offsets * Bank : 0x0A */ #define AB8500_GPADC_CTRL1_REG 0x00 #define AB8500_GPADC_CTRL2_REG 0x01 #define AB8500_GPADC_CTRL3_REG 0x02 #define AB8500_GPADC_AUTO_TIMER_REG 0x03 #define AB8500_GPADC_STAT_REG 0x04 #define AB8500_GPADC_MANDATAL_REG 0x05 #define AB8500_GPADC_MANDATAH_REG 0x06 #define AB8500_GPADC_AUTODATAL_REG 0x07 #define AB8500_GPADC_AUTODATAH_REG 0x08 #define AB8500_GPADC_MUX_CTRL_REG 0x09 #define AB8540_GPADC_MANDATA2L_REG 0x09 #define AB8540_GPADC_MANDATA2H_REG 0x0A #define AB8540_GPADC_APEAAX_REG 0x10 #define AB8540_GPADC_APEAAT_REG 0x11 #define AB8540_GPADC_APEAAM_REG 0x12 #define AB8540_GPADC_APEAAH_REG 0x13 #define AB8540_GPADC_APEAAL_REG 0x14 /* * OTP register offsets * Bank : 0x15 */ #define AB8500_GPADC_CAL_1 0x0F #define AB8500_GPADC_CAL_2 0x10 #define AB8500_GPADC_CAL_3 0x11 #define AB8500_GPADC_CAL_4 0x12 #define AB8500_GPADC_CAL_5 0x13 #define AB8500_GPADC_CAL_6 0x14 #define AB8500_GPADC_CAL_7 0x15 /* New calibration for 8540 */ #define AB8540_GPADC_OTP4_REG_7 0x38 #define AB8540_GPADC_OTP4_REG_6 0x39 #define AB8540_GPADC_OTP4_REG_5 0x3A /* gpadc constants */ #define EN_VINTCORE12 0x04 #define EN_VTVOUT 0x02 #define EN_GPADC 0x01 #define DIS_GPADC 0x00 #define AVG_1 0x00 #define AVG_4 0x20 #define AVG_8 0x40 #define AVG_16 0x60 #define ADC_SW_CONV 0x04 #define EN_ICHAR 0x80 #define BTEMP_PULL_UP 0x08 #define EN_BUF 0x40 #define DIS_ZERO 0x00 #define GPADC_BUSY 0x01 #define EN_FALLING 0x10 #define EN_TRIG_EDGE 0x02 #define EN_VBIAS_XTAL_TEMP 0x02 /* GPADC constants from AB8500 spec, UM0836 */ #define ADC_RESOLUTION 1024 #define ADC_CH_BTEMP_MIN 0 #define ADC_CH_BTEMP_MAX 1350 #define ADC_CH_DIETEMP_MIN 0 #define ADC_CH_DIETEMP_MAX 1350 #define ADC_CH_CHG_V_MIN 0 #define ADC_CH_CHG_V_MAX 20030 #define ADC_CH_ACCDET2_MIN 0 #define ADC_CH_ACCDET2_MAX 2500 #define ADC_CH_VBAT_MIN 2300 #define ADC_CH_VBAT_MAX 4800 #define ADC_CH_CHG_I_MIN 0 #define ADC_CH_CHG_I_MAX 1500 #define ADC_CH_BKBAT_MIN 0 #define ADC_CH_BKBAT_MAX 3200 /* GPADC constants from AB8540 spec */ #define ADC_CH_IBAT_MIN (-6000) /* mA range measured by ADC for ibat */ #define ADC_CH_IBAT_MAX 6000 #define ADC_CH_IBAT_MIN_V (-60) /* mV range measured by ADC for ibat */ #define ADC_CH_IBAT_MAX_V 60 #define IBAT_VDROP_L (-56) /* mV */ #define IBAT_VDROP_H 56 /* This is used to not lose precision when dividing to get gain and offset */ #define CALIB_SCALE 1000 /* * Number of bits shift used to not lose precision * when dividing to get ibat gain. */ #define CALIB_SHIFT_IBAT 20 /* Time in ms before disabling regulator */ #define GPADC_AUDOSUSPEND_DELAY 1 #define CONVERSION_TIME 500 /* ms */ enum cal_channels { ADC_INPUT_VMAIN = 0, ADC_INPUT_BTEMP, ADC_INPUT_VBAT, ADC_INPUT_IBAT, NBR_CAL_INPUTS, }; /** * struct adc_cal_data - Table for storing gain and offset for the calibrated * ADC channels * @gain: Gain of the ADC channel * @offset: Offset of the ADC channel */ struct adc_cal_data { s64 gain; s64 offset; u16 otp_calib_hi; u16 otp_calib_lo; }; /** * struct ab8500_gpadc - AB8500 GPADC device information * @dev: pointer to the struct device * @node: a list of AB8500 GPADCs, hence prepared for reentrance * @parent: pointer to the struct ab8500 * @ab8500_gpadc_complete: pointer to the struct completion, to indicate * the completion of gpadc conversion * @ab8500_gpadc_lock: structure of type mutex * @regu: pointer to the struct regulator * @irq_sw: interrupt number that is used by gpadc for Sw * conversion * @irq_hw: interrupt number that is used by gpadc for Hw * conversion * @cal_data array of ADC calibration data structs */ struct ab8500_gpadc { struct device *dev; struct list_head node; struct ab8500 *parent; struct completion ab8500_gpadc_complete; struct mutex ab8500_gpadc_lock; struct regulator *regu; int irq_sw; int irq_hw; struct adc_cal_data cal_data[NBR_CAL_INPUTS]; }; static LIST_HEAD(ab8500_gpadc_list); /** * ab8500_gpadc_get() - returns a reference to the primary AB8500 GPADC * (i.e. the first GPADC in the instance list) */ struct ab8500_gpadc *ab8500_gpadc_get(char *name) { struct ab8500_gpadc *gpadc; list_for_each_entry(gpadc, &ab8500_gpadc_list, node) { if (!strcmp(name, dev_name(gpadc->dev))) return gpadc; } return ERR_PTR(-ENOENT); } EXPORT_SYMBOL(ab8500_gpadc_get); /** * ab8500_gpadc_ad_to_voltage() - Convert a raw ADC value to a voltage */ int ab8500_gpadc_ad_to_voltage(struct ab8500_gpadc *gpadc, u8 channel, int ad_value) { int res; switch (channel) { case MAIN_CHARGER_V: /* For some reason we don't have calibrated data */ if (!gpadc->cal_data[ADC_INPUT_VMAIN].gain) { res = ADC_CH_CHG_V_MIN + (ADC_CH_CHG_V_MAX - ADC_CH_CHG_V_MIN) * ad_value / ADC_RESOLUTION; break; } /* Here we can use the calibrated data */ res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VMAIN].gain + gpadc->cal_data[ADC_INPUT_VMAIN].offset) / CALIB_SCALE; break; case XTAL_TEMP: case BAT_CTRL: case BTEMP_BALL: case ACC_DETECT1: case ADC_AUX1: case ADC_AUX2: /* For some reason we don't have calibrated data */ if (!gpadc->cal_data[ADC_INPUT_BTEMP].gain) { res = ADC_CH_BTEMP_MIN + (ADC_CH_BTEMP_MAX - ADC_CH_BTEMP_MIN) * ad_value / ADC_RESOLUTION; break; } /* Here we can use the calibrated data */ res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_BTEMP].gain + gpadc->cal_data[ADC_INPUT_BTEMP].offset) / CALIB_SCALE; break; case MAIN_BAT_V: case VBAT_TRUE_MEAS: /* For some reason we don't have calibrated data */ if (!gpadc->cal_data[ADC_INPUT_VBAT].gain) { res = ADC_CH_VBAT_MIN + (ADC_CH_VBAT_MAX - ADC_CH_VBAT_MIN) * ad_value / ADC_RESOLUTION; break; } /* Here we can use the calibrated data */ res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_VBAT].gain + gpadc->cal_data[ADC_INPUT_VBAT].offset) / CALIB_SCALE; break; case DIE_TEMP: res = ADC_CH_DIETEMP_MIN + (ADC_CH_DIETEMP_MAX - ADC_CH_DIETEMP_MIN) * ad_value / ADC_RESOLUTION; break; case ACC_DETECT2: res = ADC_CH_ACCDET2_MIN + (ADC_CH_ACCDET2_MAX - ADC_CH_ACCDET2_MIN) * ad_value / ADC_RESOLUTION; break; case VBUS_V: res = ADC_CH_CHG_V_MIN + (ADC_CH_CHG_V_MAX - ADC_CH_CHG_V_MIN) * ad_value / ADC_RESOLUTION; break; case MAIN_CHARGER_C: case USB_CHARGER_C: res = ADC_CH_CHG_I_MIN + (ADC_CH_CHG_I_MAX - ADC_CH_CHG_I_MIN) * ad_value / ADC_RESOLUTION; break; case BK_BAT_V: res = ADC_CH_BKBAT_MIN + (ADC_CH_BKBAT_MAX - ADC_CH_BKBAT_MIN) * ad_value / ADC_RESOLUTION; break; case IBAT_VIRTUAL_CHANNEL: /* For some reason we don't have calibrated data */ if (!gpadc->cal_data[ADC_INPUT_IBAT].gain) { res = ADC_CH_IBAT_MIN + (ADC_CH_IBAT_MAX - ADC_CH_IBAT_MIN) * ad_value / ADC_RESOLUTION; break; } /* Here we can use the calibrated data */ res = (int) (ad_value * gpadc->cal_data[ADC_INPUT_IBAT].gain + gpadc->cal_data[ADC_INPUT_IBAT].offset) >> CALIB_SHIFT_IBAT; break; default: dev_err(gpadc->dev, "unknown channel, not possible to convert\n"); res = -EINVAL; break; } return res; } EXPORT_SYMBOL(ab8500_gpadc_ad_to_voltage); /** * ab8500_gpadc_sw_hw_convert() - gpadc conversion * @channel: analog channel to be converted to digital data * @avg_sample: number of ADC sample to average * @trig_egde: selected ADC trig edge * @trig_timer: selected ADC trigger delay timer * @conv_type: selected conversion type (HW or SW conversion) * * This function converts the selected analog i/p to digital * data. */ int ab8500_gpadc_sw_hw_convert(struct ab8500_gpadc *gpadc, u8 channel, u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type) { int ad_value; int voltage; ad_value = ab8500_gpadc_read_raw(gpadc, channel, avg_sample, trig_edge, trig_timer, conv_type); /* On failure retry a second time */ if (ad_value < 0) ad_value = ab8500_gpadc_read_raw(gpadc, channel, avg_sample, trig_edge, trig_timer, conv_type); if (ad_value < 0) { dev_err(gpadc->dev, "GPADC raw value failed ch: %d\n", channel); return ad_value; } voltage = ab8500_gpadc_ad_to_voltage(gpadc, channel, ad_value); if (voltage < 0) dev_err(gpadc->dev, "GPADC to voltage conversion failed ch: %d AD: 0x%x\n", channel, ad_value); return voltage; } EXPORT_SYMBOL(ab8500_gpadc_sw_hw_convert); /** * ab8500_gpadc_read_raw() - gpadc read * @channel: analog channel to be read * @avg_sample: number of ADC sample to average * @trig_edge: selected trig edge * @trig_timer: selected ADC trigger delay timer * @conv_type: selected conversion type (HW or SW conversion) * * This function obtains the raw ADC value for an hardware conversion, * this then needs to be converted by calling ab8500_gpadc_ad_to_voltage() */ int ab8500_gpadc_read_raw(struct ab8500_gpadc *gpadc, u8 channel, u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type) { return ab8500_gpadc_double_read_raw(gpadc, channel, avg_sample, trig_edge, trig_timer, conv_type, NULL); } int ab8500_gpadc_double_read_raw(struct ab8500_gpadc *gpadc, u8 channel, u8 avg_sample, u8 trig_edge, u8 trig_timer, u8 conv_type, int *ibat) { int ret; int looplimit = 0; unsigned long completion_timeout; u8 val, low_data, high_data, low_data2, high_data2; u8 val_reg1 = 0; unsigned int delay_min = 0; unsigned int delay_max = 0; u8 data_low_addr, data_high_addr; if (!gpadc) return -ENODEV; /* check if convertion is supported */ if ((gpadc->irq_sw < 0) && (conv_type == ADC_SW)) return -ENOTSUPP; if ((gpadc->irq_hw < 0) && (conv_type == ADC_HW)) return -ENOTSUPP; mutex_lock(&gpadc->ab8500_gpadc_lock); /* Enable VTVout LDO this is required for GPADC */ pm_runtime_get_sync(gpadc->dev); /* Check if ADC is not busy, lock and proceed */ do { ret = abx500_get_register_interruptible(gpadc->dev, AB8500_GPADC, AB8500_GPADC_STAT_REG, &val); if (ret < 0) goto out; if (!(val & GPADC_BUSY)) break; msleep(20); } while (++looplimit < 10); if (looplimit >= 10 && (val & GPADC_BUSY)) { dev_err(gpadc->dev, "gpadc_conversion: GPADC busy"); ret = -EINVAL; goto out; } /* Enable GPADC */ val_reg1 |= EN_GPADC; /* Select the channel source and set average samples */ switch (avg_sample) { case SAMPLE_1: val = channel | AVG_1; break; case SAMPLE_4: val = channel | AVG_4; break; case SAMPLE_8: val = channel | AVG_8; break; default: val = channel | AVG_16; break; } if (conv_type == ADC_HW) { ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC, AB8500_GPADC_CTRL3_REG, val); val_reg1 |= EN_TRIG_EDGE; if (trig_edge) val_reg1 |= EN_FALLING; } else ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC, AB8500_GPADC_CTRL2_REG, val); if (ret < 0) { dev_err(gpadc->dev, "gpadc_conversion: set avg samples failed\n"); goto out; } /* * Enable ADC, buffering, select rising edge and enable ADC path * charging current sense if it needed, ABB 3.0 needs some special * treatment too. */ switch (channel) { case MAIN_CHARGER_C: case USB_CHARGER_C: val_reg1 |= EN_BUF | EN_ICHAR; break; case BTEMP_BALL: if (!is_ab8500_2p0_or_earlier(gpadc->parent)) { val_reg1 |= EN_BUF | BTEMP_PULL_UP; /* * Delay might be needed for ABB8500 cut 3.0, if not, * remove when hardware will be availible */ delay_min = 1000; /* Delay in micro seconds */ delay_max = 10000; /* large range optimises sleepmode */ break; } /* Intentional fallthrough */ default: val_reg1 |= EN_BUF; break; } /* Write configuration to register */ ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC, AB8500_GPADC_CTRL1_REG, val_reg1); if (ret < 0) { dev_err(gpadc->dev, "gpadc_conversion: set Control register failed\n"); goto out; } if (delay_min != 0) usleep_range(delay_min, delay_max); if (conv_type == ADC_HW) { /* Set trigger delay timer */ ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC, AB8500_GPADC_AUTO_TIMER_REG, trig_timer); if (ret < 0) { dev_err(gpadc->dev, "gpadc_conversion: trig timer failed\n"); goto out; } completion_timeout = 2 * HZ; data_low_addr = AB8500_GPADC_AUTODATAL_REG; data_high_addr = AB8500_GPADC_AUTODATAH_REG; } else { /* Start SW conversion */ ret = abx500_mask_and_set_register_interruptible(gpadc->dev, AB8500_GPADC, AB8500_GPADC_CTRL1_REG, ADC_SW_CONV, ADC_SW_CONV); if (ret < 0) { dev_err(gpadc->dev, "gpadc_conversion: start s/w conv failed\n"); goto out; } completion_timeout = msecs_to_jiffies(CONVERSION_TIME); data_low_addr = AB8500_GPADC_MANDATAL_REG; data_high_addr = AB8500_GPADC_MANDATAH_REG; } /* wait for completion of conversion */ if (!wait_for_completion_timeout(&gpadc->ab8500_gpadc_complete, completion_timeout)) { dev_err(gpadc->dev, "timeout didn't receive GPADC conv interrupt\n"); ret = -EINVAL; goto out; } /* Read the converted RAW data */ ret = abx500_get_register_interruptible(gpadc->dev, AB8500_GPADC, data_low_addr, &low_data); if (ret < 0) { dev_err(gpadc->dev, "gpadc_conversion: read low data failed\n"); goto out; } ret = abx500_get_register_interruptible(gpadc->dev, AB8500_GPADC, data_high_addr, &high_data); if (ret < 0) { dev_err(gpadc->dev, "gpadc_conversion: read high data failed\n"); goto out; } /* Check if double convertion is required */ if ((channel == BAT_CTRL_AND_IBAT) || (channel == VBAT_MEAS_AND_IBAT) || (channel == VBAT_TRUE_MEAS_AND_IBAT) || (channel == BAT_TEMP_AND_IBAT)) { if (conv_type == ADC_HW) { /* not supported */ ret = -ENOTSUPP; dev_err(gpadc->dev, "gpadc_conversion: only SW double conversion supported\n"); goto out; } else { /* Read the converted RAW data 2 */ ret = abx500_get_register_interruptible(gpadc->dev, AB8500_GPADC, AB8540_GPADC_MANDATA2L_REG, &low_data2); if (ret < 0) { dev_err(gpadc->dev, "gpadc_conversion: read sw low data 2 failed\n"); goto out; } ret = abx500_get_register_interruptible(gpadc->dev, AB8500_GPADC, AB8540_GPADC_MANDATA2H_REG, &high_data2); if (ret < 0) { dev_err(gpadc->dev, "gpadc_conversion: read sw high data 2 failed\n"); goto out; } if (ibat != NULL) { *ibat = (high_data2 << 8) | low_data2; } else { dev_warn(gpadc->dev, "gpadc_conversion: ibat not stored\n"); } } } /* Disable GPADC */ ret = abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC, AB8500_GPADC_CTRL1_REG, DIS_GPADC); if (ret < 0) { dev_err(gpadc->dev, "gpadc_conversion: disable gpadc failed\n"); goto out; } /* Disable VTVout LDO this is required for GPADC */ pm_runtime_mark_last_busy(gpadc->dev); pm_runtime_put_autosuspend(gpadc->dev); mutex_unlock(&gpadc->ab8500_gpadc_lock); return (high_data << 8) | low_data; out: /* * It has shown to be needed to turn off the GPADC if an error occurs, * otherwise we might have problem when waiting for the busy bit in the * GPADC status register to go low. In V1.1 there wait_for_completion * seems to timeout when waiting for an interrupt.. Not seen in V2.0 */ (void) abx500_set_register_interruptible(gpadc->dev, AB8500_GPADC, AB8500_GPADC_CTRL1_REG, DIS_GPADC); pm_runtime_put(gpadc->dev); mutex_unlock(&gpadc->ab8500_gpadc_lock); dev_err(gpadc->dev, "gpadc_conversion: Failed to AD convert channel %d\n", channel); return ret; } EXPORT_SYMBOL(ab8500_gpadc_read_raw); /** * ab8500_bm_gpadcconvend_handler() - isr for gpadc conversion completion * @irq: irq number * @data: pointer to the data passed during request irq * * This is a interrupt service routine for gpadc conversion completion. * Notifies the gpadc completion is completed and the converted raw value * can be read from the registers. * Returns IRQ status(IRQ_HANDLED) */ static irqreturn_t ab8500_bm_gpadcconvend_handler(int irq, void *_gpadc) { struct ab8500_gpadc *gpadc = _gpadc; complete(&gpadc->ab8500_gpadc_complete); return IRQ_HANDLED; } static int otp_cal_regs[] = { AB8500_GPADC_CAL_1, AB8500_GPADC_CAL_2, AB8500_GPADC_CAL_3, AB8500_GPADC_CAL_4, AB8500_GPADC_CAL_5, AB8500_GPADC_CAL_6, AB8500_GPADC_CAL_7, }; static int otp4_cal_regs[] = { AB8540_GPADC_OTP4_REG_7, AB8540_GPADC_OTP4_REG_6, AB8540_GPADC_OTP4_REG_5, }; static void ab8500_gpadc_read_calibration_data(struct ab8500_gpadc *gpadc) { int i; int ret[ARRAY_SIZE(otp_cal_regs)]; u8 gpadc_cal[ARRAY_SIZE(otp_cal_regs)]; int ret_otp4[ARRAY_SIZE(otp4_cal_regs)]; u8 gpadc_otp4[ARRAY_SIZE(otp4_cal_regs)]; int vmain_high, vmain_low; int btemp_high, btemp_low; int vbat_high, vbat_low; int ibat_high, ibat_low; s64 V_gain, V_offset, V2A_gain, V2A_offset; struct ab8500 *ab8500; ab8500 = gpadc->parent; /* First we read all OTP registers and store the error code */ for (i = 0; i < ARRAY_SIZE(otp_cal_regs); i++) { ret[i] = abx500_get_register_interruptible(gpadc->dev, AB8500_OTP_EMUL, otp_cal_regs[i], &gpadc_cal[i]); if (ret[i] < 0) dev_err(gpadc->dev, "%s: read otp reg 0x%02x failed\n", __func__, otp_cal_regs[i]); } /* * The ADC calibration data is stored in OTP registers. * The layout of the calibration data is outlined below and a more * detailed description can be found in UM0836 * * vm_h/l = vmain_high/low * bt_h/l = btemp_high/low * vb_h/l = vbat_high/low * * Data bits 8500/9540: * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 * |.......|.......|.......|.......|.......|.......|.......|....... * | | vm_h9 | vm_h8 * |.......|.......|.......|.......|.......|.......|.......|....... * | | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2 * |.......|.......|.......|.......|.......|.......|.......|....... * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9 * |.......|.......|.......|.......|.......|.......|.......|....... * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1 * |.......|.......|.......|.......|.......|.......|.......|....... * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8 * |.......|.......|.......|.......|.......|.......|.......|....... * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0 * |.......|.......|.......|.......|.......|.......|.......|....... * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 | * |.......|.......|.......|.......|.......|.......|.......|....... * * Data bits 8540: * OTP2 * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 * |.......|.......|.......|.......|.......|.......|.......|....... * | * |.......|.......|.......|.......|.......|.......|.......|....... * | vm_h9 | vm_h8 | vm_h7 | vm_h6 | vm_h5 | vm_h4 | vm_h3 | vm_h2 * |.......|.......|.......|.......|.......|.......|.......|....... * | vm_h1 | vm_h0 | vm_l4 | vm_l3 | vm_l2 | vm_l1 | vm_l0 | bt_h9 * |.......|.......|.......|.......|.......|.......|.......|....... * | bt_h8 | bt_h7 | bt_h6 | bt_h5 | bt_h4 | bt_h3 | bt_h2 | bt_h1 * |.......|.......|.......|.......|.......|.......|.......|....... * | bt_h0 | bt_l4 | bt_l3 | bt_l2 | bt_l1 | bt_l0 | vb_h9 | vb_h8 * |.......|.......|.......|.......|.......|.......|.......|....... * | vb_h7 | vb_h6 | vb_h5 | vb_h4 | vb_h3 | vb_h2 | vb_h1 | vb_h0 * |.......|.......|.......|.......|.......|.......|.......|....... * | vb_l5 | vb_l4 | vb_l3 | vb_l2 | vb_l1 | vb_l0 | * |.......|.......|.......|.......|.......|.......|.......|....... * * Data bits 8540: * OTP4 * | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 * |.......|.......|.......|.......|.......|.......|.......|....... * | | ib_h9 | ib_h8 | ib_h7 * |.......|.......|.......|.......|.......|.......|.......|....... * | ib_h6 | ib_h5 | ib_h4 | ib_h3 | ib_h2 | ib_h1 | ib_h0 | ib_l5 * |.......|.......|.......|.......|.......|.......|.......|....... * | ib_l4 | ib_l3 | ib_l2 | ib_l1 | ib_l0 | * * * Ideal output ADC codes corresponding to injected input voltages * during manufacturing is: * * vmain_high: Vin = 19500mV / ADC ideal code = 997 * vmain_low: Vin = 315mV / ADC ideal code = 16 * btemp_high: Vin = 1300mV / ADC ideal code = 985 * btemp_low: Vin = 21mV / ADC ideal code = 16 * vbat_high: Vin = 4700mV / ADC ideal code = 982 * vbat_low: Vin = 2380mV / ADC ideal code = 33 */ if (is_ab8540(ab8500)) { /* Calculate gain and offset for VMAIN if all reads succeeded*/ if (!(ret[1] < 0 || ret[2] < 0)) { vmain_high = (((gpadc_cal[1] & 0xFF) << 2) | ((gpadc_cal[2] & 0xC0) >> 6)); vmain_low = ((gpadc_cal[2] & 0x3E) >> 1); gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi = (u16)vmain_high; gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo = (u16)vmain_low; gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE * (19500 - 315) / (vmain_high - vmain_low); gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE * 19500 - (CALIB_SCALE * (19500 - 315) / (vmain_high - vmain_low)) * vmain_high; } else { gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0; } /* Read IBAT calibration Data */ for (i = 0; i < ARRAY_SIZE(otp4_cal_regs); i++) { ret_otp4[i] = abx500_get_register_interruptible( gpadc->dev, AB8500_OTP_EMUL, otp4_cal_regs[i], &gpadc_otp4[i]); if (ret_otp4[i] < 0) dev_err(gpadc->dev, "%s: read otp4 reg 0x%02x failed\n", __func__, otp4_cal_regs[i]); } /* Calculate gain and offset for IBAT if all reads succeeded */ if (!(ret_otp4[0] < 0 || ret_otp4[1] < 0 || ret_otp4[2] < 0)) { ibat_high = (((gpadc_otp4[0] & 0x07) << 7) | ((gpadc_otp4[1] & 0xFE) >> 1)); ibat_low = (((gpadc_otp4[1] & 0x01) << 5) | ((gpadc_otp4[2] & 0xF8) >> 3)); gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_hi = (u16)ibat_high; gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_lo = (u16)ibat_low; V_gain = ((IBAT_VDROP_H - IBAT_VDROP_L) << CALIB_SHIFT_IBAT) / (ibat_high - ibat_low); V_offset = (IBAT_VDROP_H << CALIB_SHIFT_IBAT) - (((IBAT_VDROP_H - IBAT_VDROP_L) << CALIB_SHIFT_IBAT) / (ibat_high - ibat_low)) * ibat_high; /* * Result obtained is in mV (at a scale factor), * we need to calculate gain and offset to get mA */ V2A_gain = (ADC_CH_IBAT_MAX - ADC_CH_IBAT_MIN)/ (ADC_CH_IBAT_MAX_V - ADC_CH_IBAT_MIN_V); V2A_offset = ((ADC_CH_IBAT_MAX_V * ADC_CH_IBAT_MIN - ADC_CH_IBAT_MAX * ADC_CH_IBAT_MIN_V) << CALIB_SHIFT_IBAT) / (ADC_CH_IBAT_MAX_V - ADC_CH_IBAT_MIN_V); gpadc->cal_data[ADC_INPUT_IBAT].gain = V_gain * V2A_gain; gpadc->cal_data[ADC_INPUT_IBAT].offset = V_offset * V2A_gain + V2A_offset; } else { gpadc->cal_data[ADC_INPUT_IBAT].gain = 0; } dev_dbg(gpadc->dev, "IBAT gain %llu offset %llu\n", gpadc->cal_data[ADC_INPUT_IBAT].gain, gpadc->cal_data[ADC_INPUT_IBAT].offset); } else { /* Calculate gain and offset for VMAIN if all reads succeeded */ if (!(ret[0] < 0 || ret[1] < 0 || ret[2] < 0)) { vmain_high = (((gpadc_cal[0] & 0x03) << 8) | ((gpadc_cal[1] & 0x3F) << 2) | ((gpadc_cal[2] & 0xC0) >> 6)); vmain_low = ((gpadc_cal[2] & 0x3E) >> 1); gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi = (u16)vmain_high; gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo = (u16)vmain_low; gpadc->cal_data[ADC_INPUT_VMAIN].gain = CALIB_SCALE * (19500 - 315) / (vmain_high - vmain_low); gpadc->cal_data[ADC_INPUT_VMAIN].offset = CALIB_SCALE * 19500 - (CALIB_SCALE * (19500 - 315) / (vmain_high - vmain_low)) * vmain_high; } else { gpadc->cal_data[ADC_INPUT_VMAIN].gain = 0; } } /* Calculate gain and offset for BTEMP if all reads succeeded */ if (!(ret[2] < 0 || ret[3] < 0 || ret[4] < 0)) { btemp_high = (((gpadc_cal[2] & 0x01) << 9) | (gpadc_cal[3] << 1) | ((gpadc_cal[4] & 0x80) >> 7)); btemp_low = ((gpadc_cal[4] & 0x7C) >> 2); gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_hi = (u16)btemp_high; gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_lo = (u16)btemp_low; gpadc->cal_data[ADC_INPUT_BTEMP].gain = CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low); gpadc->cal_data[ADC_INPUT_BTEMP].offset = CALIB_SCALE * 1300 - (CALIB_SCALE * (1300 - 21) / (btemp_high - btemp_low)) * btemp_high; } else { gpadc->cal_data[ADC_INPUT_BTEMP].gain = 0; } /* Calculate gain and offset for VBAT if all reads succeeded */ if (!(ret[4] < 0 || ret[5] < 0 || ret[6] < 0)) { vbat_high = (((gpadc_cal[4] & 0x03) << 8) | gpadc_cal[5]); vbat_low = ((gpadc_cal[6] & 0xFC) >> 2); gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_hi = (u16)vbat_high; gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_lo = (u16)vbat_low; gpadc->cal_data[ADC_INPUT_VBAT].gain = CALIB_SCALE * (4700 - 2380) / (vbat_high - vbat_low); gpadc->cal_data[ADC_INPUT_VBAT].offset = CALIB_SCALE * 4700 - (CALIB_SCALE * (4700 - 2380) / (vbat_high - vbat_low)) * vbat_high; } else { gpadc->cal_data[ADC_INPUT_VBAT].gain = 0; } dev_dbg(gpadc->dev, "VMAIN gain %llu offset %llu\n", gpadc->cal_data[ADC_INPUT_VMAIN].gain, gpadc->cal_data[ADC_INPUT_VMAIN].offset); dev_dbg(gpadc->dev, "BTEMP gain %llu offset %llu\n", gpadc->cal_data[ADC_INPUT_BTEMP].gain, gpadc->cal_data[ADC_INPUT_BTEMP].offset); dev_dbg(gpadc->dev, "VBAT gain %llu offset %llu\n", gpadc->cal_data[ADC_INPUT_VBAT].gain, gpadc->cal_data[ADC_INPUT_VBAT].offset); } #ifdef CONFIG_PM static int ab8500_gpadc_runtime_suspend(struct device *dev) { struct ab8500_gpadc *gpadc = dev_get_drvdata(dev); regulator_disable(gpadc->regu); return 0; } static int ab8500_gpadc_runtime_resume(struct device *dev) { struct ab8500_gpadc *gpadc = dev_get_drvdata(dev); int ret; ret = regulator_enable(gpadc->regu); if (ret) dev_err(dev, "Failed to enable vtvout LDO: %d\n", ret); return ret; } #endif #ifdef CONFIG_PM_SLEEP static int ab8500_gpadc_suspend(struct device *dev) { struct ab8500_gpadc *gpadc = dev_get_drvdata(dev); mutex_lock(&gpadc->ab8500_gpadc_lock); pm_runtime_get_sync(dev); regulator_disable(gpadc->regu); return 0; } static int ab8500_gpadc_resume(struct device *dev) { struct ab8500_gpadc *gpadc = dev_get_drvdata(dev); int ret; ret = regulator_enable(gpadc->regu); if (ret) dev_err(dev, "Failed to enable vtvout LDO: %d\n", ret); pm_runtime_mark_last_busy(gpadc->dev); pm_runtime_put_autosuspend(gpadc->dev); mutex_unlock(&gpadc->ab8500_gpadc_lock); return ret; } #endif static int ab8500_gpadc_probe(struct platform_device *pdev) { int ret = 0; struct ab8500_gpadc *gpadc; gpadc = devm_kzalloc(&pdev->dev, sizeof(struct ab8500_gpadc), GFP_KERNEL); if (!gpadc) return -ENOMEM; gpadc->irq_sw = platform_get_irq_byname(pdev, "SW_CONV_END"); if (gpadc->irq_sw < 0) dev_err(gpadc->dev, "failed to get platform sw_conv_end irq\n"); gpadc->irq_hw = platform_get_irq_byname(pdev, "HW_CONV_END"); if (gpadc->irq_hw < 0) dev_err(gpadc->dev, "failed to get platform hw_conv_end irq\n"); gpadc->dev = &pdev->dev; gpadc->parent = dev_get_drvdata(pdev->dev.parent); mutex_init(&gpadc->ab8500_gpadc_lock); /* Initialize completion used to notify completion of conversion */ init_completion(&gpadc->ab8500_gpadc_complete); /* Register interrupts */ if (gpadc->irq_sw >= 0) { ret = request_threaded_irq(gpadc->irq_sw, NULL, ab8500_bm_gpadcconvend_handler, IRQF_NO_SUSPEND | IRQF_SHARED | IRQF_ONESHOT, "ab8500-gpadc-sw", gpadc); if (ret < 0) { dev_err(gpadc->dev, "Failed to register interrupt irq: %d\n", gpadc->irq_sw); goto fail; } } if (gpadc->irq_hw >= 0) { ret = request_threaded_irq(gpadc->irq_hw, NULL, ab8500_bm_gpadcconvend_handler, IRQF_NO_SUSPEND | IRQF_SHARED | IRQF_ONESHOT, "ab8500-gpadc-hw", gpadc); if (ret < 0) { dev_err(gpadc->dev, "Failed to register interrupt irq: %d\n", gpadc->irq_hw); goto fail_irq; } } /* VTVout LDO used to power up ab8500-GPADC */ gpadc->regu = devm_regulator_get(&pdev->dev, "vddadc"); if (IS_ERR(gpadc->regu)) { ret = PTR_ERR(gpadc->regu); dev_err(gpadc->dev, "failed to get vtvout LDO\n"); goto fail_irq; } platform_set_drvdata(pdev, gpadc); ret = regulator_enable(gpadc->regu); if (ret) { dev_err(gpadc->dev, "Failed to enable vtvout LDO: %d\n", ret); goto fail_enable; } pm_runtime_set_autosuspend_delay(gpadc->dev, GPADC_AUDOSUSPEND_DELAY); pm_runtime_use_autosuspend(gpadc->dev); pm_runtime_set_active(gpadc->dev); pm_runtime_enable(gpadc->dev); ab8500_gpadc_read_calibration_data(gpadc); list_add_tail(&gpadc->node, &ab8500_gpadc_list); dev_dbg(gpadc->dev, "probe success\n"); return 0; fail_enable: fail_irq: free_irq(gpadc->irq_sw, gpadc); free_irq(gpadc->irq_hw, gpadc); fail: return ret; } static int ab8500_gpadc_remove(struct platform_device *pdev) { struct ab8500_gpadc *gpadc = platform_get_drvdata(pdev); /* remove this gpadc entry from the list */ list_del(&gpadc->node); /* remove interrupt - completion of Sw ADC conversion */ if (gpadc->irq_sw >= 0) free_irq(gpadc->irq_sw, gpadc); if (gpadc->irq_hw >= 0) free_irq(gpadc->irq_hw, gpadc); pm_runtime_get_sync(gpadc->dev); pm_runtime_disable(gpadc->dev); regulator_disable(gpadc->regu); pm_runtime_set_suspended(gpadc->dev); pm_runtime_put_noidle(gpadc->dev); return 0; } static const struct dev_pm_ops ab8500_gpadc_pm_ops = { SET_RUNTIME_PM_OPS(ab8500_gpadc_runtime_suspend, ab8500_gpadc_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(ab8500_gpadc_suspend, ab8500_gpadc_resume) }; static struct platform_driver ab8500_gpadc_driver = { .probe = ab8500_gpadc_probe, .remove = ab8500_gpadc_remove, .driver = { .name = "ab8500-gpadc", .pm = &ab8500_gpadc_pm_ops, }, }; static int __init ab8500_gpadc_init(void) { return platform_driver_register(&ab8500_gpadc_driver); } subsys_initcall_sync(ab8500_gpadc_init); /** * ab8540_gpadc_get_otp() - returns OTP values * */ void ab8540_gpadc_get_otp(struct ab8500_gpadc *gpadc, u16 *vmain_l, u16 *vmain_h, u16 *btemp_l, u16 *btemp_h, u16 *vbat_l, u16 *vbat_h, u16 *ibat_l, u16 *ibat_h) { *vmain_l = gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_lo; *vmain_h = gpadc->cal_data[ADC_INPUT_VMAIN].otp_calib_hi; *btemp_l = gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_lo; *btemp_h = gpadc->cal_data[ADC_INPUT_BTEMP].otp_calib_hi; *vbat_l = gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_lo; *vbat_h = gpadc->cal_data[ADC_INPUT_VBAT].otp_calib_hi; *ibat_l = gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_lo; *ibat_h = gpadc->cal_data[ADC_INPUT_IBAT].otp_calib_hi; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1