Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Christophe Kerello | 9644 | 99.64% | 3 | 60.00% |
Fabien Dessenne | 25 | 0.26% | 1 | 20.00% |
Amelie Delaunay | 10 | 0.10% | 1 | 20.00% |
Total | 9679 | 5 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics 2018 * Author: Christophe Kerello <christophe.kerello@st.com> */ #include <linux/clk.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/mtd/rawnand.h> #include <linux/pinctrl/consumer.h> #include <linux/platform_device.h> #include <linux/reset.h> /* Bad block marker length */ #define FMC2_BBM_LEN 2 /* ECC step size */ #define FMC2_ECC_STEP_SIZE 512 /* BCHDSRx registers length */ #define FMC2_BCHDSRS_LEN 20 /* HECCR length */ #define FMC2_HECCR_LEN 4 /* Max requests done for a 8k nand page size */ #define FMC2_MAX_SG 16 /* Max chip enable */ #define FMC2_MAX_CE 2 /* Max ECC buffer length */ #define FMC2_MAX_ECC_BUF_LEN (FMC2_BCHDSRS_LEN * FMC2_MAX_SG) #define FMC2_TIMEOUT_MS 1000 /* Timings */ #define FMC2_THIZ 1 #define FMC2_TIO 8000 #define FMC2_TSYNC 3000 #define FMC2_PCR_TIMING_MASK 0xf #define FMC2_PMEM_PATT_TIMING_MASK 0xff /* FMC2 Controller Registers */ #define FMC2_BCR1 0x0 #define FMC2_PCR 0x80 #define FMC2_SR 0x84 #define FMC2_PMEM 0x88 #define FMC2_PATT 0x8c #define FMC2_HECCR 0x94 #define FMC2_CSQCR 0x200 #define FMC2_CSQCFGR1 0x204 #define FMC2_CSQCFGR2 0x208 #define FMC2_CSQCFGR3 0x20c #define FMC2_CSQAR1 0x210 #define FMC2_CSQAR2 0x214 #define FMC2_CSQIER 0x220 #define FMC2_CSQISR 0x224 #define FMC2_CSQICR 0x228 #define FMC2_CSQEMSR 0x230 #define FMC2_BCHIER 0x250 #define FMC2_BCHISR 0x254 #define FMC2_BCHICR 0x258 #define FMC2_BCHPBR1 0x260 #define FMC2_BCHPBR2 0x264 #define FMC2_BCHPBR3 0x268 #define FMC2_BCHPBR4 0x26c #define FMC2_BCHDSR0 0x27c #define FMC2_BCHDSR1 0x280 #define FMC2_BCHDSR2 0x284 #define FMC2_BCHDSR3 0x288 #define FMC2_BCHDSR4 0x28c /* Register: FMC2_BCR1 */ #define FMC2_BCR1_FMC2EN BIT(31) /* Register: FMC2_PCR */ #define FMC2_PCR_PWAITEN BIT(1) #define FMC2_PCR_PBKEN BIT(2) #define FMC2_PCR_PWID_MASK GENMASK(5, 4) #define FMC2_PCR_PWID(x) (((x) & 0x3) << 4) #define FMC2_PCR_PWID_BUSWIDTH_8 0 #define FMC2_PCR_PWID_BUSWIDTH_16 1 #define FMC2_PCR_ECCEN BIT(6) #define FMC2_PCR_ECCALG BIT(8) #define FMC2_PCR_TCLR_MASK GENMASK(12, 9) #define FMC2_PCR_TCLR(x) (((x) & 0xf) << 9) #define FMC2_PCR_TCLR_DEFAULT 0xf #define FMC2_PCR_TAR_MASK GENMASK(16, 13) #define FMC2_PCR_TAR(x) (((x) & 0xf) << 13) #define FMC2_PCR_TAR_DEFAULT 0xf #define FMC2_PCR_ECCSS_MASK GENMASK(19, 17) #define FMC2_PCR_ECCSS(x) (((x) & 0x7) << 17) #define FMC2_PCR_ECCSS_512 1 #define FMC2_PCR_ECCSS_2048 3 #define FMC2_PCR_BCHECC BIT(24) #define FMC2_PCR_WEN BIT(25) /* Register: FMC2_SR */ #define FMC2_SR_NWRF BIT(6) /* Register: FMC2_PMEM */ #define FMC2_PMEM_MEMSET(x) (((x) & 0xff) << 0) #define FMC2_PMEM_MEMWAIT(x) (((x) & 0xff) << 8) #define FMC2_PMEM_MEMHOLD(x) (((x) & 0xff) << 16) #define FMC2_PMEM_MEMHIZ(x) (((x) & 0xff) << 24) #define FMC2_PMEM_DEFAULT 0x0a0a0a0a /* Register: FMC2_PATT */ #define FMC2_PATT_ATTSET(x) (((x) & 0xff) << 0) #define FMC2_PATT_ATTWAIT(x) (((x) & 0xff) << 8) #define FMC2_PATT_ATTHOLD(x) (((x) & 0xff) << 16) #define FMC2_PATT_ATTHIZ(x) (((x) & 0xff) << 24) #define FMC2_PATT_DEFAULT 0x0a0a0a0a /* Register: FMC2_CSQCR */ #define FMC2_CSQCR_CSQSTART BIT(0) /* Register: FMC2_CSQCFGR1 */ #define FMC2_CSQCFGR1_CMD2EN BIT(1) #define FMC2_CSQCFGR1_DMADEN BIT(2) #define FMC2_CSQCFGR1_ACYNBR(x) (((x) & 0x7) << 4) #define FMC2_CSQCFGR1_CMD1(x) (((x) & 0xff) << 8) #define FMC2_CSQCFGR1_CMD2(x) (((x) & 0xff) << 16) #define FMC2_CSQCFGR1_CMD1T BIT(24) #define FMC2_CSQCFGR1_CMD2T BIT(25) /* Register: FMC2_CSQCFGR2 */ #define FMC2_CSQCFGR2_SQSDTEN BIT(0) #define FMC2_CSQCFGR2_RCMD2EN BIT(1) #define FMC2_CSQCFGR2_DMASEN BIT(2) #define FMC2_CSQCFGR2_RCMD1(x) (((x) & 0xff) << 8) #define FMC2_CSQCFGR2_RCMD2(x) (((x) & 0xff) << 16) #define FMC2_CSQCFGR2_RCMD1T BIT(24) #define FMC2_CSQCFGR2_RCMD2T BIT(25) /* Register: FMC2_CSQCFGR3 */ #define FMC2_CSQCFGR3_SNBR(x) (((x) & 0x1f) << 8) #define FMC2_CSQCFGR3_AC1T BIT(16) #define FMC2_CSQCFGR3_AC2T BIT(17) #define FMC2_CSQCFGR3_AC3T BIT(18) #define FMC2_CSQCFGR3_AC4T BIT(19) #define FMC2_CSQCFGR3_AC5T BIT(20) #define FMC2_CSQCFGR3_SDT BIT(21) #define FMC2_CSQCFGR3_RAC1T BIT(22) #define FMC2_CSQCFGR3_RAC2T BIT(23) /* Register: FMC2_CSQCAR1 */ #define FMC2_CSQCAR1_ADDC1(x) (((x) & 0xff) << 0) #define FMC2_CSQCAR1_ADDC2(x) (((x) & 0xff) << 8) #define FMC2_CSQCAR1_ADDC3(x) (((x) & 0xff) << 16) #define FMC2_CSQCAR1_ADDC4(x) (((x) & 0xff) << 24) /* Register: FMC2_CSQCAR2 */ #define FMC2_CSQCAR2_ADDC5(x) (((x) & 0xff) << 0) #define FMC2_CSQCAR2_NANDCEN(x) (((x) & 0x3) << 10) #define FMC2_CSQCAR2_SAO(x) (((x) & 0xffff) << 16) /* Register: FMC2_CSQIER */ #define FMC2_CSQIER_TCIE BIT(0) /* Register: FMC2_CSQICR */ #define FMC2_CSQICR_CLEAR_IRQ GENMASK(4, 0) /* Register: FMC2_CSQEMSR */ #define FMC2_CSQEMSR_SEM GENMASK(15, 0) /* Register: FMC2_BCHIER */ #define FMC2_BCHIER_DERIE BIT(1) #define FMC2_BCHIER_EPBRIE BIT(4) /* Register: FMC2_BCHICR */ #define FMC2_BCHICR_CLEAR_IRQ GENMASK(4, 0) /* Register: FMC2_BCHDSR0 */ #define FMC2_BCHDSR0_DUE BIT(0) #define FMC2_BCHDSR0_DEF BIT(1) #define FMC2_BCHDSR0_DEN_MASK GENMASK(7, 4) #define FMC2_BCHDSR0_DEN_SHIFT 4 /* Register: FMC2_BCHDSR1 */ #define FMC2_BCHDSR1_EBP1_MASK GENMASK(12, 0) #define FMC2_BCHDSR1_EBP2_MASK GENMASK(28, 16) #define FMC2_BCHDSR1_EBP2_SHIFT 16 /* Register: FMC2_BCHDSR2 */ #define FMC2_BCHDSR2_EBP3_MASK GENMASK(12, 0) #define FMC2_BCHDSR2_EBP4_MASK GENMASK(28, 16) #define FMC2_BCHDSR2_EBP4_SHIFT 16 /* Register: FMC2_BCHDSR3 */ #define FMC2_BCHDSR3_EBP5_MASK GENMASK(12, 0) #define FMC2_BCHDSR3_EBP6_MASK GENMASK(28, 16) #define FMC2_BCHDSR3_EBP6_SHIFT 16 /* Register: FMC2_BCHDSR4 */ #define FMC2_BCHDSR4_EBP7_MASK GENMASK(12, 0) #define FMC2_BCHDSR4_EBP8_MASK GENMASK(28, 16) #define FMC2_BCHDSR4_EBP8_SHIFT 16 enum stm32_fmc2_ecc { FMC2_ECC_HAM = 1, FMC2_ECC_BCH4 = 4, FMC2_ECC_BCH8 = 8 }; enum stm32_fmc2_irq_state { FMC2_IRQ_UNKNOWN = 0, FMC2_IRQ_BCH, FMC2_IRQ_SEQ }; struct stm32_fmc2_timings { u8 tclr; u8 tar; u8 thiz; u8 twait; u8 thold_mem; u8 tset_mem; u8 thold_att; u8 tset_att; }; struct stm32_fmc2_nand { struct nand_chip chip; struct stm32_fmc2_timings timings; int ncs; int cs_used[FMC2_MAX_CE]; }; static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip) { return container_of(chip, struct stm32_fmc2_nand, chip); } struct stm32_fmc2_nfc { struct nand_controller base; struct stm32_fmc2_nand nand; struct device *dev; void __iomem *io_base; void __iomem *data_base[FMC2_MAX_CE]; void __iomem *cmd_base[FMC2_MAX_CE]; void __iomem *addr_base[FMC2_MAX_CE]; phys_addr_t io_phys_addr; phys_addr_t data_phys_addr[FMC2_MAX_CE]; struct clk *clk; u8 irq_state; struct dma_chan *dma_tx_ch; struct dma_chan *dma_rx_ch; struct dma_chan *dma_ecc_ch; struct sg_table dma_data_sg; struct sg_table dma_ecc_sg; u8 *ecc_buf; int dma_ecc_len; struct completion complete; struct completion dma_data_complete; struct completion dma_ecc_complete; u8 cs_assigned; int cs_sel; }; static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base) { return container_of(base, struct stm32_fmc2_nfc, base); } /* Timings configuration */ static void stm32_fmc2_timings_init(struct nand_chip *chip) { struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); struct stm32_fmc2_timings *timings = &nand->timings; u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); u32 pmem, patt; /* Set tclr/tar timings */ pcr &= ~FMC2_PCR_TCLR_MASK; pcr |= FMC2_PCR_TCLR(timings->tclr); pcr &= ~FMC2_PCR_TAR_MASK; pcr |= FMC2_PCR_TAR(timings->tar); /* Set tset/twait/thold/thiz timings in common bank */ pmem = FMC2_PMEM_MEMSET(timings->tset_mem); pmem |= FMC2_PMEM_MEMWAIT(timings->twait); pmem |= FMC2_PMEM_MEMHOLD(timings->thold_mem); pmem |= FMC2_PMEM_MEMHIZ(timings->thiz); /* Set tset/twait/thold/thiz timings in attribut bank */ patt = FMC2_PATT_ATTSET(timings->tset_att); patt |= FMC2_PATT_ATTWAIT(timings->twait); patt |= FMC2_PATT_ATTHOLD(timings->thold_att); patt |= FMC2_PATT_ATTHIZ(timings->thiz); writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); writel_relaxed(pmem, fmc2->io_base + FMC2_PMEM); writel_relaxed(patt, fmc2->io_base + FMC2_PATT); } /* Controller configuration */ static void stm32_fmc2_setup(struct nand_chip *chip) { struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); /* Configure ECC algorithm (default configuration is Hamming) */ pcr &= ~FMC2_PCR_ECCALG; pcr &= ~FMC2_PCR_BCHECC; if (chip->ecc.strength == FMC2_ECC_BCH8) { pcr |= FMC2_PCR_ECCALG; pcr |= FMC2_PCR_BCHECC; } else if (chip->ecc.strength == FMC2_ECC_BCH4) { pcr |= FMC2_PCR_ECCALG; } /* Set buswidth */ pcr &= ~FMC2_PCR_PWID_MASK; if (chip->options & NAND_BUSWIDTH_16) pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16); /* Set ECC sector size */ pcr &= ~FMC2_PCR_ECCSS_MASK; pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_512); writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); } /* Select target */ static int stm32_fmc2_select_chip(struct nand_chip *chip, int chipnr) { struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); struct dma_slave_config dma_cfg; int ret; if (nand->cs_used[chipnr] == fmc2->cs_sel) return 0; fmc2->cs_sel = nand->cs_used[chipnr]; /* FMC2 setup routine */ stm32_fmc2_setup(chip); /* Apply timings */ stm32_fmc2_timings_init(chip); if (fmc2->dma_tx_ch && fmc2->dma_rx_ch) { memset(&dma_cfg, 0, sizeof(dma_cfg)); dma_cfg.src_addr = fmc2->data_phys_addr[fmc2->cs_sel]; dma_cfg.dst_addr = fmc2->data_phys_addr[fmc2->cs_sel]; dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dma_cfg.src_maxburst = 32; dma_cfg.dst_maxburst = 32; ret = dmaengine_slave_config(fmc2->dma_tx_ch, &dma_cfg); if (ret) { dev_err(fmc2->dev, "tx DMA engine slave config failed\n"); return ret; } ret = dmaengine_slave_config(fmc2->dma_rx_ch, &dma_cfg); if (ret) { dev_err(fmc2->dev, "rx DMA engine slave config failed\n"); return ret; } } if (fmc2->dma_ecc_ch) { /* * Hamming: we read HECCR register * BCH4/BCH8: we read BCHDSRSx registers */ memset(&dma_cfg, 0, sizeof(dma_cfg)); dma_cfg.src_addr = fmc2->io_phys_addr; dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ? FMC2_HECCR : FMC2_BCHDSR0; dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; ret = dmaengine_slave_config(fmc2->dma_ecc_ch, &dma_cfg); if (ret) { dev_err(fmc2->dev, "ECC DMA engine slave config failed\n"); return ret; } /* Calculate ECC length needed for one sector */ fmc2->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ? FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN; } return 0; } /* Set bus width to 16-bit or 8-bit */ static void stm32_fmc2_set_buswidth_16(struct stm32_fmc2_nfc *fmc2, bool set) { u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); pcr &= ~FMC2_PCR_PWID_MASK; if (set) pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16); writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); } /* Enable/disable ECC */ static void stm32_fmc2_set_ecc(struct stm32_fmc2_nfc *fmc2, bool enable) { u32 pcr = readl(fmc2->io_base + FMC2_PCR); pcr &= ~FMC2_PCR_ECCEN; if (enable) pcr |= FMC2_PCR_ECCEN; writel(pcr, fmc2->io_base + FMC2_PCR); } /* Enable irq sources in case of the sequencer is used */ static inline void stm32_fmc2_enable_seq_irq(struct stm32_fmc2_nfc *fmc2) { u32 csqier = readl_relaxed(fmc2->io_base + FMC2_CSQIER); csqier |= FMC2_CSQIER_TCIE; fmc2->irq_state = FMC2_IRQ_SEQ; writel_relaxed(csqier, fmc2->io_base + FMC2_CSQIER); } /* Disable irq sources in case of the sequencer is used */ static inline void stm32_fmc2_disable_seq_irq(struct stm32_fmc2_nfc *fmc2) { u32 csqier = readl_relaxed(fmc2->io_base + FMC2_CSQIER); csqier &= ~FMC2_CSQIER_TCIE; writel_relaxed(csqier, fmc2->io_base + FMC2_CSQIER); fmc2->irq_state = FMC2_IRQ_UNKNOWN; } /* Clear irq sources in case of the sequencer is used */ static inline void stm32_fmc2_clear_seq_irq(struct stm32_fmc2_nfc *fmc2) { writel_relaxed(FMC2_CSQICR_CLEAR_IRQ, fmc2->io_base + FMC2_CSQICR); } /* Enable irq sources in case of bch is used */ static inline void stm32_fmc2_enable_bch_irq(struct stm32_fmc2_nfc *fmc2, int mode) { u32 bchier = readl_relaxed(fmc2->io_base + FMC2_BCHIER); if (mode == NAND_ECC_WRITE) bchier |= FMC2_BCHIER_EPBRIE; else bchier |= FMC2_BCHIER_DERIE; fmc2->irq_state = FMC2_IRQ_BCH; writel_relaxed(bchier, fmc2->io_base + FMC2_BCHIER); } /* Disable irq sources in case of bch is used */ static inline void stm32_fmc2_disable_bch_irq(struct stm32_fmc2_nfc *fmc2) { u32 bchier = readl_relaxed(fmc2->io_base + FMC2_BCHIER); bchier &= ~FMC2_BCHIER_DERIE; bchier &= ~FMC2_BCHIER_EPBRIE; writel_relaxed(bchier, fmc2->io_base + FMC2_BCHIER); fmc2->irq_state = FMC2_IRQ_UNKNOWN; } /* Clear irq sources in case of bch is used */ static inline void stm32_fmc2_clear_bch_irq(struct stm32_fmc2_nfc *fmc2) { writel_relaxed(FMC2_BCHICR_CLEAR_IRQ, fmc2->io_base + FMC2_BCHICR); } /* * Enable ECC logic and reset syndrome/parity bits previously calculated * Syndrome/parity bits is cleared by setting the ECCEN bit to 0 */ static void stm32_fmc2_hwctl(struct nand_chip *chip, int mode) { struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); stm32_fmc2_set_ecc(fmc2, false); if (chip->ecc.strength != FMC2_ECC_HAM) { u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); if (mode == NAND_ECC_WRITE) pcr |= FMC2_PCR_WEN; else pcr &= ~FMC2_PCR_WEN; writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); reinit_completion(&fmc2->complete); stm32_fmc2_clear_bch_irq(fmc2); stm32_fmc2_enable_bch_irq(fmc2, mode); } stm32_fmc2_set_ecc(fmc2, true); } /* * ECC Hamming calculation * ECC is 3 bytes for 512 bytes of data (supports error correction up to * max of 1-bit) */ static inline void stm32_fmc2_ham_set_ecc(const u32 ecc_sta, u8 *ecc) { ecc[0] = ecc_sta; ecc[1] = ecc_sta >> 8; ecc[2] = ecc_sta >> 16; } static int stm32_fmc2_ham_calculate(struct nand_chip *chip, const u8 *data, u8 *ecc) { struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); u32 sr, heccr; int ret; ret = readl_relaxed_poll_timeout(fmc2->io_base + FMC2_SR, sr, sr & FMC2_SR_NWRF, 10, FMC2_TIMEOUT_MS); if (ret) { dev_err(fmc2->dev, "ham timeout\n"); return ret; } heccr = readl_relaxed(fmc2->io_base + FMC2_HECCR); stm32_fmc2_ham_set_ecc(heccr, ecc); /* Disable ECC */ stm32_fmc2_set_ecc(fmc2, false); return 0; } static int stm32_fmc2_ham_correct(struct nand_chip *chip, u8 *dat, u8 *read_ecc, u8 *calc_ecc) { u8 bit_position = 0, b0, b1, b2; u32 byte_addr = 0, b; u32 i, shifting = 1; /* Indicate which bit and byte is faulty (if any) */ b0 = read_ecc[0] ^ calc_ecc[0]; b1 = read_ecc[1] ^ calc_ecc[1]; b2 = read_ecc[2] ^ calc_ecc[2]; b = b0 | (b1 << 8) | (b2 << 16); /* No errors */ if (likely(!b)) return 0; /* Calculate bit position */ for (i = 0; i < 3; i++) { switch (b % 4) { case 2: bit_position += shifting; case 1: break; default: return -EBADMSG; } shifting <<= 1; b >>= 2; } /* Calculate byte position */ shifting = 1; for (i = 0; i < 9; i++) { switch (b % 4) { case 2: byte_addr += shifting; case 1: break; default: return -EBADMSG; } shifting <<= 1; b >>= 2; } /* Flip the bit */ dat[byte_addr] ^= (1 << bit_position); return 1; } /* * ECC BCH calculation and correction * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to * max of 4-bit/8-bit) */ static int stm32_fmc2_bch_calculate(struct nand_chip *chip, const u8 *data, u8 *ecc) { struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); u32 bchpbr; /* Wait until the BCH code is ready */ if (!wait_for_completion_timeout(&fmc2->complete, msecs_to_jiffies(FMC2_TIMEOUT_MS))) { dev_err(fmc2->dev, "bch timeout\n"); stm32_fmc2_disable_bch_irq(fmc2); return -ETIMEDOUT; } /* Read parity bits */ bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR1); ecc[0] = bchpbr; ecc[1] = bchpbr >> 8; ecc[2] = bchpbr >> 16; ecc[3] = bchpbr >> 24; bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR2); ecc[4] = bchpbr; ecc[5] = bchpbr >> 8; ecc[6] = bchpbr >> 16; if (chip->ecc.strength == FMC2_ECC_BCH8) { ecc[7] = bchpbr >> 24; bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR3); ecc[8] = bchpbr; ecc[9] = bchpbr >> 8; ecc[10] = bchpbr >> 16; ecc[11] = bchpbr >> 24; bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR4); ecc[12] = bchpbr; } /* Disable ECC */ stm32_fmc2_set_ecc(fmc2, false); return 0; } /* BCH algorithm correction */ static int stm32_fmc2_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta) { u32 bchdsr0 = ecc_sta[0]; u32 bchdsr1 = ecc_sta[1]; u32 bchdsr2 = ecc_sta[2]; u32 bchdsr3 = ecc_sta[3]; u32 bchdsr4 = ecc_sta[4]; u16 pos[8]; int i, den; unsigned int nb_errs = 0; /* No errors found */ if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF))) return 0; /* Too many errors detected */ if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE)) return -EBADMSG; pos[0] = bchdsr1 & FMC2_BCHDSR1_EBP1_MASK; pos[1] = (bchdsr1 & FMC2_BCHDSR1_EBP2_MASK) >> FMC2_BCHDSR1_EBP2_SHIFT; pos[2] = bchdsr2 & FMC2_BCHDSR2_EBP3_MASK; pos[3] = (bchdsr2 & FMC2_BCHDSR2_EBP4_MASK) >> FMC2_BCHDSR2_EBP4_SHIFT; pos[4] = bchdsr3 & FMC2_BCHDSR3_EBP5_MASK; pos[5] = (bchdsr3 & FMC2_BCHDSR3_EBP6_MASK) >> FMC2_BCHDSR3_EBP6_SHIFT; pos[6] = bchdsr4 & FMC2_BCHDSR4_EBP7_MASK; pos[7] = (bchdsr4 & FMC2_BCHDSR4_EBP8_MASK) >> FMC2_BCHDSR4_EBP8_SHIFT; den = (bchdsr0 & FMC2_BCHDSR0_DEN_MASK) >> FMC2_BCHDSR0_DEN_SHIFT; for (i = 0; i < den; i++) { if (pos[i] < eccsize * 8) { change_bit(pos[i], (unsigned long *)dat); nb_errs++; } } return nb_errs; } static int stm32_fmc2_bch_correct(struct nand_chip *chip, u8 *dat, u8 *read_ecc, u8 *calc_ecc) { struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); u32 ecc_sta[5]; /* Wait until the decoding error is ready */ if (!wait_for_completion_timeout(&fmc2->complete, msecs_to_jiffies(FMC2_TIMEOUT_MS))) { dev_err(fmc2->dev, "bch timeout\n"); stm32_fmc2_disable_bch_irq(fmc2); return -ETIMEDOUT; } ecc_sta[0] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR0); ecc_sta[1] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR1); ecc_sta[2] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR2); ecc_sta[3] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR3); ecc_sta[4] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR4); /* Disable ECC */ stm32_fmc2_set_ecc(fmc2, false); return stm32_fmc2_bch_decode(chip->ecc.size, dat, ecc_sta); } static int stm32_fmc2_read_page(struct nand_chip *chip, u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); int ret, i, s, stat, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; int eccstrength = chip->ecc.strength; u8 *p = buf; u8 *ecc_calc = chip->ecc.calc_buf; u8 *ecc_code = chip->ecc.code_buf; unsigned int max_bitflips = 0; ret = nand_read_page_op(chip, page, 0, NULL, 0); if (ret) return ret; for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { chip->ecc.hwctl(chip, NAND_ECC_READ); /* Read the nand page sector (512 bytes) */ ret = nand_change_read_column_op(chip, s * eccsize, p, eccsize, false); if (ret) return ret; /* Read the corresponding ECC bytes */ ret = nand_change_read_column_op(chip, i, ecc_code, eccbytes, false); if (ret) return ret; /* Correct the data */ stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc); if (stat == -EBADMSG) /* Check for empty pages with bitflips */ stat = nand_check_erased_ecc_chunk(p, eccsize, ecc_code, eccbytes, NULL, 0, eccstrength); if (stat < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += stat; max_bitflips = max_t(unsigned int, max_bitflips, stat); } } /* Read oob */ if (oob_required) { ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi, mtd->oobsize, false); if (ret) return ret; } return max_bitflips; } /* Sequencer read/write configuration */ static void stm32_fmc2_rw_page_init(struct nand_chip *chip, int page, int raw, bool write_data) { struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); struct mtd_info *mtd = nand_to_mtd(chip); u32 csqcfgr1, csqcfgr2, csqcfgr3; u32 csqar1, csqar2; u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN; u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); if (write_data) pcr |= FMC2_PCR_WEN; else pcr &= ~FMC2_PCR_WEN; writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); /* * - Set Program Page/Page Read command * - Enable DMA request data * - Set timings */ csqcfgr1 = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T; if (write_data) csqcfgr1 |= FMC2_CSQCFGR1_CMD1(NAND_CMD_SEQIN); else csqcfgr1 |= FMC2_CSQCFGR1_CMD1(NAND_CMD_READ0) | FMC2_CSQCFGR1_CMD2EN | FMC2_CSQCFGR1_CMD2(NAND_CMD_READSTART) | FMC2_CSQCFGR1_CMD2T; /* * - Set Random Data Input/Random Data Read command * - Enable the sequencer to access the Spare data area * - Enable DMA request status decoding for read * - Set timings */ if (write_data) csqcfgr2 = FMC2_CSQCFGR2_RCMD1(NAND_CMD_RNDIN); else csqcfgr2 = FMC2_CSQCFGR2_RCMD1(NAND_CMD_RNDOUT) | FMC2_CSQCFGR2_RCMD2EN | FMC2_CSQCFGR2_RCMD2(NAND_CMD_RNDOUTSTART) | FMC2_CSQCFGR2_RCMD1T | FMC2_CSQCFGR2_RCMD2T; if (!raw) { csqcfgr2 |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN; csqcfgr2 |= FMC2_CSQCFGR2_SQSDTEN; } /* * - Set the number of sectors to be written * - Set timings */ csqcfgr3 = FMC2_CSQCFGR3_SNBR(chip->ecc.steps - 1); if (write_data) { csqcfgr3 |= FMC2_CSQCFGR3_RAC2T; if (chip->options & NAND_ROW_ADDR_3) csqcfgr3 |= FMC2_CSQCFGR3_AC5T; else csqcfgr3 |= FMC2_CSQCFGR3_AC4T; } /* * Set the fourth first address cycles * Byte 1 and byte 2 => column, we start at 0x0 * Byte 3 and byte 4 => page */ csqar1 = FMC2_CSQCAR1_ADDC3(page); csqar1 |= FMC2_CSQCAR1_ADDC4(page >> 8); /* * - Set chip enable number * - Set ECC byte offset in the spare area * - Calculate the number of address cycles to be issued * - Set byte 5 of address cycle if needed */ csqar2 = FMC2_CSQCAR2_NANDCEN(fmc2->cs_sel); if (chip->options & NAND_BUSWIDTH_16) csqar2 |= FMC2_CSQCAR2_SAO(ecc_offset >> 1); else csqar2 |= FMC2_CSQCAR2_SAO(ecc_offset); if (chip->options & NAND_ROW_ADDR_3) { csqcfgr1 |= FMC2_CSQCFGR1_ACYNBR(5); csqar2 |= FMC2_CSQCAR2_ADDC5(page >> 16); } else { csqcfgr1 |= FMC2_CSQCFGR1_ACYNBR(4); } writel_relaxed(csqcfgr1, fmc2->io_base + FMC2_CSQCFGR1); writel_relaxed(csqcfgr2, fmc2->io_base + FMC2_CSQCFGR2); writel_relaxed(csqcfgr3, fmc2->io_base + FMC2_CSQCFGR3); writel_relaxed(csqar1, fmc2->io_base + FMC2_CSQAR1); writel_relaxed(csqar2, fmc2->io_base + FMC2_CSQAR2); } static void stm32_fmc2_dma_callback(void *arg) { complete((struct completion *)arg); } /* Read/write data from/to a page */ static int stm32_fmc2_xfer(struct nand_chip *chip, const u8 *buf, int raw, bool write_data) { struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); struct dma_async_tx_descriptor *desc_data, *desc_ecc; struct scatterlist *sg; struct dma_chan *dma_ch = fmc2->dma_rx_ch; enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE; enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM; u32 csqcr = readl_relaxed(fmc2->io_base + FMC2_CSQCR); int eccsteps = chip->ecc.steps; int eccsize = chip->ecc.size; const u8 *p = buf; int s, ret; /* Configure DMA data */ if (write_data) { dma_data_dir = DMA_TO_DEVICE; dma_transfer_dir = DMA_MEM_TO_DEV; dma_ch = fmc2->dma_tx_ch; } for_each_sg(fmc2->dma_data_sg.sgl, sg, eccsteps, s) { sg_set_buf(sg, p, eccsize); p += eccsize; } ret = dma_map_sg(fmc2->dev, fmc2->dma_data_sg.sgl, eccsteps, dma_data_dir); if (ret < 0) return ret; desc_data = dmaengine_prep_slave_sg(dma_ch, fmc2->dma_data_sg.sgl, eccsteps, dma_transfer_dir, DMA_PREP_INTERRUPT); if (!desc_data) { ret = -ENOMEM; goto err_unmap_data; } reinit_completion(&fmc2->dma_data_complete); reinit_completion(&fmc2->complete); desc_data->callback = stm32_fmc2_dma_callback; desc_data->callback_param = &fmc2->dma_data_complete; ret = dma_submit_error(dmaengine_submit(desc_data)); if (ret) goto err_unmap_data; dma_async_issue_pending(dma_ch); if (!write_data && !raw) { /* Configure DMA ECC status */ p = fmc2->ecc_buf; for_each_sg(fmc2->dma_ecc_sg.sgl, sg, eccsteps, s) { sg_set_buf(sg, p, fmc2->dma_ecc_len); p += fmc2->dma_ecc_len; } ret = dma_map_sg(fmc2->dev, fmc2->dma_ecc_sg.sgl, eccsteps, dma_data_dir); if (ret < 0) goto err_unmap_data; desc_ecc = dmaengine_prep_slave_sg(fmc2->dma_ecc_ch, fmc2->dma_ecc_sg.sgl, eccsteps, dma_transfer_dir, DMA_PREP_INTERRUPT); if (!desc_ecc) { ret = -ENOMEM; goto err_unmap_ecc; } reinit_completion(&fmc2->dma_ecc_complete); desc_ecc->callback = stm32_fmc2_dma_callback; desc_ecc->callback_param = &fmc2->dma_ecc_complete; ret = dma_submit_error(dmaengine_submit(desc_ecc)); if (ret) goto err_unmap_ecc; dma_async_issue_pending(fmc2->dma_ecc_ch); } stm32_fmc2_clear_seq_irq(fmc2); stm32_fmc2_enable_seq_irq(fmc2); /* Start the transfer */ csqcr |= FMC2_CSQCR_CSQSTART; writel_relaxed(csqcr, fmc2->io_base + FMC2_CSQCR); /* Wait end of sequencer transfer */ if (!wait_for_completion_timeout(&fmc2->complete, msecs_to_jiffies(FMC2_TIMEOUT_MS))) { dev_err(fmc2->dev, "seq timeout\n"); stm32_fmc2_disable_seq_irq(fmc2); dmaengine_terminate_all(dma_ch); if (!write_data && !raw) dmaengine_terminate_all(fmc2->dma_ecc_ch); ret = -ETIMEDOUT; goto err_unmap_ecc; } /* Wait DMA data transfer completion */ if (!wait_for_completion_timeout(&fmc2->dma_data_complete, msecs_to_jiffies(FMC2_TIMEOUT_MS))) { dev_err(fmc2->dev, "data DMA timeout\n"); dmaengine_terminate_all(dma_ch); ret = -ETIMEDOUT; } /* Wait DMA ECC transfer completion */ if (!write_data && !raw) { if (!wait_for_completion_timeout(&fmc2->dma_ecc_complete, msecs_to_jiffies(FMC2_TIMEOUT_MS))) { dev_err(fmc2->dev, "ECC DMA timeout\n"); dmaengine_terminate_all(fmc2->dma_ecc_ch); ret = -ETIMEDOUT; } } err_unmap_ecc: if (!write_data && !raw) dma_unmap_sg(fmc2->dev, fmc2->dma_ecc_sg.sgl, eccsteps, dma_data_dir); err_unmap_data: dma_unmap_sg(fmc2->dev, fmc2->dma_data_sg.sgl, eccsteps, dma_data_dir); return ret; } static int stm32_fmc2_sequencer_write(struct nand_chip *chip, const u8 *buf, int oob_required, int page, int raw) { struct mtd_info *mtd = nand_to_mtd(chip); int ret; /* Configure the sequencer */ stm32_fmc2_rw_page_init(chip, page, raw, true); /* Write the page */ ret = stm32_fmc2_xfer(chip, buf, raw, true); if (ret) return ret; /* Write oob */ if (oob_required) { ret = nand_change_write_column_op(chip, mtd->writesize, chip->oob_poi, mtd->oobsize, false); if (ret) return ret; } return nand_prog_page_end_op(chip); } static int stm32_fmc2_sequencer_write_page(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { int ret; /* Select the target */ ret = stm32_fmc2_select_chip(chip, chip->cur_cs); if (ret) return ret; return stm32_fmc2_sequencer_write(chip, buf, oob_required, page, false); } static int stm32_fmc2_sequencer_write_page_raw(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { int ret; /* Select the target */ ret = stm32_fmc2_select_chip(chip, chip->cur_cs); if (ret) return ret; return stm32_fmc2_sequencer_write(chip, buf, oob_required, page, true); } /* Get a status indicating which sectors have errors */ static inline u16 stm32_fmc2_get_mapping_status(struct stm32_fmc2_nfc *fmc2) { u32 csqemsr = readl_relaxed(fmc2->io_base + FMC2_CSQEMSR); return csqemsr & FMC2_CSQEMSR_SEM; } static int stm32_fmc2_sequencer_correct(struct nand_chip *chip, u8 *dat, u8 *read_ecc, u8 *calc_ecc) { struct mtd_info *mtd = nand_to_mtd(chip); struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; int eccstrength = chip->ecc.strength; int i, s, eccsize = chip->ecc.size; u32 *ecc_sta = (u32 *)fmc2->ecc_buf; u16 sta_map = stm32_fmc2_get_mapping_status(fmc2); unsigned int max_bitflips = 0; for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) { int stat = 0; if (eccstrength == FMC2_ECC_HAM) { /* Ecc_sta = FMC2_HECCR */ if (sta_map & BIT(s)) { stm32_fmc2_ham_set_ecc(*ecc_sta, &calc_ecc[i]); stat = stm32_fmc2_ham_correct(chip, dat, &read_ecc[i], &calc_ecc[i]); } ecc_sta++; } else { /* * Ecc_sta[0] = FMC2_BCHDSR0 * Ecc_sta[1] = FMC2_BCHDSR1 * Ecc_sta[2] = FMC2_BCHDSR2 * Ecc_sta[3] = FMC2_BCHDSR3 * Ecc_sta[4] = FMC2_BCHDSR4 */ if (sta_map & BIT(s)) stat = stm32_fmc2_bch_decode(eccsize, dat, ecc_sta); ecc_sta += 5; } if (stat == -EBADMSG) /* Check for empty pages with bitflips */ stat = nand_check_erased_ecc_chunk(dat, eccsize, &read_ecc[i], eccbytes, NULL, 0, eccstrength); if (stat < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += stat; max_bitflips = max_t(unsigned int, max_bitflips, stat); } } return max_bitflips; } static int stm32_fmc2_sequencer_read_page(struct nand_chip *chip, u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); u8 *ecc_calc = chip->ecc.calc_buf; u8 *ecc_code = chip->ecc.code_buf; u16 sta_map; int ret; /* Select the target */ ret = stm32_fmc2_select_chip(chip, chip->cur_cs); if (ret) return ret; /* Configure the sequencer */ stm32_fmc2_rw_page_init(chip, page, 0, false); /* Read the page */ ret = stm32_fmc2_xfer(chip, buf, 0, false); if (ret) return ret; sta_map = stm32_fmc2_get_mapping_status(fmc2); /* Check if errors happen */ if (likely(!sta_map)) { if (oob_required) return nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi, mtd->oobsize, false); return 0; } /* Read oob */ ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi, mtd->oobsize, false); if (ret) return ret; ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, chip->ecc.total); if (ret) return ret; /* Correct data */ return chip->ecc.correct(chip, buf, ecc_code, ecc_calc); } static int stm32_fmc2_sequencer_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); int ret; /* Select the target */ ret = stm32_fmc2_select_chip(chip, chip->cur_cs); if (ret) return ret; /* Configure the sequencer */ stm32_fmc2_rw_page_init(chip, page, 1, false); /* Read the page */ ret = stm32_fmc2_xfer(chip, buf, 1, false); if (ret) return ret; /* Read oob */ if (oob_required) return nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi, mtd->oobsize, false); return 0; } static irqreturn_t stm32_fmc2_irq(int irq, void *dev_id) { struct stm32_fmc2_nfc *fmc2 = (struct stm32_fmc2_nfc *)dev_id; if (fmc2->irq_state == FMC2_IRQ_SEQ) /* Sequencer is used */ stm32_fmc2_disable_seq_irq(fmc2); else if (fmc2->irq_state == FMC2_IRQ_BCH) /* BCH is used */ stm32_fmc2_disable_bch_irq(fmc2); complete(&fmc2->complete); return IRQ_HANDLED; } static void stm32_fmc2_read_data(struct nand_chip *chip, void *buf, unsigned int len, bool force_8bit) { struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); void __iomem *io_addr_r = fmc2->data_base[fmc2->cs_sel]; if (force_8bit && chip->options & NAND_BUSWIDTH_16) /* Reconfigure bus width to 8-bit */ stm32_fmc2_set_buswidth_16(fmc2, false); if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) { if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) { *(u8 *)buf = readb_relaxed(io_addr_r); buf += sizeof(u8); len -= sizeof(u8); } if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && len >= sizeof(u16)) { *(u16 *)buf = readw_relaxed(io_addr_r); buf += sizeof(u16); len -= sizeof(u16); } } /* Buf is aligned */ while (len >= sizeof(u32)) { *(u32 *)buf = readl_relaxed(io_addr_r); buf += sizeof(u32); len -= sizeof(u32); } /* Read remaining bytes */ if (len >= sizeof(u16)) { *(u16 *)buf = readw_relaxed(io_addr_r); buf += sizeof(u16); len -= sizeof(u16); } if (len) *(u8 *)buf = readb_relaxed(io_addr_r); if (force_8bit && chip->options & NAND_BUSWIDTH_16) /* Reconfigure bus width to 16-bit */ stm32_fmc2_set_buswidth_16(fmc2, true); } static void stm32_fmc2_write_data(struct nand_chip *chip, const void *buf, unsigned int len, bool force_8bit) { struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); void __iomem *io_addr_w = fmc2->data_base[fmc2->cs_sel]; if (force_8bit && chip->options & NAND_BUSWIDTH_16) /* Reconfigure bus width to 8-bit */ stm32_fmc2_set_buswidth_16(fmc2, false); if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) { if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) { writeb_relaxed(*(u8 *)buf, io_addr_w); buf += sizeof(u8); len -= sizeof(u8); } if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) && len >= sizeof(u16)) { writew_relaxed(*(u16 *)buf, io_addr_w); buf += sizeof(u16); len -= sizeof(u16); } } /* Buf is aligned */ while (len >= sizeof(u32)) { writel_relaxed(*(u32 *)buf, io_addr_w); buf += sizeof(u32); len -= sizeof(u32); } /* Write remaining bytes */ if (len >= sizeof(u16)) { writew_relaxed(*(u16 *)buf, io_addr_w); buf += sizeof(u16); len -= sizeof(u16); } if (len) writeb_relaxed(*(u8 *)buf, io_addr_w); if (force_8bit && chip->options & NAND_BUSWIDTH_16) /* Reconfigure bus width to 16-bit */ stm32_fmc2_set_buswidth_16(fmc2, true); } static int stm32_fmc2_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only) { struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); const struct nand_op_instr *instr = NULL; unsigned int op_id, i; int ret; ret = stm32_fmc2_select_chip(chip, op->cs); if (ret) return ret; if (check_only) return ret; for (op_id = 0; op_id < op->ninstrs; op_id++) { instr = &op->instrs[op_id]; switch (instr->type) { case NAND_OP_CMD_INSTR: writeb_relaxed(instr->ctx.cmd.opcode, fmc2->cmd_base[fmc2->cs_sel]); break; case NAND_OP_ADDR_INSTR: for (i = 0; i < instr->ctx.addr.naddrs; i++) writeb_relaxed(instr->ctx.addr.addrs[i], fmc2->addr_base[fmc2->cs_sel]); break; case NAND_OP_DATA_IN_INSTR: stm32_fmc2_read_data(chip, instr->ctx.data.buf.in, instr->ctx.data.len, instr->ctx.data.force_8bit); break; case NAND_OP_DATA_OUT_INSTR: stm32_fmc2_write_data(chip, instr->ctx.data.buf.out, instr->ctx.data.len, instr->ctx.data.force_8bit); break; case NAND_OP_WAITRDY_INSTR: ret = nand_soft_waitrdy(chip, instr->ctx.waitrdy.timeout_ms); break; } } return ret; } /* Controller initialization */ static void stm32_fmc2_init(struct stm32_fmc2_nfc *fmc2) { u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR); u32 bcr1 = readl_relaxed(fmc2->io_base + FMC2_BCR1); /* Set CS used to undefined */ fmc2->cs_sel = -1; /* Enable wait feature and nand flash memory bank */ pcr |= FMC2_PCR_PWAITEN; pcr |= FMC2_PCR_PBKEN; /* Set buswidth to 8 bits mode for identification */ pcr &= ~FMC2_PCR_PWID_MASK; /* ECC logic is disabled */ pcr &= ~FMC2_PCR_ECCEN; /* Default mode */ pcr &= ~FMC2_PCR_ECCALG; pcr &= ~FMC2_PCR_BCHECC; pcr &= ~FMC2_PCR_WEN; /* Set default ECC sector size */ pcr &= ~FMC2_PCR_ECCSS_MASK; pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_2048); /* Set default tclr/tar timings */ pcr &= ~FMC2_PCR_TCLR_MASK; pcr |= FMC2_PCR_TCLR(FMC2_PCR_TCLR_DEFAULT); pcr &= ~FMC2_PCR_TAR_MASK; pcr |= FMC2_PCR_TAR(FMC2_PCR_TAR_DEFAULT); /* Enable FMC2 controller */ bcr1 |= FMC2_BCR1_FMC2EN; writel_relaxed(bcr1, fmc2->io_base + FMC2_BCR1); writel_relaxed(pcr, fmc2->io_base + FMC2_PCR); writel_relaxed(FMC2_PMEM_DEFAULT, fmc2->io_base + FMC2_PMEM); writel_relaxed(FMC2_PATT_DEFAULT, fmc2->io_base + FMC2_PATT); } /* Controller timings */ static void stm32_fmc2_calc_timings(struct nand_chip *chip, const struct nand_sdr_timings *sdrt) { struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); struct stm32_fmc2_nand *nand = to_fmc2_nand(chip); struct stm32_fmc2_timings *tims = &nand->timings; unsigned long hclk = clk_get_rate(fmc2->clk); unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000); unsigned long timing, tar, tclr, thiz, twait; unsigned long tset_mem, tset_att, thold_mem, thold_att; tar = max_t(unsigned long, hclkp, sdrt->tAR_min); timing = DIV_ROUND_UP(tar, hclkp) - 1; tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK); tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min); timing = DIV_ROUND_UP(tclr, hclkp) - 1; tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK); tims->thiz = FMC2_THIZ; thiz = (tims->thiz + 1) * hclkp; /* * tWAIT > tRP * tWAIT > tWP * tWAIT > tREA + tIO */ twait = max_t(unsigned long, hclkp, sdrt->tRP_min); twait = max_t(unsigned long, twait, sdrt->tWP_min); twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO); timing = DIV_ROUND_UP(twait, hclkp); tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); /* * tSETUP_MEM > tCS - tWAIT * tSETUP_MEM > tALS - tWAIT * tSETUP_MEM > tDS - (tWAIT - tHIZ) */ tset_mem = hclkp; if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait)) tset_mem = sdrt->tCS_min - twait; if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait)) tset_mem = sdrt->tALS_min - twait; if (twait > thiz && (sdrt->tDS_min > twait - thiz) && (tset_mem < sdrt->tDS_min - (twait - thiz))) tset_mem = sdrt->tDS_min - (twait - thiz); timing = DIV_ROUND_UP(tset_mem, hclkp); tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); /* * tHOLD_MEM > tCH * tHOLD_MEM > tREH - tSETUP_MEM * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT) */ thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min); if (sdrt->tREH_min > tset_mem && (thold_mem < sdrt->tREH_min - tset_mem)) thold_mem = sdrt->tREH_min - tset_mem; if ((sdrt->tRC_min > tset_mem + twait) && (thold_mem < sdrt->tRC_min - (tset_mem + twait))) thold_mem = sdrt->tRC_min - (tset_mem + twait); if ((sdrt->tWC_min > tset_mem + twait) && (thold_mem < sdrt->tWC_min - (tset_mem + twait))) thold_mem = sdrt->tWC_min - (tset_mem + twait); timing = DIV_ROUND_UP(thold_mem, hclkp); tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); /* * tSETUP_ATT > tCS - tWAIT * tSETUP_ATT > tCLS - tWAIT * tSETUP_ATT > tALS - tWAIT * tSETUP_ATT > tRHW - tHOLD_MEM * tSETUP_ATT > tDS - (tWAIT - tHIZ) */ tset_att = hclkp; if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait)) tset_att = sdrt->tCS_min - twait; if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait)) tset_att = sdrt->tCLS_min - twait; if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait)) tset_att = sdrt->tALS_min - twait; if (sdrt->tRHW_min > thold_mem && (tset_att < sdrt->tRHW_min - thold_mem)) tset_att = sdrt->tRHW_min - thold_mem; if (twait > thiz && (sdrt->tDS_min > twait - thiz) && (tset_att < sdrt->tDS_min - (twait - thiz))) tset_att = sdrt->tDS_min - (twait - thiz); timing = DIV_ROUND_UP(tset_att, hclkp); tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); /* * tHOLD_ATT > tALH * tHOLD_ATT > tCH * tHOLD_ATT > tCLH * tHOLD_ATT > tCOH * tHOLD_ATT > tDH * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM * tHOLD_ATT > tADL - tSETUP_MEM * tHOLD_ATT > tWH - tSETUP_MEM * tHOLD_ATT > tWHR - tSETUP_MEM * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT) * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT) */ thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min); thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min); thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min); thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min); thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min); if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) && (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem)) thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem; if (sdrt->tADL_min > tset_mem && (thold_att < sdrt->tADL_min - tset_mem)) thold_att = sdrt->tADL_min - tset_mem; if (sdrt->tWH_min > tset_mem && (thold_att < sdrt->tWH_min - tset_mem)) thold_att = sdrt->tWH_min - tset_mem; if (sdrt->tWHR_min > tset_mem && (thold_att < sdrt->tWHR_min - tset_mem)) thold_att = sdrt->tWHR_min - tset_mem; if ((sdrt->tRC_min > tset_att + twait) && (thold_att < sdrt->tRC_min - (tset_att + twait))) thold_att = sdrt->tRC_min - (tset_att + twait); if ((sdrt->tWC_min > tset_att + twait) && (thold_att < sdrt->tWC_min - (tset_att + twait))) thold_att = sdrt->tWC_min - (tset_att + twait); timing = DIV_ROUND_UP(thold_att, hclkp); tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK); } static int stm32_fmc2_setup_interface(struct nand_chip *chip, int chipnr, const struct nand_data_interface *conf) { const struct nand_sdr_timings *sdrt; sdrt = nand_get_sdr_timings(conf); if (IS_ERR(sdrt)) return PTR_ERR(sdrt); if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) return 0; stm32_fmc2_calc_timings(chip, sdrt); /* Apply timings */ stm32_fmc2_timings_init(chip); return 0; } /* DMA configuration */ static int stm32_fmc2_dma_setup(struct stm32_fmc2_nfc *fmc2) { int ret; fmc2->dma_tx_ch = dma_request_slave_channel(fmc2->dev, "tx"); fmc2->dma_rx_ch = dma_request_slave_channel(fmc2->dev, "rx"); fmc2->dma_ecc_ch = dma_request_slave_channel(fmc2->dev, "ecc"); if (!fmc2->dma_tx_ch || !fmc2->dma_rx_ch || !fmc2->dma_ecc_ch) { dev_warn(fmc2->dev, "DMAs not defined in the device tree, polling mode is used\n"); return 0; } ret = sg_alloc_table(&fmc2->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL); if (ret) return ret; /* Allocate a buffer to store ECC status registers */ fmc2->ecc_buf = devm_kzalloc(fmc2->dev, FMC2_MAX_ECC_BUF_LEN, GFP_KERNEL); if (!fmc2->ecc_buf) return -ENOMEM; ret = sg_alloc_table(&fmc2->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL); if (ret) return ret; init_completion(&fmc2->dma_data_complete); init_completion(&fmc2->dma_ecc_complete); return 0; } /* NAND callbacks setup */ static void stm32_fmc2_nand_callbacks_setup(struct nand_chip *chip) { struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); /* * Specific callbacks to read/write a page depending on * the mode (polling/sequencer) and the algo used (Hamming, BCH). */ if (fmc2->dma_tx_ch && fmc2->dma_rx_ch && fmc2->dma_ecc_ch) { /* DMA => use sequencer mode callbacks */ chip->ecc.correct = stm32_fmc2_sequencer_correct; chip->ecc.write_page = stm32_fmc2_sequencer_write_page; chip->ecc.read_page = stm32_fmc2_sequencer_read_page; chip->ecc.write_page_raw = stm32_fmc2_sequencer_write_page_raw; chip->ecc.read_page_raw = stm32_fmc2_sequencer_read_page_raw; } else { /* No DMA => use polling mode callbacks */ chip->ecc.hwctl = stm32_fmc2_hwctl; if (chip->ecc.strength == FMC2_ECC_HAM) { /* Hamming is used */ chip->ecc.calculate = stm32_fmc2_ham_calculate; chip->ecc.correct = stm32_fmc2_ham_correct; chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK; } else { /* BCH is used */ chip->ecc.calculate = stm32_fmc2_bch_calculate; chip->ecc.correct = stm32_fmc2_bch_correct; chip->ecc.read_page = stm32_fmc2_read_page; } } /* Specific configurations depending on the algo used */ if (chip->ecc.strength == FMC2_ECC_HAM) chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3; else if (chip->ecc.strength == FMC2_ECC_BCH8) chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13; else chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7; } /* FMC2 layout */ static int stm32_fmc2_nand_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct nand_ecc_ctrl *ecc = &chip->ecc; if (section) return -ERANGE; oobregion->length = ecc->total; oobregion->offset = FMC2_BBM_LEN; return 0; } static int stm32_fmc2_nand_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct nand_ecc_ctrl *ecc = &chip->ecc; if (section) return -ERANGE; oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN; oobregion->offset = ecc->total + FMC2_BBM_LEN; return 0; } static const struct mtd_ooblayout_ops stm32_fmc2_nand_ooblayout_ops = { .ecc = stm32_fmc2_nand_ooblayout_ecc, .free = stm32_fmc2_nand_ooblayout_free, }; /* FMC2 caps */ static int stm32_fmc2_calc_ecc_bytes(int step_size, int strength) { /* Hamming */ if (strength == FMC2_ECC_HAM) return 4; /* BCH8 */ if (strength == FMC2_ECC_BCH8) return 14; /* BCH4 */ return 8; } NAND_ECC_CAPS_SINGLE(stm32_fmc2_ecc_caps, stm32_fmc2_calc_ecc_bytes, FMC2_ECC_STEP_SIZE, FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8); /* FMC2 controller ops */ static int stm32_fmc2_attach_chip(struct nand_chip *chip) { struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller); struct mtd_info *mtd = nand_to_mtd(chip); int ret; /* * Only NAND_ECC_HW mode is actually supported * Hamming => ecc.strength = 1 * BCH4 => ecc.strength = 4 * BCH8 => ecc.strength = 8 * ECC sector size = 512 */ if (chip->ecc.mode != NAND_ECC_HW) { dev_err(fmc2->dev, "nand_ecc_mode is not well defined in the DT\n"); return -EINVAL; } ret = nand_ecc_choose_conf(chip, &stm32_fmc2_ecc_caps, mtd->oobsize - FMC2_BBM_LEN); if (ret) { dev_err(fmc2->dev, "no valid ECC settings set\n"); return ret; } if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) { dev_err(fmc2->dev, "nand page size is not supported\n"); return -EINVAL; } if (chip->bbt_options & NAND_BBT_USE_FLASH) chip->bbt_options |= NAND_BBT_NO_OOB; /* NAND callbacks setup */ stm32_fmc2_nand_callbacks_setup(chip); /* Define ECC layout */ mtd_set_ooblayout(mtd, &stm32_fmc2_nand_ooblayout_ops); /* Configure bus width to 16-bit */ if (chip->options & NAND_BUSWIDTH_16) stm32_fmc2_set_buswidth_16(fmc2, true); return 0; } static const struct nand_controller_ops stm32_fmc2_nand_controller_ops = { .attach_chip = stm32_fmc2_attach_chip, .exec_op = stm32_fmc2_exec_op, .setup_data_interface = stm32_fmc2_setup_interface, }; /* FMC2 probe */ static int stm32_fmc2_parse_child(struct stm32_fmc2_nfc *fmc2, struct device_node *dn) { struct stm32_fmc2_nand *nand = &fmc2->nand; u32 cs; int ret, i; if (!of_get_property(dn, "reg", &nand->ncs)) return -EINVAL; nand->ncs /= sizeof(u32); if (!nand->ncs) { dev_err(fmc2->dev, "invalid reg property size\n"); return -EINVAL; } for (i = 0; i < nand->ncs; i++) { ret = of_property_read_u32_index(dn, "reg", i, &cs); if (ret) { dev_err(fmc2->dev, "could not retrieve reg property: %d\n", ret); return ret; } if (cs > FMC2_MAX_CE) { dev_err(fmc2->dev, "invalid reg value: %d\n", cs); return -EINVAL; } if (fmc2->cs_assigned & BIT(cs)) { dev_err(fmc2->dev, "cs already assigned: %d\n", cs); return -EINVAL; } fmc2->cs_assigned |= BIT(cs); nand->cs_used[i] = cs; } nand_set_flash_node(&nand->chip, dn); return 0; } static int stm32_fmc2_parse_dt(struct stm32_fmc2_nfc *fmc2) { struct device_node *dn = fmc2->dev->of_node; struct device_node *child; int nchips = of_get_child_count(dn); int ret = 0; if (!nchips) { dev_err(fmc2->dev, "NAND chip not defined\n"); return -EINVAL; } if (nchips > 1) { dev_err(fmc2->dev, "too many NAND chips defined\n"); return -EINVAL; } for_each_child_of_node(dn, child) { ret = stm32_fmc2_parse_child(fmc2, child); if (ret < 0) { of_node_put(child); return ret; } } return ret; } static int stm32_fmc2_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct reset_control *rstc; struct stm32_fmc2_nfc *fmc2; struct stm32_fmc2_nand *nand; struct resource *res; struct mtd_info *mtd; struct nand_chip *chip; int chip_cs, mem_region, ret, irq; fmc2 = devm_kzalloc(dev, sizeof(*fmc2), GFP_KERNEL); if (!fmc2) return -ENOMEM; fmc2->dev = dev; nand_controller_init(&fmc2->base); fmc2->base.ops = &stm32_fmc2_nand_controller_ops; ret = stm32_fmc2_parse_dt(fmc2); if (ret) return ret; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); fmc2->io_base = devm_ioremap_resource(dev, res); if (IS_ERR(fmc2->io_base)) return PTR_ERR(fmc2->io_base); fmc2->io_phys_addr = res->start; for (chip_cs = 0, mem_region = 1; chip_cs < FMC2_MAX_CE; chip_cs++, mem_region += 3) { if (!(fmc2->cs_assigned & BIT(chip_cs))) continue; res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region); fmc2->data_base[chip_cs] = devm_ioremap_resource(dev, res); if (IS_ERR(fmc2->data_base[chip_cs])) return PTR_ERR(fmc2->data_base[chip_cs]); fmc2->data_phys_addr[chip_cs] = res->start; res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region + 1); fmc2->cmd_base[chip_cs] = devm_ioremap_resource(dev, res); if (IS_ERR(fmc2->cmd_base[chip_cs])) return PTR_ERR(fmc2->cmd_base[chip_cs]); res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region + 2); fmc2->addr_base[chip_cs] = devm_ioremap_resource(dev, res); if (IS_ERR(fmc2->addr_base[chip_cs])) return PTR_ERR(fmc2->addr_base[chip_cs]); } irq = platform_get_irq(pdev, 0); if (irq < 0) { if (irq != -EPROBE_DEFER) dev_err(dev, "IRQ error missing or invalid\n"); return irq; } ret = devm_request_irq(dev, irq, stm32_fmc2_irq, 0, dev_name(dev), fmc2); if (ret) { dev_err(dev, "failed to request irq\n"); return ret; } init_completion(&fmc2->complete); fmc2->clk = devm_clk_get(dev, NULL); if (IS_ERR(fmc2->clk)) return PTR_ERR(fmc2->clk); ret = clk_prepare_enable(fmc2->clk); if (ret) { dev_err(dev, "can not enable the clock\n"); return ret; } rstc = devm_reset_control_get(dev, NULL); if (!IS_ERR(rstc)) { reset_control_assert(rstc); reset_control_deassert(rstc); } /* DMA setup */ ret = stm32_fmc2_dma_setup(fmc2); if (ret) return ret; /* FMC2 init routine */ stm32_fmc2_init(fmc2); nand = &fmc2->nand; chip = &nand->chip; mtd = nand_to_mtd(chip); mtd->dev.parent = dev; chip->controller = &fmc2->base; chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER; /* Default ECC settings */ chip->ecc.mode = NAND_ECC_HW; chip->ecc.size = FMC2_ECC_STEP_SIZE; chip->ecc.strength = FMC2_ECC_BCH8; /* Scan to find existence of the device */ ret = nand_scan(chip, nand->ncs); if (ret) goto err_scan; ret = mtd_device_register(mtd, NULL, 0); if (ret) goto err_device_register; platform_set_drvdata(pdev, fmc2); return 0; err_device_register: nand_cleanup(chip); err_scan: if (fmc2->dma_ecc_ch) dma_release_channel(fmc2->dma_ecc_ch); if (fmc2->dma_tx_ch) dma_release_channel(fmc2->dma_tx_ch); if (fmc2->dma_rx_ch) dma_release_channel(fmc2->dma_rx_ch); sg_free_table(&fmc2->dma_data_sg); sg_free_table(&fmc2->dma_ecc_sg); clk_disable_unprepare(fmc2->clk); return ret; } static int stm32_fmc2_remove(struct platform_device *pdev) { struct stm32_fmc2_nfc *fmc2 = platform_get_drvdata(pdev); struct stm32_fmc2_nand *nand = &fmc2->nand; nand_release(&nand->chip); if (fmc2->dma_ecc_ch) dma_release_channel(fmc2->dma_ecc_ch); if (fmc2->dma_tx_ch) dma_release_channel(fmc2->dma_tx_ch); if (fmc2->dma_rx_ch) dma_release_channel(fmc2->dma_rx_ch); sg_free_table(&fmc2->dma_data_sg); sg_free_table(&fmc2->dma_ecc_sg); clk_disable_unprepare(fmc2->clk); return 0; } static int __maybe_unused stm32_fmc2_suspend(struct device *dev) { struct stm32_fmc2_nfc *fmc2 = dev_get_drvdata(dev); clk_disable_unprepare(fmc2->clk); pinctrl_pm_select_sleep_state(dev); return 0; } static int __maybe_unused stm32_fmc2_resume(struct device *dev) { struct stm32_fmc2_nfc *fmc2 = dev_get_drvdata(dev); struct stm32_fmc2_nand *nand = &fmc2->nand; int chip_cs, ret; pinctrl_pm_select_default_state(dev); ret = clk_prepare_enable(fmc2->clk); if (ret) { dev_err(dev, "can not enable the clock\n"); return ret; } stm32_fmc2_init(fmc2); for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) { if (!(fmc2->cs_assigned & BIT(chip_cs))) continue; nand_reset(&nand->chip, chip_cs); } return 0; } static SIMPLE_DEV_PM_OPS(stm32_fmc2_pm_ops, stm32_fmc2_suspend, stm32_fmc2_resume); static const struct of_device_id stm32_fmc2_match[] = { {.compatible = "st,stm32mp15-fmc2"}, {} }; MODULE_DEVICE_TABLE(of, stm32_fmc2_match); static struct platform_driver stm32_fmc2_driver = { .probe = stm32_fmc2_probe, .remove = stm32_fmc2_remove, .driver = { .name = "stm32_fmc2_nand", .of_match_table = stm32_fmc2_match, .pm = &stm32_fmc2_pm_ops, }, }; module_platform_driver(stm32_fmc2_driver); MODULE_ALIAS("platform:stm32_fmc2_nand"); MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>"); MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 nand driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1