Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chris Snook | 12909 | 94.91% | 1 | 2.04% |
Stephen Hemminger | 142 | 1.04% | 7 | 14.29% |
Jiri Pirko | 142 | 1.04% | 6 | 12.24% |
Philippe Reynes | 92 | 0.68% | 1 | 2.04% |
Kevin Hao | 39 | 0.29% | 1 | 2.04% |
Kees Cook | 34 | 0.25% | 2 | 4.08% |
Rick Jones | 28 | 0.21% | 1 | 2.04% |
Jarod Wilson | 26 | 0.19% | 1 | 2.04% |
Jesper Juhl | 26 | 0.19% | 1 | 2.04% |
Ben Hutchings | 21 | 0.15% | 1 | 2.04% |
Tejun Heo | 18 | 0.13% | 2 | 4.08% |
Patrick McHardy | 14 | 0.10% | 2 | 4.08% |
Alexey Khoroshilov | 12 | 0.09% | 1 | 2.04% |
Michał Mirosław | 12 | 0.09% | 2 | 4.08% |
Joe Perches | 11 | 0.08% | 2 | 4.08% |
Jay Cliburn | 10 | 0.07% | 1 | 2.04% |
Jiri Slaby | 10 | 0.07% | 1 | 2.04% |
Alan Jenkins | 9 | 0.07% | 1 | 2.04% |
Wang Weidong | 8 | 0.06% | 1 | 2.04% |
Yang Hongyang | 8 | 0.06% | 1 | 2.04% |
Benoit Taine | 6 | 0.04% | 1 | 2.04% |
Julia Lawall | 6 | 0.04% | 1 | 2.04% |
Sergei Shtylyov | 4 | 0.03% | 1 | 2.04% |
Wilfried Klaebe | 3 | 0.02% | 1 | 2.04% |
Mao Wenan | 2 | 0.01% | 1 | 2.04% |
Thomas Gleixner | 2 | 0.01% | 1 | 2.04% |
Bill Pemberton | 2 | 0.01% | 1 | 2.04% |
Eric Dumazet | 1 | 0.01% | 1 | 2.04% |
Colin Ian King | 1 | 0.01% | 1 | 2.04% |
Roel Kluin | 1 | 0.01% | 1 | 2.04% |
Lucas De Marchi | 1 | 0.01% | 1 | 2.04% |
Arun Sharma | 1 | 0.01% | 1 | 2.04% |
Wei Yang | 1 | 0.01% | 1 | 2.04% |
Total | 13602 | 49 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright(c) 2006 - 2007 Atheros Corporation. All rights reserved. * Copyright(c) 2007 - 2008 Chris Snook <csnook@redhat.com> * * Derived from Intel e1000 driver * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. */ #include <linux/atomic.h> #include <linux/crc32.h> #include <linux/dma-mapping.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/hardirq.h> #include <linux/if_vlan.h> #include <linux/in.h> #include <linux/interrupt.h> #include <linux/ip.h> #include <linux/irqflags.h> #include <linux/irqreturn.h> #include <linux/mii.h> #include <linux/net.h> #include <linux/netdevice.h> #include <linux/pci.h> #include <linux/pci_ids.h> #include <linux/pm.h> #include <linux/skbuff.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/string.h> #include <linux/tcp.h> #include <linux/timer.h> #include <linux/types.h> #include <linux/workqueue.h> #include "atl2.h" #define ATL2_DRV_VERSION "2.2.3" static const char atl2_driver_name[] = "atl2"; static const char atl2_driver_string[] = "Atheros(R) L2 Ethernet Driver"; static const char atl2_copyright[] = "Copyright (c) 2007 Atheros Corporation."; static const char atl2_driver_version[] = ATL2_DRV_VERSION; static const struct ethtool_ops atl2_ethtool_ops; MODULE_AUTHOR("Atheros Corporation <xiong.huang@atheros.com>, Chris Snook <csnook@redhat.com>"); MODULE_DESCRIPTION("Atheros Fast Ethernet Network Driver"); MODULE_LICENSE("GPL"); MODULE_VERSION(ATL2_DRV_VERSION); /* * atl2_pci_tbl - PCI Device ID Table */ static const struct pci_device_id atl2_pci_tbl[] = { {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2)}, /* required last entry */ {0,} }; MODULE_DEVICE_TABLE(pci, atl2_pci_tbl); static void atl2_check_options(struct atl2_adapter *adapter); /** * atl2_sw_init - Initialize general software structures (struct atl2_adapter) * @adapter: board private structure to initialize * * atl2_sw_init initializes the Adapter private data structure. * Fields are initialized based on PCI device information and * OS network device settings (MTU size). */ static int atl2_sw_init(struct atl2_adapter *adapter) { struct atl2_hw *hw = &adapter->hw; struct pci_dev *pdev = adapter->pdev; /* PCI config space info */ hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_id = pdev->subsystem_device; hw->revision_id = pdev->revision; pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); adapter->wol = 0; adapter->ict = 50000; /* ~100ms */ adapter->link_speed = SPEED_0; /* hardware init */ adapter->link_duplex = FULL_DUPLEX; hw->phy_configured = false; hw->preamble_len = 7; hw->ipgt = 0x60; hw->min_ifg = 0x50; hw->ipgr1 = 0x40; hw->ipgr2 = 0x60; hw->retry_buf = 2; hw->max_retry = 0xf; hw->lcol = 0x37; hw->jam_ipg = 7; hw->fc_rxd_hi = 0; hw->fc_rxd_lo = 0; hw->max_frame_size = adapter->netdev->mtu; spin_lock_init(&adapter->stats_lock); set_bit(__ATL2_DOWN, &adapter->flags); return 0; } /** * atl2_set_multi - Multicast and Promiscuous mode set * @netdev: network interface device structure * * The set_multi entry point is called whenever the multicast address * list or the network interface flags are updated. This routine is * responsible for configuring the hardware for proper multicast, * promiscuous mode, and all-multi behavior. */ static void atl2_set_multi(struct net_device *netdev) { struct atl2_adapter *adapter = netdev_priv(netdev); struct atl2_hw *hw = &adapter->hw; struct netdev_hw_addr *ha; u32 rctl; u32 hash_value; /* Check for Promiscuous and All Multicast modes */ rctl = ATL2_READ_REG(hw, REG_MAC_CTRL); if (netdev->flags & IFF_PROMISC) { rctl |= MAC_CTRL_PROMIS_EN; } else if (netdev->flags & IFF_ALLMULTI) { rctl |= MAC_CTRL_MC_ALL_EN; rctl &= ~MAC_CTRL_PROMIS_EN; } else rctl &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN); ATL2_WRITE_REG(hw, REG_MAC_CTRL, rctl); /* clear the old settings from the multicast hash table */ ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0); ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0); /* comoute mc addresses' hash value ,and put it into hash table */ netdev_for_each_mc_addr(ha, netdev) { hash_value = atl2_hash_mc_addr(hw, ha->addr); atl2_hash_set(hw, hash_value); } } static void init_ring_ptrs(struct atl2_adapter *adapter) { /* Read / Write Ptr Initialize: */ adapter->txd_write_ptr = 0; atomic_set(&adapter->txd_read_ptr, 0); adapter->rxd_read_ptr = 0; adapter->rxd_write_ptr = 0; atomic_set(&adapter->txs_write_ptr, 0); adapter->txs_next_clear = 0; } /** * atl2_configure - Configure Transmit&Receive Unit after Reset * @adapter: board private structure * * Configure the Tx /Rx unit of the MAC after a reset. */ static int atl2_configure(struct atl2_adapter *adapter) { struct atl2_hw *hw = &adapter->hw; u32 value; /* clear interrupt status */ ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0xffffffff); /* set MAC Address */ value = (((u32)hw->mac_addr[2]) << 24) | (((u32)hw->mac_addr[3]) << 16) | (((u32)hw->mac_addr[4]) << 8) | (((u32)hw->mac_addr[5])); ATL2_WRITE_REG(hw, REG_MAC_STA_ADDR, value); value = (((u32)hw->mac_addr[0]) << 8) | (((u32)hw->mac_addr[1])); ATL2_WRITE_REG(hw, (REG_MAC_STA_ADDR+4), value); /* HI base address */ ATL2_WRITE_REG(hw, REG_DESC_BASE_ADDR_HI, (u32)((adapter->ring_dma & 0xffffffff00000000ULL) >> 32)); /* LO base address */ ATL2_WRITE_REG(hw, REG_TXD_BASE_ADDR_LO, (u32)(adapter->txd_dma & 0x00000000ffffffffULL)); ATL2_WRITE_REG(hw, REG_TXS_BASE_ADDR_LO, (u32)(adapter->txs_dma & 0x00000000ffffffffULL)); ATL2_WRITE_REG(hw, REG_RXD_BASE_ADDR_LO, (u32)(adapter->rxd_dma & 0x00000000ffffffffULL)); /* element count */ ATL2_WRITE_REGW(hw, REG_TXD_MEM_SIZE, (u16)(adapter->txd_ring_size/4)); ATL2_WRITE_REGW(hw, REG_TXS_MEM_SIZE, (u16)adapter->txs_ring_size); ATL2_WRITE_REGW(hw, REG_RXD_BUF_NUM, (u16)adapter->rxd_ring_size); /* config Internal SRAM */ /* ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_tx_end); ATL2_WRITE_REGW(hw, REG_SRAM_TXRAM_END, sram_rx_end); */ /* config IPG/IFG */ value = (((u32)hw->ipgt & MAC_IPG_IFG_IPGT_MASK) << MAC_IPG_IFG_IPGT_SHIFT) | (((u32)hw->min_ifg & MAC_IPG_IFG_MIFG_MASK) << MAC_IPG_IFG_MIFG_SHIFT) | (((u32)hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK) << MAC_IPG_IFG_IPGR1_SHIFT)| (((u32)hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK) << MAC_IPG_IFG_IPGR2_SHIFT); ATL2_WRITE_REG(hw, REG_MAC_IPG_IFG, value); /* config Half-Duplex Control */ value = ((u32)hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) | (((u32)hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK) << MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) | MAC_HALF_DUPLX_CTRL_EXC_DEF_EN | (0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) | (((u32)hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK) << MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT); ATL2_WRITE_REG(hw, REG_MAC_HALF_DUPLX_CTRL, value); /* set Interrupt Moderator Timer */ ATL2_WRITE_REGW(hw, REG_IRQ_MODU_TIMER_INIT, adapter->imt); ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_ITIMER_EN); /* set Interrupt Clear Timer */ ATL2_WRITE_REGW(hw, REG_CMBDISDMA_TIMER, adapter->ict); /* set MTU */ ATL2_WRITE_REG(hw, REG_MTU, adapter->netdev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN); /* 1590 */ ATL2_WRITE_REG(hw, REG_TX_CUT_THRESH, 0x177); /* flow control */ ATL2_WRITE_REGW(hw, REG_PAUSE_ON_TH, hw->fc_rxd_hi); ATL2_WRITE_REGW(hw, REG_PAUSE_OFF_TH, hw->fc_rxd_lo); /* Init mailbox */ ATL2_WRITE_REGW(hw, REG_MB_TXD_WR_IDX, (u16)adapter->txd_write_ptr); ATL2_WRITE_REGW(hw, REG_MB_RXD_RD_IDX, (u16)adapter->rxd_read_ptr); /* enable DMA read/write */ ATL2_WRITE_REGB(hw, REG_DMAR, DMAR_EN); ATL2_WRITE_REGB(hw, REG_DMAW, DMAW_EN); value = ATL2_READ_REG(&adapter->hw, REG_ISR); if ((value & ISR_PHY_LINKDOWN) != 0) value = 1; /* config failed */ else value = 0; /* clear all interrupt status */ ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0x3fffffff); ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0); return value; } /** * atl2_setup_ring_resources - allocate Tx / RX descriptor resources * @adapter: board private structure * * Return 0 on success, negative on failure */ static s32 atl2_setup_ring_resources(struct atl2_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; int size; u8 offset = 0; /* real ring DMA buffer */ adapter->ring_size = size = adapter->txd_ring_size * 1 + 7 + /* dword align */ adapter->txs_ring_size * 4 + 7 + /* dword align */ adapter->rxd_ring_size * 1536 + 127; /* 128bytes align */ adapter->ring_vir_addr = pci_alloc_consistent(pdev, size, &adapter->ring_dma); if (!adapter->ring_vir_addr) return -ENOMEM; /* Init TXD Ring */ adapter->txd_dma = adapter->ring_dma ; offset = (adapter->txd_dma & 0x7) ? (8 - (adapter->txd_dma & 0x7)) : 0; adapter->txd_dma += offset; adapter->txd_ring = adapter->ring_vir_addr + offset; /* Init TXS Ring */ adapter->txs_dma = adapter->txd_dma + adapter->txd_ring_size; offset = (adapter->txs_dma & 0x7) ? (8 - (adapter->txs_dma & 0x7)) : 0; adapter->txs_dma += offset; adapter->txs_ring = (struct tx_pkt_status *) (((u8 *)adapter->txd_ring) + (adapter->txd_ring_size + offset)); /* Init RXD Ring */ adapter->rxd_dma = adapter->txs_dma + adapter->txs_ring_size * 4; offset = (adapter->rxd_dma & 127) ? (128 - (adapter->rxd_dma & 127)) : 0; if (offset > 7) offset -= 8; else offset += (128 - 8); adapter->rxd_dma += offset; adapter->rxd_ring = (struct rx_desc *) (((u8 *)adapter->txs_ring) + (adapter->txs_ring_size * 4 + offset)); /* * Read / Write Ptr Initialize: * init_ring_ptrs(adapter); */ return 0; } /** * atl2_irq_enable - Enable default interrupt generation settings * @adapter: board private structure */ static inline void atl2_irq_enable(struct atl2_adapter *adapter) { ATL2_WRITE_REG(&adapter->hw, REG_IMR, IMR_NORMAL_MASK); ATL2_WRITE_FLUSH(&adapter->hw); } /** * atl2_irq_disable - Mask off interrupt generation on the NIC * @adapter: board private structure */ static inline void atl2_irq_disable(struct atl2_adapter *adapter) { ATL2_WRITE_REG(&adapter->hw, REG_IMR, 0); ATL2_WRITE_FLUSH(&adapter->hw); synchronize_irq(adapter->pdev->irq); } static void __atl2_vlan_mode(netdev_features_t features, u32 *ctrl) { if (features & NETIF_F_HW_VLAN_CTAG_RX) { /* enable VLAN tag insert/strip */ *ctrl |= MAC_CTRL_RMV_VLAN; } else { /* disable VLAN tag insert/strip */ *ctrl &= ~MAC_CTRL_RMV_VLAN; } } static void atl2_vlan_mode(struct net_device *netdev, netdev_features_t features) { struct atl2_adapter *adapter = netdev_priv(netdev); u32 ctrl; atl2_irq_disable(adapter); ctrl = ATL2_READ_REG(&adapter->hw, REG_MAC_CTRL); __atl2_vlan_mode(features, &ctrl); ATL2_WRITE_REG(&adapter->hw, REG_MAC_CTRL, ctrl); atl2_irq_enable(adapter); } static void atl2_restore_vlan(struct atl2_adapter *adapter) { atl2_vlan_mode(adapter->netdev, adapter->netdev->features); } static netdev_features_t atl2_fix_features(struct net_device *netdev, netdev_features_t features) { /* * Since there is no support for separate rx/tx vlan accel * enable/disable make sure tx flag is always in same state as rx. */ if (features & NETIF_F_HW_VLAN_CTAG_RX) features |= NETIF_F_HW_VLAN_CTAG_TX; else features &= ~NETIF_F_HW_VLAN_CTAG_TX; return features; } static int atl2_set_features(struct net_device *netdev, netdev_features_t features) { netdev_features_t changed = netdev->features ^ features; if (changed & NETIF_F_HW_VLAN_CTAG_RX) atl2_vlan_mode(netdev, features); return 0; } static void atl2_intr_rx(struct atl2_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct rx_desc *rxd; struct sk_buff *skb; do { rxd = adapter->rxd_ring+adapter->rxd_write_ptr; if (!rxd->status.update) break; /* end of tx */ /* clear this flag at once */ rxd->status.update = 0; if (rxd->status.ok && rxd->status.pkt_size >= 60) { int rx_size = (int)(rxd->status.pkt_size - 4); /* alloc new buffer */ skb = netdev_alloc_skb_ip_align(netdev, rx_size); if (NULL == skb) { /* * Check that some rx space is free. If not, * free one and mark stats->rx_dropped++. */ netdev->stats.rx_dropped++; break; } memcpy(skb->data, rxd->packet, rx_size); skb_put(skb, rx_size); skb->protocol = eth_type_trans(skb, netdev); if (rxd->status.vlan) { u16 vlan_tag = (rxd->status.vtag>>4) | ((rxd->status.vtag&7) << 13) | ((rxd->status.vtag&8) << 9); __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); } netif_rx(skb); netdev->stats.rx_bytes += rx_size; netdev->stats.rx_packets++; } else { netdev->stats.rx_errors++; if (rxd->status.ok && rxd->status.pkt_size <= 60) netdev->stats.rx_length_errors++; if (rxd->status.mcast) netdev->stats.multicast++; if (rxd->status.crc) netdev->stats.rx_crc_errors++; if (rxd->status.align) netdev->stats.rx_frame_errors++; } /* advance write ptr */ if (++adapter->rxd_write_ptr == adapter->rxd_ring_size) adapter->rxd_write_ptr = 0; } while (1); /* update mailbox? */ adapter->rxd_read_ptr = adapter->rxd_write_ptr; ATL2_WRITE_REGW(&adapter->hw, REG_MB_RXD_RD_IDX, adapter->rxd_read_ptr); } static void atl2_intr_tx(struct atl2_adapter *adapter) { struct net_device *netdev = adapter->netdev; u32 txd_read_ptr; u32 txs_write_ptr; struct tx_pkt_status *txs; struct tx_pkt_header *txph; int free_hole = 0; do { txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr); txs = adapter->txs_ring + txs_write_ptr; if (!txs->update) break; /* tx stop here */ free_hole = 1; txs->update = 0; if (++txs_write_ptr == adapter->txs_ring_size) txs_write_ptr = 0; atomic_set(&adapter->txs_write_ptr, (int)txs_write_ptr); txd_read_ptr = (u32) atomic_read(&adapter->txd_read_ptr); txph = (struct tx_pkt_header *) (((u8 *)adapter->txd_ring) + txd_read_ptr); if (txph->pkt_size != txs->pkt_size) { struct tx_pkt_status *old_txs = txs; printk(KERN_WARNING "%s: txs packet size not consistent with txd" " txd_:0x%08x, txs_:0x%08x!\n", adapter->netdev->name, *(u32 *)txph, *(u32 *)txs); printk(KERN_WARNING "txd read ptr: 0x%x\n", txd_read_ptr); txs = adapter->txs_ring + txs_write_ptr; printk(KERN_WARNING "txs-behind:0x%08x\n", *(u32 *)txs); if (txs_write_ptr < 2) { txs = adapter->txs_ring + (adapter->txs_ring_size + txs_write_ptr - 2); } else { txs = adapter->txs_ring + (txs_write_ptr - 2); } printk(KERN_WARNING "txs-before:0x%08x\n", *(u32 *)txs); txs = old_txs; } /* 4for TPH */ txd_read_ptr += (((u32)(txph->pkt_size) + 7) & ~3); if (txd_read_ptr >= adapter->txd_ring_size) txd_read_ptr -= adapter->txd_ring_size; atomic_set(&adapter->txd_read_ptr, (int)txd_read_ptr); /* tx statistics: */ if (txs->ok) { netdev->stats.tx_bytes += txs->pkt_size; netdev->stats.tx_packets++; } else netdev->stats.tx_errors++; if (txs->defer) netdev->stats.collisions++; if (txs->abort_col) netdev->stats.tx_aborted_errors++; if (txs->late_col) netdev->stats.tx_window_errors++; if (txs->underrun) netdev->stats.tx_fifo_errors++; } while (1); if (free_hole) { if (netif_queue_stopped(adapter->netdev) && netif_carrier_ok(adapter->netdev)) netif_wake_queue(adapter->netdev); } } static void atl2_check_for_link(struct atl2_adapter *adapter) { struct net_device *netdev = adapter->netdev; u16 phy_data = 0; spin_lock(&adapter->stats_lock); atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data); atl2_read_phy_reg(&adapter->hw, MII_BMSR, &phy_data); spin_unlock(&adapter->stats_lock); /* notify upper layer link down ASAP */ if (!(phy_data & BMSR_LSTATUS)) { /* Link Down */ if (netif_carrier_ok(netdev)) { /* old link state: Up */ printk(KERN_INFO "%s: %s NIC Link is Down\n", atl2_driver_name, netdev->name); adapter->link_speed = SPEED_0; netif_carrier_off(netdev); netif_stop_queue(netdev); } } schedule_work(&adapter->link_chg_task); } static inline void atl2_clear_phy_int(struct atl2_adapter *adapter) { u16 phy_data; spin_lock(&adapter->stats_lock); atl2_read_phy_reg(&adapter->hw, 19, &phy_data); spin_unlock(&adapter->stats_lock); } /** * atl2_intr - Interrupt Handler * @irq: interrupt number * @data: pointer to a network interface device structure */ static irqreturn_t atl2_intr(int irq, void *data) { struct atl2_adapter *adapter = netdev_priv(data); struct atl2_hw *hw = &adapter->hw; u32 status; status = ATL2_READ_REG(hw, REG_ISR); if (0 == status) return IRQ_NONE; /* link event */ if (status & ISR_PHY) atl2_clear_phy_int(adapter); /* clear ISR status, and Enable CMB DMA/Disable Interrupt */ ATL2_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT); /* check if PCIE PHY Link down */ if (status & ISR_PHY_LINKDOWN) { if (netif_running(adapter->netdev)) { /* reset MAC */ ATL2_WRITE_REG(hw, REG_ISR, 0); ATL2_WRITE_REG(hw, REG_IMR, 0); ATL2_WRITE_FLUSH(hw); schedule_work(&adapter->reset_task); return IRQ_HANDLED; } } /* check if DMA read/write error? */ if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) { ATL2_WRITE_REG(hw, REG_ISR, 0); ATL2_WRITE_REG(hw, REG_IMR, 0); ATL2_WRITE_FLUSH(hw); schedule_work(&adapter->reset_task); return IRQ_HANDLED; } /* link event */ if (status & (ISR_PHY | ISR_MANUAL)) { adapter->netdev->stats.tx_carrier_errors++; atl2_check_for_link(adapter); } /* transmit event */ if (status & ISR_TX_EVENT) atl2_intr_tx(adapter); /* rx exception */ if (status & ISR_RX_EVENT) atl2_intr_rx(adapter); /* re-enable Interrupt */ ATL2_WRITE_REG(&adapter->hw, REG_ISR, 0); return IRQ_HANDLED; } static int atl2_request_irq(struct atl2_adapter *adapter) { struct net_device *netdev = adapter->netdev; int flags, err = 0; flags = IRQF_SHARED; adapter->have_msi = true; err = pci_enable_msi(adapter->pdev); if (err) adapter->have_msi = false; if (adapter->have_msi) flags &= ~IRQF_SHARED; return request_irq(adapter->pdev->irq, atl2_intr, flags, netdev->name, netdev); } /** * atl2_free_ring_resources - Free Tx / RX descriptor Resources * @adapter: board private structure * * Free all transmit software resources */ static void atl2_free_ring_resources(struct atl2_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; pci_free_consistent(pdev, adapter->ring_size, adapter->ring_vir_addr, adapter->ring_dma); } /** * atl2_open - Called when a network interface is made active * @netdev: network interface device structure * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog timer is started, * and the stack is notified that the interface is ready. */ static int atl2_open(struct net_device *netdev) { struct atl2_adapter *adapter = netdev_priv(netdev); int err; u32 val; /* disallow open during test */ if (test_bit(__ATL2_TESTING, &adapter->flags)) return -EBUSY; /* allocate transmit descriptors */ err = atl2_setup_ring_resources(adapter); if (err) return err; err = atl2_init_hw(&adapter->hw); if (err) { err = -EIO; goto err_init_hw; } /* hardware has been reset, we need to reload some things */ atl2_set_multi(netdev); init_ring_ptrs(adapter); atl2_restore_vlan(adapter); if (atl2_configure(adapter)) { err = -EIO; goto err_config; } err = atl2_request_irq(adapter); if (err) goto err_req_irq; clear_bit(__ATL2_DOWN, &adapter->flags); mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 4*HZ)); val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL); ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, val | MASTER_CTRL_MANUAL_INT); atl2_irq_enable(adapter); return 0; err_init_hw: err_req_irq: err_config: atl2_free_ring_resources(adapter); atl2_reset_hw(&adapter->hw); return err; } static void atl2_down(struct atl2_adapter *adapter) { struct net_device *netdev = adapter->netdev; /* signal that we're down so the interrupt handler does not * reschedule our watchdog timer */ set_bit(__ATL2_DOWN, &adapter->flags); netif_tx_disable(netdev); /* reset MAC to disable all RX/TX */ atl2_reset_hw(&adapter->hw); msleep(1); atl2_irq_disable(adapter); del_timer_sync(&adapter->watchdog_timer); del_timer_sync(&adapter->phy_config_timer); clear_bit(0, &adapter->cfg_phy); netif_carrier_off(netdev); adapter->link_speed = SPEED_0; adapter->link_duplex = -1; } static void atl2_free_irq(struct atl2_adapter *adapter) { struct net_device *netdev = adapter->netdev; free_irq(adapter->pdev->irq, netdev); #ifdef CONFIG_PCI_MSI if (adapter->have_msi) pci_disable_msi(adapter->pdev); #endif } /** * atl2_close - Disables a network interface * @netdev: network interface device structure * * Returns 0, this is not allowed to fail * * The close entry point is called when an interface is de-activated * by the OS. The hardware is still under the drivers control, but * needs to be disabled. A global MAC reset is issued to stop the * hardware, and all transmit and receive resources are freed. */ static int atl2_close(struct net_device *netdev) { struct atl2_adapter *adapter = netdev_priv(netdev); WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags)); atl2_down(adapter); atl2_free_irq(adapter); atl2_free_ring_resources(adapter); return 0; } static inline int TxsFreeUnit(struct atl2_adapter *adapter) { u32 txs_write_ptr = (u32) atomic_read(&adapter->txs_write_ptr); return (adapter->txs_next_clear >= txs_write_ptr) ? (int) (adapter->txs_ring_size - adapter->txs_next_clear + txs_write_ptr - 1) : (int) (txs_write_ptr - adapter->txs_next_clear - 1); } static inline int TxdFreeBytes(struct atl2_adapter *adapter) { u32 txd_read_ptr = (u32)atomic_read(&adapter->txd_read_ptr); return (adapter->txd_write_ptr >= txd_read_ptr) ? (int) (adapter->txd_ring_size - adapter->txd_write_ptr + txd_read_ptr - 1) : (int) (txd_read_ptr - adapter->txd_write_ptr - 1); } static netdev_tx_t atl2_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { struct atl2_adapter *adapter = netdev_priv(netdev); struct tx_pkt_header *txph; u32 offset, copy_len; int txs_unused; int txbuf_unused; if (test_bit(__ATL2_DOWN, &adapter->flags)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } if (unlikely(skb->len <= 0)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } txs_unused = TxsFreeUnit(adapter); txbuf_unused = TxdFreeBytes(adapter); if (skb->len + sizeof(struct tx_pkt_header) + 4 > txbuf_unused || txs_unused < 1) { /* not enough resources */ netif_stop_queue(netdev); return NETDEV_TX_BUSY; } offset = adapter->txd_write_ptr; txph = (struct tx_pkt_header *) (((u8 *)adapter->txd_ring) + offset); *(u32 *)txph = 0; txph->pkt_size = skb->len; offset += 4; if (offset >= adapter->txd_ring_size) offset -= adapter->txd_ring_size; copy_len = adapter->txd_ring_size - offset; if (copy_len >= skb->len) { memcpy(((u8 *)adapter->txd_ring) + offset, skb->data, skb->len); offset += ((u32)(skb->len + 3) & ~3); } else { memcpy(((u8 *)adapter->txd_ring)+offset, skb->data, copy_len); memcpy((u8 *)adapter->txd_ring, skb->data+copy_len, skb->len-copy_len); offset = ((u32)(skb->len-copy_len + 3) & ~3); } #ifdef NETIF_F_HW_VLAN_CTAG_TX if (skb_vlan_tag_present(skb)) { u16 vlan_tag = skb_vlan_tag_get(skb); vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) | ((vlan_tag >> 9) & 0x8); txph->ins_vlan = 1; txph->vlan = vlan_tag; } #endif if (offset >= adapter->txd_ring_size) offset -= adapter->txd_ring_size; adapter->txd_write_ptr = offset; /* clear txs before send */ adapter->txs_ring[adapter->txs_next_clear].update = 0; if (++adapter->txs_next_clear == adapter->txs_ring_size) adapter->txs_next_clear = 0; ATL2_WRITE_REGW(&adapter->hw, REG_MB_TXD_WR_IDX, (adapter->txd_write_ptr >> 2)); dev_consume_skb_any(skb); return NETDEV_TX_OK; } /** * atl2_change_mtu - Change the Maximum Transfer Unit * @netdev: network interface device structure * @new_mtu: new value for maximum frame size * * Returns 0 on success, negative on failure */ static int atl2_change_mtu(struct net_device *netdev, int new_mtu) { struct atl2_adapter *adapter = netdev_priv(netdev); struct atl2_hw *hw = &adapter->hw; /* set MTU */ netdev->mtu = new_mtu; hw->max_frame_size = new_mtu; ATL2_WRITE_REG(hw, REG_MTU, new_mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN); return 0; } /** * atl2_set_mac - Change the Ethernet Address of the NIC * @netdev: network interface device structure * @p: pointer to an address structure * * Returns 0 on success, negative on failure */ static int atl2_set_mac(struct net_device *netdev, void *p) { struct atl2_adapter *adapter = netdev_priv(netdev); struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; if (netif_running(netdev)) return -EBUSY; memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len); atl2_set_mac_addr(&adapter->hw); return 0; } static int atl2_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct atl2_adapter *adapter = netdev_priv(netdev); struct mii_ioctl_data *data = if_mii(ifr); unsigned long flags; switch (cmd) { case SIOCGMIIPHY: data->phy_id = 0; break; case SIOCGMIIREG: spin_lock_irqsave(&adapter->stats_lock, flags); if (atl2_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, &data->val_out)) { spin_unlock_irqrestore(&adapter->stats_lock, flags); return -EIO; } spin_unlock_irqrestore(&adapter->stats_lock, flags); break; case SIOCSMIIREG: if (data->reg_num & ~(0x1F)) return -EFAULT; spin_lock_irqsave(&adapter->stats_lock, flags); if (atl2_write_phy_reg(&adapter->hw, data->reg_num, data->val_in)) { spin_unlock_irqrestore(&adapter->stats_lock, flags); return -EIO; } spin_unlock_irqrestore(&adapter->stats_lock, flags); break; default: return -EOPNOTSUPP; } return 0; } static int atl2_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { switch (cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: return atl2_mii_ioctl(netdev, ifr, cmd); #ifdef ETHTOOL_OPS_COMPAT case SIOCETHTOOL: return ethtool_ioctl(ifr); #endif default: return -EOPNOTSUPP; } } /** * atl2_tx_timeout - Respond to a Tx Hang * @netdev: network interface device structure */ static void atl2_tx_timeout(struct net_device *netdev) { struct atl2_adapter *adapter = netdev_priv(netdev); /* Do the reset outside of interrupt context */ schedule_work(&adapter->reset_task); } /** * atl2_watchdog - Timer Call-back * @data: pointer to netdev cast into an unsigned long */ static void atl2_watchdog(struct timer_list *t) { struct atl2_adapter *adapter = from_timer(adapter, t, watchdog_timer); if (!test_bit(__ATL2_DOWN, &adapter->flags)) { u32 drop_rxd, drop_rxs; unsigned long flags; spin_lock_irqsave(&adapter->stats_lock, flags); drop_rxd = ATL2_READ_REG(&adapter->hw, REG_STS_RXD_OV); drop_rxs = ATL2_READ_REG(&adapter->hw, REG_STS_RXS_OV); spin_unlock_irqrestore(&adapter->stats_lock, flags); adapter->netdev->stats.rx_over_errors += drop_rxd + drop_rxs; /* Reset the timer */ mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 4 * HZ)); } } /** * atl2_phy_config - Timer Call-back * @data: pointer to netdev cast into an unsigned long */ static void atl2_phy_config(struct timer_list *t) { struct atl2_adapter *adapter = from_timer(adapter, t, phy_config_timer); struct atl2_hw *hw = &adapter->hw; unsigned long flags; spin_lock_irqsave(&adapter->stats_lock, flags); atl2_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg); atl2_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); spin_unlock_irqrestore(&adapter->stats_lock, flags); clear_bit(0, &adapter->cfg_phy); } static int atl2_up(struct atl2_adapter *adapter) { struct net_device *netdev = adapter->netdev; int err = 0; u32 val; /* hardware has been reset, we need to reload some things */ err = atl2_init_hw(&adapter->hw); if (err) { err = -EIO; return err; } atl2_set_multi(netdev); init_ring_ptrs(adapter); atl2_restore_vlan(adapter); if (atl2_configure(adapter)) { err = -EIO; goto err_up; } clear_bit(__ATL2_DOWN, &adapter->flags); val = ATL2_READ_REG(&adapter->hw, REG_MASTER_CTRL); ATL2_WRITE_REG(&adapter->hw, REG_MASTER_CTRL, val | MASTER_CTRL_MANUAL_INT); atl2_irq_enable(adapter); err_up: return err; } static void atl2_reinit_locked(struct atl2_adapter *adapter) { WARN_ON(in_interrupt()); while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags)) msleep(1); atl2_down(adapter); atl2_up(adapter); clear_bit(__ATL2_RESETTING, &adapter->flags); } static void atl2_reset_task(struct work_struct *work) { struct atl2_adapter *adapter; adapter = container_of(work, struct atl2_adapter, reset_task); atl2_reinit_locked(adapter); } static void atl2_setup_mac_ctrl(struct atl2_adapter *adapter) { u32 value; struct atl2_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; /* Config MAC CTRL Register */ value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY; /* duplex */ if (FULL_DUPLEX == adapter->link_duplex) value |= MAC_CTRL_DUPLX; /* flow control */ value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW); /* PAD & CRC */ value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD); /* preamble length */ value |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT); /* vlan */ __atl2_vlan_mode(netdev->features, &value); /* filter mode */ value |= MAC_CTRL_BC_EN; if (netdev->flags & IFF_PROMISC) value |= MAC_CTRL_PROMIS_EN; else if (netdev->flags & IFF_ALLMULTI) value |= MAC_CTRL_MC_ALL_EN; /* half retry buffer */ value |= (((u32)(adapter->hw.retry_buf & MAC_CTRL_HALF_LEFT_BUF_MASK)) << MAC_CTRL_HALF_LEFT_BUF_SHIFT); ATL2_WRITE_REG(hw, REG_MAC_CTRL, value); } static int atl2_check_link(struct atl2_adapter *adapter) { struct atl2_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; int ret_val; u16 speed, duplex, phy_data; int reconfig = 0; /* MII_BMSR must read twise */ atl2_read_phy_reg(hw, MII_BMSR, &phy_data); atl2_read_phy_reg(hw, MII_BMSR, &phy_data); if (!(phy_data&BMSR_LSTATUS)) { /* link down */ if (netif_carrier_ok(netdev)) { /* old link state: Up */ u32 value; /* disable rx */ value = ATL2_READ_REG(hw, REG_MAC_CTRL); value &= ~MAC_CTRL_RX_EN; ATL2_WRITE_REG(hw, REG_MAC_CTRL, value); adapter->link_speed = SPEED_0; netif_carrier_off(netdev); netif_stop_queue(netdev); } return 0; } /* Link Up */ ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex); if (ret_val) return ret_val; switch (hw->MediaType) { case MEDIA_TYPE_100M_FULL: if (speed != SPEED_100 || duplex != FULL_DUPLEX) reconfig = 1; break; case MEDIA_TYPE_100M_HALF: if (speed != SPEED_100 || duplex != HALF_DUPLEX) reconfig = 1; break; case MEDIA_TYPE_10M_FULL: if (speed != SPEED_10 || duplex != FULL_DUPLEX) reconfig = 1; break; case MEDIA_TYPE_10M_HALF: if (speed != SPEED_10 || duplex != HALF_DUPLEX) reconfig = 1; break; } /* link result is our setting */ if (reconfig == 0) { if (adapter->link_speed != speed || adapter->link_duplex != duplex) { adapter->link_speed = speed; adapter->link_duplex = duplex; atl2_setup_mac_ctrl(adapter); printk(KERN_INFO "%s: %s NIC Link is Up<%d Mbps %s>\n", atl2_driver_name, netdev->name, adapter->link_speed, adapter->link_duplex == FULL_DUPLEX ? "Full Duplex" : "Half Duplex"); } if (!netif_carrier_ok(netdev)) { /* Link down -> Up */ netif_carrier_on(netdev); netif_wake_queue(netdev); } return 0; } /* change original link status */ if (netif_carrier_ok(netdev)) { u32 value; /* disable rx */ value = ATL2_READ_REG(hw, REG_MAC_CTRL); value &= ~MAC_CTRL_RX_EN; ATL2_WRITE_REG(hw, REG_MAC_CTRL, value); adapter->link_speed = SPEED_0; netif_carrier_off(netdev); netif_stop_queue(netdev); } /* auto-neg, insert timer to re-config phy * (if interval smaller than 5 seconds, something strange) */ if (!test_bit(__ATL2_DOWN, &adapter->flags)) { if (!test_and_set_bit(0, &adapter->cfg_phy)) mod_timer(&adapter->phy_config_timer, round_jiffies(jiffies + 5 * HZ)); } return 0; } /** * atl2_link_chg_task - deal with link change event Out of interrupt context */ static void atl2_link_chg_task(struct work_struct *work) { struct atl2_adapter *adapter; unsigned long flags; adapter = container_of(work, struct atl2_adapter, link_chg_task); spin_lock_irqsave(&adapter->stats_lock, flags); atl2_check_link(adapter); spin_unlock_irqrestore(&adapter->stats_lock, flags); } static void atl2_setup_pcicmd(struct pci_dev *pdev) { u16 cmd; pci_read_config_word(pdev, PCI_COMMAND, &cmd); if (cmd & PCI_COMMAND_INTX_DISABLE) cmd &= ~PCI_COMMAND_INTX_DISABLE; if (cmd & PCI_COMMAND_IO) cmd &= ~PCI_COMMAND_IO; if (0 == (cmd & PCI_COMMAND_MEMORY)) cmd |= PCI_COMMAND_MEMORY; if (0 == (cmd & PCI_COMMAND_MASTER)) cmd |= PCI_COMMAND_MASTER; pci_write_config_word(pdev, PCI_COMMAND, cmd); /* * some motherboards BIOS(PXE/EFI) driver may set PME * while they transfer control to OS (Windows/Linux) * so we should clear this bit before NIC work normally */ pci_write_config_dword(pdev, REG_PM_CTRLSTAT, 0); } #ifdef CONFIG_NET_POLL_CONTROLLER static void atl2_poll_controller(struct net_device *netdev) { disable_irq(netdev->irq); atl2_intr(netdev->irq, netdev); enable_irq(netdev->irq); } #endif static const struct net_device_ops atl2_netdev_ops = { .ndo_open = atl2_open, .ndo_stop = atl2_close, .ndo_start_xmit = atl2_xmit_frame, .ndo_set_rx_mode = atl2_set_multi, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = atl2_set_mac, .ndo_change_mtu = atl2_change_mtu, .ndo_fix_features = atl2_fix_features, .ndo_set_features = atl2_set_features, .ndo_do_ioctl = atl2_ioctl, .ndo_tx_timeout = atl2_tx_timeout, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = atl2_poll_controller, #endif }; /** * atl2_probe - Device Initialization Routine * @pdev: PCI device information struct * @ent: entry in atl2_pci_tbl * * Returns 0 on success, negative on failure * * atl2_probe initializes an adapter identified by a pci_dev structure. * The OS initialization, configuring of the adapter private structure, * and a hardware reset occur. */ static int atl2_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct atl2_adapter *adapter; static int cards_found = 0; unsigned long mmio_start; int mmio_len; int err; err = pci_enable_device(pdev); if (err) return err; /* * atl2 is a shared-high-32-bit device, so we're stuck with 32-bit DMA * until the kernel has the proper infrastructure to support 64-bit DMA * on these devices. */ if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) && pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) { printk(KERN_ERR "atl2: No usable DMA configuration, aborting\n"); err = -EIO; goto err_dma; } /* Mark all PCI regions associated with PCI device * pdev as being reserved by owner atl2_driver_name */ err = pci_request_regions(pdev, atl2_driver_name); if (err) goto err_pci_reg; /* Enables bus-mastering on the device and calls * pcibios_set_master to do the needed arch specific settings */ pci_set_master(pdev); netdev = alloc_etherdev(sizeof(struct atl2_adapter)); if (!netdev) { err = -ENOMEM; goto err_alloc_etherdev; } SET_NETDEV_DEV(netdev, &pdev->dev); pci_set_drvdata(pdev, netdev); adapter = netdev_priv(netdev); adapter->netdev = netdev; adapter->pdev = pdev; adapter->hw.back = adapter; mmio_start = pci_resource_start(pdev, 0x0); mmio_len = pci_resource_len(pdev, 0x0); adapter->hw.mem_rang = (u32)mmio_len; adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); if (!adapter->hw.hw_addr) { err = -EIO; goto err_ioremap; } atl2_setup_pcicmd(pdev); netdev->netdev_ops = &atl2_netdev_ops; netdev->ethtool_ops = &atl2_ethtool_ops; netdev->watchdog_timeo = 5 * HZ; netdev->min_mtu = 40; netdev->max_mtu = ETH_DATA_LEN + VLAN_HLEN; strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); netdev->mem_start = mmio_start; netdev->mem_end = mmio_start + mmio_len; adapter->bd_number = cards_found; adapter->pci_using_64 = false; /* setup the private structure */ err = atl2_sw_init(adapter); if (err) goto err_sw_init; netdev->hw_features = NETIF_F_HW_VLAN_CTAG_RX; netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX); /* Init PHY as early as possible due to power saving issue */ atl2_phy_init(&adapter->hw); /* reset the controller to * put the device in a known good starting state */ if (atl2_reset_hw(&adapter->hw)) { err = -EIO; goto err_reset; } /* copy the MAC address out of the EEPROM */ atl2_read_mac_addr(&adapter->hw); memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len); if (!is_valid_ether_addr(netdev->dev_addr)) { err = -EIO; goto err_eeprom; } atl2_check_options(adapter); timer_setup(&adapter->watchdog_timer, atl2_watchdog, 0); timer_setup(&adapter->phy_config_timer, atl2_phy_config, 0); INIT_WORK(&adapter->reset_task, atl2_reset_task); INIT_WORK(&adapter->link_chg_task, atl2_link_chg_task); strcpy(netdev->name, "eth%d"); /* ?? */ err = register_netdev(netdev); if (err) goto err_register; /* assume we have no link for now */ netif_carrier_off(netdev); netif_stop_queue(netdev); cards_found++; return 0; err_reset: err_register: err_sw_init: err_eeprom: iounmap(adapter->hw.hw_addr); err_ioremap: free_netdev(netdev); err_alloc_etherdev: pci_release_regions(pdev); err_pci_reg: err_dma: pci_disable_device(pdev); return err; } /** * atl2_remove - Device Removal Routine * @pdev: PCI device information struct * * atl2_remove is called by the PCI subsystem to alert the driver * that it should release a PCI device. The could be caused by a * Hot-Plug event, or because the driver is going to be removed from * memory. */ /* FIXME: write the original MAC address back in case it was changed from a * BIOS-set value, as in atl1 -- CHS */ static void atl2_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl2_adapter *adapter = netdev_priv(netdev); /* flush_scheduled work may reschedule our watchdog task, so * explicitly disable watchdog tasks from being rescheduled */ set_bit(__ATL2_DOWN, &adapter->flags); del_timer_sync(&adapter->watchdog_timer); del_timer_sync(&adapter->phy_config_timer); cancel_work_sync(&adapter->reset_task); cancel_work_sync(&adapter->link_chg_task); unregister_netdev(netdev); atl2_force_ps(&adapter->hw); iounmap(adapter->hw.hw_addr); pci_release_regions(pdev); free_netdev(netdev); pci_disable_device(pdev); } static int atl2_suspend(struct pci_dev *pdev, pm_message_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl2_adapter *adapter = netdev_priv(netdev); struct atl2_hw *hw = &adapter->hw; u16 speed, duplex; u32 ctrl = 0; u32 wufc = adapter->wol; #ifdef CONFIG_PM int retval = 0; #endif netif_device_detach(netdev); if (netif_running(netdev)) { WARN_ON(test_bit(__ATL2_RESETTING, &adapter->flags)); atl2_down(adapter); } #ifdef CONFIG_PM retval = pci_save_state(pdev); if (retval) return retval; #endif atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl); atl2_read_phy_reg(hw, MII_BMSR, (u16 *)&ctrl); if (ctrl & BMSR_LSTATUS) wufc &= ~ATLX_WUFC_LNKC; if (0 != (ctrl & BMSR_LSTATUS) && 0 != wufc) { u32 ret_val; /* get current link speed & duplex */ ret_val = atl2_get_speed_and_duplex(hw, &speed, &duplex); if (ret_val) { printk(KERN_DEBUG "%s: get speed&duplex error while suspend\n", atl2_driver_name); goto wol_dis; } ctrl = 0; /* turn on magic packet wol */ if (wufc & ATLX_WUFC_MAG) ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN); /* ignore Link Chg event when Link is up */ ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl); /* Config MAC CTRL Register */ ctrl = MAC_CTRL_RX_EN | MAC_CTRL_MACLP_CLK_PHY; if (FULL_DUPLEX == adapter->link_duplex) ctrl |= MAC_CTRL_DUPLX; ctrl |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD); ctrl |= (((u32)adapter->hw.preamble_len & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT); ctrl |= (((u32)(adapter->hw.retry_buf & MAC_CTRL_HALF_LEFT_BUF_MASK)) << MAC_CTRL_HALF_LEFT_BUF_SHIFT); if (wufc & ATLX_WUFC_MAG) { /* magic packet maybe Broadcast&multicast&Unicast */ ctrl |= MAC_CTRL_BC_EN; } ATL2_WRITE_REG(hw, REG_MAC_CTRL, ctrl); /* pcie patch */ ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC); ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl); ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1); ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK; ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl); pci_enable_wake(pdev, pci_choose_state(pdev, state), 1); goto suspend_exit; } if (0 == (ctrl&BMSR_LSTATUS) && 0 != (wufc&ATLX_WUFC_LNKC)) { /* link is down, so only LINK CHG WOL event enable */ ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN); ATL2_WRITE_REG(hw, REG_WOL_CTRL, ctrl); ATL2_WRITE_REG(hw, REG_MAC_CTRL, 0); /* pcie patch */ ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC); ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl); ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1); ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK; ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl); hw->phy_configured = false; /* re-init PHY when resume */ pci_enable_wake(pdev, pci_choose_state(pdev, state), 1); goto suspend_exit; } wol_dis: /* WOL disabled */ ATL2_WRITE_REG(hw, REG_WOL_CTRL, 0); /* pcie patch */ ctrl = ATL2_READ_REG(hw, REG_PCIE_PHYMISC); ctrl |= PCIE_PHYMISC_FORCE_RCV_DET; ATL2_WRITE_REG(hw, REG_PCIE_PHYMISC, ctrl); ctrl = ATL2_READ_REG(hw, REG_PCIE_DLL_TX_CTRL1); ctrl |= PCIE_DLL_TX_CTRL1_SEL_NOR_CLK; ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, ctrl); atl2_force_ps(hw); hw->phy_configured = false; /* re-init PHY when resume */ pci_enable_wake(pdev, pci_choose_state(pdev, state), 0); suspend_exit: if (netif_running(netdev)) atl2_free_irq(adapter); pci_disable_device(pdev); pci_set_power_state(pdev, pci_choose_state(pdev, state)); return 0; } #ifdef CONFIG_PM static int atl2_resume(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl2_adapter *adapter = netdev_priv(netdev); u32 err; pci_set_power_state(pdev, PCI_D0); pci_restore_state(pdev); err = pci_enable_device(pdev); if (err) { printk(KERN_ERR "atl2: Cannot enable PCI device from suspend\n"); return err; } pci_set_master(pdev); ATL2_READ_REG(&adapter->hw, REG_WOL_CTRL); /* clear WOL status */ pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); ATL2_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0); if (netif_running(netdev)) { err = atl2_request_irq(adapter); if (err) return err; } atl2_reset_hw(&adapter->hw); if (netif_running(netdev)) atl2_up(adapter); netif_device_attach(netdev); return 0; } #endif static void atl2_shutdown(struct pci_dev *pdev) { atl2_suspend(pdev, PMSG_SUSPEND); } static struct pci_driver atl2_driver = { .name = atl2_driver_name, .id_table = atl2_pci_tbl, .probe = atl2_probe, .remove = atl2_remove, /* Power Management Hooks */ .suspend = atl2_suspend, #ifdef CONFIG_PM .resume = atl2_resume, #endif .shutdown = atl2_shutdown, }; /** * atl2_init_module - Driver Registration Routine * * atl2_init_module is the first routine called when the driver is * loaded. All it does is register with the PCI subsystem. */ static int __init atl2_init_module(void) { printk(KERN_INFO "%s - version %s\n", atl2_driver_string, atl2_driver_version); printk(KERN_INFO "%s\n", atl2_copyright); return pci_register_driver(&atl2_driver); } module_init(atl2_init_module); /** * atl2_exit_module - Driver Exit Cleanup Routine * * atl2_exit_module is called just before the driver is removed * from memory. */ static void __exit atl2_exit_module(void) { pci_unregister_driver(&atl2_driver); } module_exit(atl2_exit_module); static void atl2_read_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value) { struct atl2_adapter *adapter = hw->back; pci_read_config_word(adapter->pdev, reg, value); } static void atl2_write_pci_cfg(struct atl2_hw *hw, u32 reg, u16 *value) { struct atl2_adapter *adapter = hw->back; pci_write_config_word(adapter->pdev, reg, *value); } static int atl2_get_link_ksettings(struct net_device *netdev, struct ethtool_link_ksettings *cmd) { struct atl2_adapter *adapter = netdev_priv(netdev); struct atl2_hw *hw = &adapter->hw; u32 supported, advertising; supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | SUPPORTED_Autoneg | SUPPORTED_TP); advertising = ADVERTISED_TP; advertising |= ADVERTISED_Autoneg; advertising |= hw->autoneg_advertised; cmd->base.port = PORT_TP; cmd->base.phy_address = 0; if (adapter->link_speed != SPEED_0) { cmd->base.speed = adapter->link_speed; if (adapter->link_duplex == FULL_DUPLEX) cmd->base.duplex = DUPLEX_FULL; else cmd->base.duplex = DUPLEX_HALF; } else { cmd->base.speed = SPEED_UNKNOWN; cmd->base.duplex = DUPLEX_UNKNOWN; } cmd->base.autoneg = AUTONEG_ENABLE; ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, supported); ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, advertising); return 0; } static int atl2_set_link_ksettings(struct net_device *netdev, const struct ethtool_link_ksettings *cmd) { struct atl2_adapter *adapter = netdev_priv(netdev); struct atl2_hw *hw = &adapter->hw; u32 advertising; ethtool_convert_link_mode_to_legacy_u32(&advertising, cmd->link_modes.advertising); while (test_and_set_bit(__ATL2_RESETTING, &adapter->flags)) msleep(1); if (cmd->base.autoneg == AUTONEG_ENABLE) { #define MY_ADV_MASK (ADVERTISE_10_HALF | \ ADVERTISE_10_FULL | \ ADVERTISE_100_HALF| \ ADVERTISE_100_FULL) if ((advertising & MY_ADV_MASK) == MY_ADV_MASK) { hw->MediaType = MEDIA_TYPE_AUTO_SENSOR; hw->autoneg_advertised = MY_ADV_MASK; } else if ((advertising & MY_ADV_MASK) == ADVERTISE_100_FULL) { hw->MediaType = MEDIA_TYPE_100M_FULL; hw->autoneg_advertised = ADVERTISE_100_FULL; } else if ((advertising & MY_ADV_MASK) == ADVERTISE_100_HALF) { hw->MediaType = MEDIA_TYPE_100M_HALF; hw->autoneg_advertised = ADVERTISE_100_HALF; } else if ((advertising & MY_ADV_MASK) == ADVERTISE_10_FULL) { hw->MediaType = MEDIA_TYPE_10M_FULL; hw->autoneg_advertised = ADVERTISE_10_FULL; } else if ((advertising & MY_ADV_MASK) == ADVERTISE_10_HALF) { hw->MediaType = MEDIA_TYPE_10M_HALF; hw->autoneg_advertised = ADVERTISE_10_HALF; } else { clear_bit(__ATL2_RESETTING, &adapter->flags); return -EINVAL; } advertising = hw->autoneg_advertised | ADVERTISED_TP | ADVERTISED_Autoneg; } else { clear_bit(__ATL2_RESETTING, &adapter->flags); return -EINVAL; } /* reset the link */ if (netif_running(adapter->netdev)) { atl2_down(adapter); atl2_up(adapter); } else atl2_reset_hw(&adapter->hw); clear_bit(__ATL2_RESETTING, &adapter->flags); return 0; } static u32 atl2_get_msglevel(struct net_device *netdev) { return 0; } /* * It's sane for this to be empty, but we might want to take advantage of this. */ static void atl2_set_msglevel(struct net_device *netdev, u32 data) { } static int atl2_get_regs_len(struct net_device *netdev) { #define ATL2_REGS_LEN 42 return sizeof(u32) * ATL2_REGS_LEN; } static void atl2_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p) { struct atl2_adapter *adapter = netdev_priv(netdev); struct atl2_hw *hw = &adapter->hw; u32 *regs_buff = p; u16 phy_data; memset(p, 0, sizeof(u32) * ATL2_REGS_LEN); regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; regs_buff[0] = ATL2_READ_REG(hw, REG_VPD_CAP); regs_buff[1] = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL); regs_buff[2] = ATL2_READ_REG(hw, REG_SPI_FLASH_CONFIG); regs_buff[3] = ATL2_READ_REG(hw, REG_TWSI_CTRL); regs_buff[4] = ATL2_READ_REG(hw, REG_PCIE_DEV_MISC_CTRL); regs_buff[5] = ATL2_READ_REG(hw, REG_MASTER_CTRL); regs_buff[6] = ATL2_READ_REG(hw, REG_MANUAL_TIMER_INIT); regs_buff[7] = ATL2_READ_REG(hw, REG_IRQ_MODU_TIMER_INIT); regs_buff[8] = ATL2_READ_REG(hw, REG_PHY_ENABLE); regs_buff[9] = ATL2_READ_REG(hw, REG_CMBDISDMA_TIMER); regs_buff[10] = ATL2_READ_REG(hw, REG_IDLE_STATUS); regs_buff[11] = ATL2_READ_REG(hw, REG_MDIO_CTRL); regs_buff[12] = ATL2_READ_REG(hw, REG_SERDES_LOCK); regs_buff[13] = ATL2_READ_REG(hw, REG_MAC_CTRL); regs_buff[14] = ATL2_READ_REG(hw, REG_MAC_IPG_IFG); regs_buff[15] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR); regs_buff[16] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR+4); regs_buff[17] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE); regs_buff[18] = ATL2_READ_REG(hw, REG_RX_HASH_TABLE+4); regs_buff[19] = ATL2_READ_REG(hw, REG_MAC_HALF_DUPLX_CTRL); regs_buff[20] = ATL2_READ_REG(hw, REG_MTU); regs_buff[21] = ATL2_READ_REG(hw, REG_WOL_CTRL); regs_buff[22] = ATL2_READ_REG(hw, REG_SRAM_TXRAM_END); regs_buff[23] = ATL2_READ_REG(hw, REG_DESC_BASE_ADDR_HI); regs_buff[24] = ATL2_READ_REG(hw, REG_TXD_BASE_ADDR_LO); regs_buff[25] = ATL2_READ_REG(hw, REG_TXD_MEM_SIZE); regs_buff[26] = ATL2_READ_REG(hw, REG_TXS_BASE_ADDR_LO); regs_buff[27] = ATL2_READ_REG(hw, REG_TXS_MEM_SIZE); regs_buff[28] = ATL2_READ_REG(hw, REG_RXD_BASE_ADDR_LO); regs_buff[29] = ATL2_READ_REG(hw, REG_RXD_BUF_NUM); regs_buff[30] = ATL2_READ_REG(hw, REG_DMAR); regs_buff[31] = ATL2_READ_REG(hw, REG_TX_CUT_THRESH); regs_buff[32] = ATL2_READ_REG(hw, REG_DMAW); regs_buff[33] = ATL2_READ_REG(hw, REG_PAUSE_ON_TH); regs_buff[34] = ATL2_READ_REG(hw, REG_PAUSE_OFF_TH); regs_buff[35] = ATL2_READ_REG(hw, REG_MB_TXD_WR_IDX); regs_buff[36] = ATL2_READ_REG(hw, REG_MB_RXD_RD_IDX); regs_buff[38] = ATL2_READ_REG(hw, REG_ISR); regs_buff[39] = ATL2_READ_REG(hw, REG_IMR); atl2_read_phy_reg(hw, MII_BMCR, &phy_data); regs_buff[40] = (u32)phy_data; atl2_read_phy_reg(hw, MII_BMSR, &phy_data); regs_buff[41] = (u32)phy_data; } static int atl2_get_eeprom_len(struct net_device *netdev) { struct atl2_adapter *adapter = netdev_priv(netdev); if (!atl2_check_eeprom_exist(&adapter->hw)) return 512; else return 0; } static int atl2_get_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *bytes) { struct atl2_adapter *adapter = netdev_priv(netdev); struct atl2_hw *hw = &adapter->hw; u32 *eeprom_buff; int first_dword, last_dword; int ret_val = 0; int i; if (eeprom->len == 0) return -EINVAL; if (atl2_check_eeprom_exist(hw)) return -EINVAL; eeprom->magic = hw->vendor_id | (hw->device_id << 16); first_dword = eeprom->offset >> 2; last_dword = (eeprom->offset + eeprom->len - 1) >> 2; eeprom_buff = kmalloc_array(last_dword - first_dword + 1, sizeof(u32), GFP_KERNEL); if (!eeprom_buff) return -ENOMEM; for (i = first_dword; i < last_dword; i++) { if (!atl2_read_eeprom(hw, i*4, &(eeprom_buff[i-first_dword]))) { ret_val = -EIO; goto free; } } memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 3), eeprom->len); free: kfree(eeprom_buff); return ret_val; } static int atl2_set_eeprom(struct net_device *netdev, struct ethtool_eeprom *eeprom, u8 *bytes) { struct atl2_adapter *adapter = netdev_priv(netdev); struct atl2_hw *hw = &adapter->hw; u32 *eeprom_buff; u32 *ptr; int max_len, first_dword, last_dword, ret_val = 0; int i; if (eeprom->len == 0) return -EOPNOTSUPP; if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) return -EFAULT; max_len = 512; first_dword = eeprom->offset >> 2; last_dword = (eeprom->offset + eeprom->len - 1) >> 2; eeprom_buff = kmalloc(max_len, GFP_KERNEL); if (!eeprom_buff) return -ENOMEM; ptr = eeprom_buff; if (eeprom->offset & 3) { /* need read/modify/write of first changed EEPROM word */ /* only the second byte of the word is being modified */ if (!atl2_read_eeprom(hw, first_dword*4, &(eeprom_buff[0]))) { ret_val = -EIO; goto out; } ptr++; } if (((eeprom->offset + eeprom->len) & 3)) { /* * need read/modify/write of last changed EEPROM word * only the first byte of the word is being modified */ if (!atl2_read_eeprom(hw, last_dword * 4, &(eeprom_buff[last_dword - first_dword]))) { ret_val = -EIO; goto out; } } /* Device's eeprom is always little-endian, word addressable */ memcpy(ptr, bytes, eeprom->len); for (i = 0; i < last_dword - first_dword + 1; i++) { if (!atl2_write_eeprom(hw, ((first_dword+i)*4), eeprom_buff[i])) { ret_val = -EIO; goto out; } } out: kfree(eeprom_buff); return ret_val; } static void atl2_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo) { struct atl2_adapter *adapter = netdev_priv(netdev); strlcpy(drvinfo->driver, atl2_driver_name, sizeof(drvinfo->driver)); strlcpy(drvinfo->version, atl2_driver_version, sizeof(drvinfo->version)); strlcpy(drvinfo->fw_version, "L2", sizeof(drvinfo->fw_version)); strlcpy(drvinfo->bus_info, pci_name(adapter->pdev), sizeof(drvinfo->bus_info)); } static void atl2_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) { struct atl2_adapter *adapter = netdev_priv(netdev); wol->supported = WAKE_MAGIC; wol->wolopts = 0; if (adapter->wol & ATLX_WUFC_EX) wol->wolopts |= WAKE_UCAST; if (adapter->wol & ATLX_WUFC_MC) wol->wolopts |= WAKE_MCAST; if (adapter->wol & ATLX_WUFC_BC) wol->wolopts |= WAKE_BCAST; if (adapter->wol & ATLX_WUFC_MAG) wol->wolopts |= WAKE_MAGIC; if (adapter->wol & ATLX_WUFC_LNKC) wol->wolopts |= WAKE_PHY; } static int atl2_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) { struct atl2_adapter *adapter = netdev_priv(netdev); if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE)) return -EOPNOTSUPP; if (wol->wolopts & (WAKE_UCAST | WAKE_BCAST | WAKE_MCAST)) return -EOPNOTSUPP; /* these settings will always override what we currently have */ adapter->wol = 0; if (wol->wolopts & WAKE_MAGIC) adapter->wol |= ATLX_WUFC_MAG; if (wol->wolopts & WAKE_PHY) adapter->wol |= ATLX_WUFC_LNKC; return 0; } static int atl2_nway_reset(struct net_device *netdev) { struct atl2_adapter *adapter = netdev_priv(netdev); if (netif_running(netdev)) atl2_reinit_locked(adapter); return 0; } static const struct ethtool_ops atl2_ethtool_ops = { .get_drvinfo = atl2_get_drvinfo, .get_regs_len = atl2_get_regs_len, .get_regs = atl2_get_regs, .get_wol = atl2_get_wol, .set_wol = atl2_set_wol, .get_msglevel = atl2_get_msglevel, .set_msglevel = atl2_set_msglevel, .nway_reset = atl2_nway_reset, .get_link = ethtool_op_get_link, .get_eeprom_len = atl2_get_eeprom_len, .get_eeprom = atl2_get_eeprom, .set_eeprom = atl2_set_eeprom, .get_link_ksettings = atl2_get_link_ksettings, .set_link_ksettings = atl2_set_link_ksettings, }; #define LBYTESWAP(a) ((((a) & 0x00ff00ff) << 8) | \ (((a) & 0xff00ff00) >> 8)) #define LONGSWAP(a) ((LBYTESWAP(a) << 16) | (LBYTESWAP(a) >> 16)) #define SHORTSWAP(a) (((a) << 8) | ((a) >> 8)) /* * Reset the transmit and receive units; mask and clear all interrupts. * * hw - Struct containing variables accessed by shared code * return : 0 or idle status (if error) */ static s32 atl2_reset_hw(struct atl2_hw *hw) { u32 icr; u16 pci_cfg_cmd_word; int i; /* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */ atl2_read_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word); if ((pci_cfg_cmd_word & (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) != (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) { pci_cfg_cmd_word |= (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER); atl2_write_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word); } /* Clear Interrupt mask to stop board from generating * interrupts & Clear any pending interrupt events */ /* FIXME */ /* ATL2_WRITE_REG(hw, REG_IMR, 0); */ /* ATL2_WRITE_REG(hw, REG_ISR, 0xffffffff); */ /* Issue Soft Reset to the MAC. This will reset the chip's * transmit, receive, DMA. It will not effect * the current PCI configuration. The global reset bit is self- * clearing, and should clear within a microsecond. */ ATL2_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_SOFT_RST); wmb(); msleep(1); /* delay about 1ms */ /* Wait at least 10ms for All module to be Idle */ for (i = 0; i < 10; i++) { icr = ATL2_READ_REG(hw, REG_IDLE_STATUS); if (!icr) break; msleep(1); /* delay 1 ms */ cpu_relax(); } if (icr) return icr; return 0; } #define CUSTOM_SPI_CS_SETUP 2 #define CUSTOM_SPI_CLK_HI 2 #define CUSTOM_SPI_CLK_LO 2 #define CUSTOM_SPI_CS_HOLD 2 #define CUSTOM_SPI_CS_HI 3 static struct atl2_spi_flash_dev flash_table[] = { /* MFR WRSR READ PROGRAM WREN WRDI RDSR RDID SECTOR_ERASE CHIP_ERASE */ {"Atmel", 0x0, 0x03, 0x02, 0x06, 0x04, 0x05, 0x15, 0x52, 0x62 }, {"SST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0x90, 0x20, 0x60 }, {"ST", 0x01, 0x03, 0x02, 0x06, 0x04, 0x05, 0xAB, 0xD8, 0xC7 }, }; static bool atl2_spi_read(struct atl2_hw *hw, u32 addr, u32 *buf) { int i; u32 value; ATL2_WRITE_REG(hw, REG_SPI_DATA, 0); ATL2_WRITE_REG(hw, REG_SPI_ADDR, addr); value = SPI_FLASH_CTRL_WAIT_READY | (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) << SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI & SPI_FLASH_CTRL_CLK_HI_MASK) << SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO & SPI_FLASH_CTRL_CLK_LO_MASK) << SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD & SPI_FLASH_CTRL_CS_HOLD_MASK) << SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI & SPI_FLASH_CTRL_CS_HI_MASK) << SPI_FLASH_CTRL_CS_HI_SHIFT | (0x1 & SPI_FLASH_CTRL_INS_MASK) << SPI_FLASH_CTRL_INS_SHIFT; ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value); value |= SPI_FLASH_CTRL_START; ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value); for (i = 0; i < 10; i++) { msleep(1); value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL); if (!(value & SPI_FLASH_CTRL_START)) break; } if (value & SPI_FLASH_CTRL_START) return false; *buf = ATL2_READ_REG(hw, REG_SPI_DATA); return true; } /* * get_permanent_address * return 0 if get valid mac address, */ static int get_permanent_address(struct atl2_hw *hw) { u32 Addr[2]; u32 i, Control; u16 Register; u8 EthAddr[ETH_ALEN]; bool KeyValid; if (is_valid_ether_addr(hw->perm_mac_addr)) return 0; Addr[0] = 0; Addr[1] = 0; if (!atl2_check_eeprom_exist(hw)) { /* eeprom exists */ Register = 0; KeyValid = false; /* Read out all EEPROM content */ i = 0; while (1) { if (atl2_read_eeprom(hw, i + 0x100, &Control)) { if (KeyValid) { if (Register == REG_MAC_STA_ADDR) Addr[0] = Control; else if (Register == (REG_MAC_STA_ADDR + 4)) Addr[1] = Control; KeyValid = false; } else if ((Control & 0xff) == 0x5A) { KeyValid = true; Register = (u16) (Control >> 16); } else { /* assume data end while encount an invalid KEYWORD */ break; } } else { break; /* read error */ } i += 4; } *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]); *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]); if (is_valid_ether_addr(EthAddr)) { memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN); return 0; } return 1; } /* see if SPI flash exists? */ Addr[0] = 0; Addr[1] = 0; Register = 0; KeyValid = false; i = 0; while (1) { if (atl2_spi_read(hw, i + 0x1f000, &Control)) { if (KeyValid) { if (Register == REG_MAC_STA_ADDR) Addr[0] = Control; else if (Register == (REG_MAC_STA_ADDR + 4)) Addr[1] = Control; KeyValid = false; } else if ((Control & 0xff) == 0x5A) { KeyValid = true; Register = (u16) (Control >> 16); } else { break; /* data end */ } } else { break; /* read error */ } i += 4; } *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]); *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *)&Addr[1]); if (is_valid_ether_addr(EthAddr)) { memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN); return 0; } /* maybe MAC-address is from BIOS */ Addr[0] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR); Addr[1] = ATL2_READ_REG(hw, REG_MAC_STA_ADDR + 4); *(u32 *) &EthAddr[2] = LONGSWAP(Addr[0]); *(u16 *) &EthAddr[0] = SHORTSWAP(*(u16 *) &Addr[1]); if (is_valid_ether_addr(EthAddr)) { memcpy(hw->perm_mac_addr, EthAddr, ETH_ALEN); return 0; } return 1; } /* * Reads the adapter's MAC address from the EEPROM * * hw - Struct containing variables accessed by shared code */ static s32 atl2_read_mac_addr(struct atl2_hw *hw) { if (get_permanent_address(hw)) { /* for test */ /* FIXME: shouldn't we use eth_random_addr() here? */ hw->perm_mac_addr[0] = 0x00; hw->perm_mac_addr[1] = 0x13; hw->perm_mac_addr[2] = 0x74; hw->perm_mac_addr[3] = 0x00; hw->perm_mac_addr[4] = 0x5c; hw->perm_mac_addr[5] = 0x38; } memcpy(hw->mac_addr, hw->perm_mac_addr, ETH_ALEN); return 0; } /* * Hashes an address to determine its location in the multicast table * * hw - Struct containing variables accessed by shared code * mc_addr - the multicast address to hash * * atl2_hash_mc_addr * purpose * set hash value for a multicast address * hash calcu processing : * 1. calcu 32bit CRC for multicast address * 2. reverse crc with MSB to LSB */ static u32 atl2_hash_mc_addr(struct atl2_hw *hw, u8 *mc_addr) { u32 crc32, value; int i; value = 0; crc32 = ether_crc_le(6, mc_addr); for (i = 0; i < 32; i++) value |= (((crc32 >> i) & 1) << (31 - i)); return value; } /* * Sets the bit in the multicast table corresponding to the hash value. * * hw - Struct containing variables accessed by shared code * hash_value - Multicast address hash value */ static void atl2_hash_set(struct atl2_hw *hw, u32 hash_value) { u32 hash_bit, hash_reg; u32 mta; /* The HASH Table is a register array of 2 32-bit registers. * It is treated like an array of 64 bits. We want to set * bit BitArray[hash_value]. So we figure out what register * the bit is in, read it, OR in the new bit, then write * back the new value. The register is determined by the * upper 7 bits of the hash value and the bit within that * register are determined by the lower 5 bits of the value. */ hash_reg = (hash_value >> 31) & 0x1; hash_bit = (hash_value >> 26) & 0x1F; mta = ATL2_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg); mta |= (1 << hash_bit); ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta); } /* * atl2_init_pcie - init PCIE module */ static void atl2_init_pcie(struct atl2_hw *hw) { u32 value; value = LTSSM_TEST_MODE_DEF; ATL2_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value); value = PCIE_DLL_TX_CTRL1_DEF; ATL2_WRITE_REG(hw, REG_PCIE_DLL_TX_CTRL1, value); } static void atl2_init_flash_opcode(struct atl2_hw *hw) { if (hw->flash_vendor >= ARRAY_SIZE(flash_table)) hw->flash_vendor = 0; /* ATMEL */ /* Init OP table */ ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_PROGRAM, flash_table[hw->flash_vendor].cmdPROGRAM); ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_SC_ERASE, flash_table[hw->flash_vendor].cmdSECTOR_ERASE); ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_CHIP_ERASE, flash_table[hw->flash_vendor].cmdCHIP_ERASE); ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDID, flash_table[hw->flash_vendor].cmdRDID); ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WREN, flash_table[hw->flash_vendor].cmdWREN); ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_RDSR, flash_table[hw->flash_vendor].cmdRDSR); ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_WRSR, flash_table[hw->flash_vendor].cmdWRSR); ATL2_WRITE_REGB(hw, REG_SPI_FLASH_OP_READ, flash_table[hw->flash_vendor].cmdREAD); } /******************************************************************** * Performs basic configuration of the adapter. * * hw - Struct containing variables accessed by shared code * Assumes that the controller has previously been reset and is in a * post-reset uninitialized state. Initializes multicast table, * and Calls routines to setup link * Leaves the transmit and receive units disabled and uninitialized. ********************************************************************/ static s32 atl2_init_hw(struct atl2_hw *hw) { u32 ret_val = 0; atl2_init_pcie(hw); /* Zero out the Multicast HASH table */ /* clear the old settings from the multicast hash table */ ATL2_WRITE_REG(hw, REG_RX_HASH_TABLE, 0); ATL2_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0); atl2_init_flash_opcode(hw); ret_val = atl2_phy_init(hw); return ret_val; } /* * Detects the current speed and duplex settings of the hardware. * * hw - Struct containing variables accessed by shared code * speed - Speed of the connection * duplex - Duplex setting of the connection */ static s32 atl2_get_speed_and_duplex(struct atl2_hw *hw, u16 *speed, u16 *duplex) { s32 ret_val; u16 phy_data; /* Read PHY Specific Status Register (17) */ ret_val = atl2_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data); if (ret_val) return ret_val; if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED)) return ATLX_ERR_PHY_RES; switch (phy_data & MII_ATLX_PSSR_SPEED) { case MII_ATLX_PSSR_100MBS: *speed = SPEED_100; break; case MII_ATLX_PSSR_10MBS: *speed = SPEED_10; break; default: return ATLX_ERR_PHY_SPEED; } if (phy_data & MII_ATLX_PSSR_DPLX) *duplex = FULL_DUPLEX; else *duplex = HALF_DUPLEX; return 0; } /* * Reads the value from a PHY register * hw - Struct containing variables accessed by shared code * reg_addr - address of the PHY register to read */ static s32 atl2_read_phy_reg(struct atl2_hw *hw, u16 reg_addr, u16 *phy_data) { u32 val; int i; val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT | MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val); wmb(); for (i = 0; i < MDIO_WAIT_TIMES; i++) { udelay(2); val = ATL2_READ_REG(hw, REG_MDIO_CTRL); if (!(val & (MDIO_START | MDIO_BUSY))) break; wmb(); } if (!(val & (MDIO_START | MDIO_BUSY))) { *phy_data = (u16)val; return 0; } return ATLX_ERR_PHY; } /* * Writes a value to a PHY register * hw - Struct containing variables accessed by shared code * reg_addr - address of the PHY register to write * data - data to write to the PHY */ static s32 atl2_write_phy_reg(struct atl2_hw *hw, u32 reg_addr, u16 phy_data) { int i; u32 val; val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT | (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT | MDIO_SUP_PREAMBLE | MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; ATL2_WRITE_REG(hw, REG_MDIO_CTRL, val); wmb(); for (i = 0; i < MDIO_WAIT_TIMES; i++) { udelay(2); val = ATL2_READ_REG(hw, REG_MDIO_CTRL); if (!(val & (MDIO_START | MDIO_BUSY))) break; wmb(); } if (!(val & (MDIO_START | MDIO_BUSY))) return 0; return ATLX_ERR_PHY; } /* * Configures PHY autoneg and flow control advertisement settings * * hw - Struct containing variables accessed by shared code */ static s32 atl2_phy_setup_autoneg_adv(struct atl2_hw *hw) { s32 ret_val; s16 mii_autoneg_adv_reg; /* Read the MII Auto-Neg Advertisement Register (Address 4). */ mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK; /* Need to parse autoneg_advertised and set up * the appropriate PHY registers. First we will parse for * autoneg_advertised software override. Since we can advertise * a plethora of combinations, we need to check each bit * individually. */ /* First we clear all the 10/100 mb speed bits in the Auto-Neg * Advertisement Register (Address 4) and the 1000 mb speed bits in * the 1000Base-T Control Register (Address 9). */ mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK; /* Need to parse MediaType and setup the * appropriate PHY registers. */ switch (hw->MediaType) { case MEDIA_TYPE_AUTO_SENSOR: mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS | MII_AR_10T_FD_CAPS | MII_AR_100TX_HD_CAPS| MII_AR_100TX_FD_CAPS); hw->autoneg_advertised = ADVERTISE_10_HALF | ADVERTISE_10_FULL | ADVERTISE_100_HALF| ADVERTISE_100_FULL; break; case MEDIA_TYPE_100M_FULL: mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS; hw->autoneg_advertised = ADVERTISE_100_FULL; break; case MEDIA_TYPE_100M_HALF: mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS; hw->autoneg_advertised = ADVERTISE_100_HALF; break; case MEDIA_TYPE_10M_FULL: mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS; hw->autoneg_advertised = ADVERTISE_10_FULL; break; default: mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS; hw->autoneg_advertised = ADVERTISE_10_HALF; break; } /* flow control fixed to enable all */ mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE); hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg; ret_val = atl2_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg); if (ret_val) return ret_val; return 0; } /* * Resets the PHY and make all config validate * * hw - Struct containing variables accessed by shared code * * Sets bit 15 and 12 of the MII Control regiser (for F001 bug) */ static s32 atl2_phy_commit(struct atl2_hw *hw) { s32 ret_val; u16 phy_data; phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG; ret_val = atl2_write_phy_reg(hw, MII_BMCR, phy_data); if (ret_val) { u32 val; int i; /* pcie serdes link may be down ! */ for (i = 0; i < 25; i++) { msleep(1); val = ATL2_READ_REG(hw, REG_MDIO_CTRL); if (!(val & (MDIO_START | MDIO_BUSY))) break; } if (0 != (val & (MDIO_START | MDIO_BUSY))) { printk(KERN_ERR "atl2: PCIe link down for at least 25ms !\n"); return ret_val; } } return 0; } static s32 atl2_phy_init(struct atl2_hw *hw) { s32 ret_val; u16 phy_val; if (hw->phy_configured) return 0; /* Enable PHY */ ATL2_WRITE_REGW(hw, REG_PHY_ENABLE, 1); ATL2_WRITE_FLUSH(hw); msleep(1); /* check if the PHY is in powersaving mode */ atl2_write_phy_reg(hw, MII_DBG_ADDR, 0); atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val); /* 024E / 124E 0r 0274 / 1274 ? */ if (phy_val & 0x1000) { phy_val &= ~0x1000; atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val); } msleep(1); /*Enable PHY LinkChange Interrupt */ ret_val = atl2_write_phy_reg(hw, 18, 0xC00); if (ret_val) return ret_val; /* setup AutoNeg parameters */ ret_val = atl2_phy_setup_autoneg_adv(hw); if (ret_val) return ret_val; /* SW.Reset & En-Auto-Neg to restart Auto-Neg */ ret_val = atl2_phy_commit(hw); if (ret_val) return ret_val; hw->phy_configured = true; return ret_val; } static void atl2_set_mac_addr(struct atl2_hw *hw) { u32 value; /* 00-0B-6A-F6-00-DC * 0: 6AF600DC 1: 000B * low dword */ value = (((u32)hw->mac_addr[2]) << 24) | (((u32)hw->mac_addr[3]) << 16) | (((u32)hw->mac_addr[4]) << 8) | (((u32)hw->mac_addr[5])); ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value); /* hight dword */ value = (((u32)hw->mac_addr[0]) << 8) | (((u32)hw->mac_addr[1])); ATL2_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value); } /* * check_eeprom_exist * return 0 if eeprom exist */ static int atl2_check_eeprom_exist(struct atl2_hw *hw) { u32 value; value = ATL2_READ_REG(hw, REG_SPI_FLASH_CTRL); if (value & SPI_FLASH_CTRL_EN_VPD) { value &= ~SPI_FLASH_CTRL_EN_VPD; ATL2_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value); } value = ATL2_READ_REGW(hw, REG_PCIE_CAP_LIST); return ((value & 0xFF00) == 0x6C00) ? 0 : 1; } /* FIXME: This doesn't look right. -- CHS */ static bool atl2_write_eeprom(struct atl2_hw *hw, u32 offset, u32 value) { return true; } static bool atl2_read_eeprom(struct atl2_hw *hw, u32 Offset, u32 *pValue) { int i; u32 Control; if (Offset & 0x3) return false; /* address do not align */ ATL2_WRITE_REG(hw, REG_VPD_DATA, 0); Control = (Offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT; ATL2_WRITE_REG(hw, REG_VPD_CAP, Control); for (i = 0; i < 10; i++) { msleep(2); Control = ATL2_READ_REG(hw, REG_VPD_CAP); if (Control & VPD_CAP_VPD_FLAG) break; } if (Control & VPD_CAP_VPD_FLAG) { *pValue = ATL2_READ_REG(hw, REG_VPD_DATA); return true; } return false; /* timeout */ } static void atl2_force_ps(struct atl2_hw *hw) { u16 phy_val; atl2_write_phy_reg(hw, MII_DBG_ADDR, 0); atl2_read_phy_reg(hw, MII_DBG_DATA, &phy_val); atl2_write_phy_reg(hw, MII_DBG_DATA, phy_val | 0x1000); atl2_write_phy_reg(hw, MII_DBG_ADDR, 2); atl2_write_phy_reg(hw, MII_DBG_DATA, 0x3000); atl2_write_phy_reg(hw, MII_DBG_ADDR, 3); atl2_write_phy_reg(hw, MII_DBG_DATA, 0); } /* This is the only thing that needs to be changed to adjust the * maximum number of ports that the driver can manage. */ #define ATL2_MAX_NIC 4 #define OPTION_UNSET -1 #define OPTION_DISABLED 0 #define OPTION_ENABLED 1 /* All parameters are treated the same, as an integer array of values. * This macro just reduces the need to repeat the same declaration code * over and over (plus this helps to avoid typo bugs). */ #define ATL2_PARAM_INIT {[0 ... ATL2_MAX_NIC] = OPTION_UNSET} #ifndef module_param_array /* Module Parameters are always initialized to -1, so that the driver * can tell the difference between no user specified value or the * user asking for the default value. * The true default values are loaded in when atl2_check_options is called. * * This is a GCC extension to ANSI C. * See the item "Labeled Elements in Initializers" in the section * "Extensions to the C Language Family" of the GCC documentation. */ #define ATL2_PARAM(X, desc) \ static const int X[ATL2_MAX_NIC + 1] = ATL2_PARAM_INIT; \ MODULE_PARM(X, "1-" __MODULE_STRING(ATL2_MAX_NIC) "i"); \ MODULE_PARM_DESC(X, desc); #else #define ATL2_PARAM(X, desc) \ static int X[ATL2_MAX_NIC+1] = ATL2_PARAM_INIT; \ static unsigned int num_##X; \ module_param_array_named(X, X, int, &num_##X, 0); \ MODULE_PARM_DESC(X, desc); #endif /* * Transmit Memory Size * Valid Range: 64-2048 * Default Value: 128 */ #define ATL2_MIN_TX_MEMSIZE 4 /* 4KB */ #define ATL2_MAX_TX_MEMSIZE 64 /* 64KB */ #define ATL2_DEFAULT_TX_MEMSIZE 8 /* 8KB */ ATL2_PARAM(TxMemSize, "Bytes of Transmit Memory"); /* * Receive Memory Block Count * Valid Range: 16-512 * Default Value: 128 */ #define ATL2_MIN_RXD_COUNT 16 #define ATL2_MAX_RXD_COUNT 512 #define ATL2_DEFAULT_RXD_COUNT 64 ATL2_PARAM(RxMemBlock, "Number of receive memory block"); /* * User Specified MediaType Override * * Valid Range: 0-5 * - 0 - auto-negotiate at all supported speeds * - 1 - only link at 1000Mbps Full Duplex * - 2 - only link at 100Mbps Full Duplex * - 3 - only link at 100Mbps Half Duplex * - 4 - only link at 10Mbps Full Duplex * - 5 - only link at 10Mbps Half Duplex * Default Value: 0 */ ATL2_PARAM(MediaType, "MediaType Select"); /* * Interrupt Moderate Timer in units of 2048 ns (~2 us) * Valid Range: 10-65535 * Default Value: 45000(90ms) */ #define INT_MOD_DEFAULT_CNT 100 /* 200us */ #define INT_MOD_MAX_CNT 65000 #define INT_MOD_MIN_CNT 50 ATL2_PARAM(IntModTimer, "Interrupt Moderator Timer"); /* * FlashVendor * Valid Range: 0-2 * 0 - Atmel * 1 - SST * 2 - ST */ ATL2_PARAM(FlashVendor, "SPI Flash Vendor"); #define AUTONEG_ADV_DEFAULT 0x2F #define AUTONEG_ADV_MASK 0x2F #define FLOW_CONTROL_DEFAULT FLOW_CONTROL_FULL #define FLASH_VENDOR_DEFAULT 0 #define FLASH_VENDOR_MIN 0 #define FLASH_VENDOR_MAX 2 struct atl2_option { enum { enable_option, range_option, list_option } type; char *name; char *err; int def; union { struct { /* range_option info */ int min; int max; } r; struct { /* list_option info */ int nr; struct atl2_opt_list { int i; char *str; } *p; } l; } arg; }; static int atl2_validate_option(int *value, struct atl2_option *opt) { int i; struct atl2_opt_list *ent; if (*value == OPTION_UNSET) { *value = opt->def; return 0; } switch (opt->type) { case enable_option: switch (*value) { case OPTION_ENABLED: printk(KERN_INFO "%s Enabled\n", opt->name); return 0; case OPTION_DISABLED: printk(KERN_INFO "%s Disabled\n", opt->name); return 0; } break; case range_option: if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) { printk(KERN_INFO "%s set to %i\n", opt->name, *value); return 0; } break; case list_option: for (i = 0; i < opt->arg.l.nr; i++) { ent = &opt->arg.l.p[i]; if (*value == ent->i) { if (ent->str[0] != '\0') printk(KERN_INFO "%s\n", ent->str); return 0; } } break; default: BUG(); } printk(KERN_INFO "Invalid %s specified (%i) %s\n", opt->name, *value, opt->err); *value = opt->def; return -1; } /** * atl2_check_options - Range Checking for Command Line Parameters * @adapter: board private structure * * This routine checks all command line parameters for valid user * input. If an invalid value is given, or if no user specified * value exists, a default value is used. The final value is stored * in a variable in the adapter structure. */ static void atl2_check_options(struct atl2_adapter *adapter) { int val; struct atl2_option opt; int bd = adapter->bd_number; if (bd >= ATL2_MAX_NIC) { printk(KERN_NOTICE "Warning: no configuration for board #%i\n", bd); printk(KERN_NOTICE "Using defaults for all values\n"); #ifndef module_param_array bd = ATL2_MAX_NIC; #endif } /* Bytes of Transmit Memory */ opt.type = range_option; opt.name = "Bytes of Transmit Memory"; opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_TX_MEMSIZE); opt.def = ATL2_DEFAULT_TX_MEMSIZE; opt.arg.r.min = ATL2_MIN_TX_MEMSIZE; opt.arg.r.max = ATL2_MAX_TX_MEMSIZE; #ifdef module_param_array if (num_TxMemSize > bd) { #endif val = TxMemSize[bd]; atl2_validate_option(&val, &opt); adapter->txd_ring_size = ((u32) val) * 1024; #ifdef module_param_array } else adapter->txd_ring_size = ((u32)opt.def) * 1024; #endif /* txs ring size: */ adapter->txs_ring_size = adapter->txd_ring_size / 128; if (adapter->txs_ring_size > 160) adapter->txs_ring_size = 160; /* Receive Memory Block Count */ opt.type = range_option; opt.name = "Number of receive memory block"; opt.err = "using default of " __MODULE_STRING(ATL2_DEFAULT_RXD_COUNT); opt.def = ATL2_DEFAULT_RXD_COUNT; opt.arg.r.min = ATL2_MIN_RXD_COUNT; opt.arg.r.max = ATL2_MAX_RXD_COUNT; #ifdef module_param_array if (num_RxMemBlock > bd) { #endif val = RxMemBlock[bd]; atl2_validate_option(&val, &opt); adapter->rxd_ring_size = (u32)val; /* FIXME */ /* ((u16)val)&~1; */ /* even number */ #ifdef module_param_array } else adapter->rxd_ring_size = (u32)opt.def; #endif /* init RXD Flow control value */ adapter->hw.fc_rxd_hi = (adapter->rxd_ring_size / 8) * 7; adapter->hw.fc_rxd_lo = (ATL2_MIN_RXD_COUNT / 8) > (adapter->rxd_ring_size / 12) ? (ATL2_MIN_RXD_COUNT / 8) : (adapter->rxd_ring_size / 12); /* Interrupt Moderate Timer */ opt.type = range_option; opt.name = "Interrupt Moderate Timer"; opt.err = "using default of " __MODULE_STRING(INT_MOD_DEFAULT_CNT); opt.def = INT_MOD_DEFAULT_CNT; opt.arg.r.min = INT_MOD_MIN_CNT; opt.arg.r.max = INT_MOD_MAX_CNT; #ifdef module_param_array if (num_IntModTimer > bd) { #endif val = IntModTimer[bd]; atl2_validate_option(&val, &opt); adapter->imt = (u16) val; #ifdef module_param_array } else adapter->imt = (u16)(opt.def); #endif /* Flash Vendor */ opt.type = range_option; opt.name = "SPI Flash Vendor"; opt.err = "using default of " __MODULE_STRING(FLASH_VENDOR_DEFAULT); opt.def = FLASH_VENDOR_DEFAULT; opt.arg.r.min = FLASH_VENDOR_MIN; opt.arg.r.max = FLASH_VENDOR_MAX; #ifdef module_param_array if (num_FlashVendor > bd) { #endif val = FlashVendor[bd]; atl2_validate_option(&val, &opt); adapter->hw.flash_vendor = (u8) val; #ifdef module_param_array } else adapter->hw.flash_vendor = (u8)(opt.def); #endif /* MediaType */ opt.type = range_option; opt.name = "Speed/Duplex Selection"; opt.err = "using default of " __MODULE_STRING(MEDIA_TYPE_AUTO_SENSOR); opt.def = MEDIA_TYPE_AUTO_SENSOR; opt.arg.r.min = MEDIA_TYPE_AUTO_SENSOR; opt.arg.r.max = MEDIA_TYPE_10M_HALF; #ifdef module_param_array if (num_MediaType > bd) { #endif val = MediaType[bd]; atl2_validate_option(&val, &opt); adapter->hw.MediaType = (u16) val; #ifdef module_param_array } else adapter->hw.MediaType = (u16)(opt.def); #endif }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1