Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rob Herring | 8743 | 98.86% | 24 | 58.54% |
Philippe Reynes | 28 | 0.32% | 1 | 2.44% |
Jarod Wilson | 16 | 0.18% | 1 | 2.44% |
Andreas Herrmann | 12 | 0.14% | 1 | 2.44% |
Joe Perches | 10 | 0.11% | 1 | 2.44% |
Kees Cook | 6 | 0.07% | 1 | 2.44% |
Fabio Estevam | 5 | 0.06% | 1 | 2.44% |
Stephen Hemminger | 3 | 0.03% | 2 | 4.88% |
Wilfried Klaebe | 3 | 0.03% | 1 | 2.44% |
Matthew Wilcox | 3 | 0.03% | 1 | 2.44% |
Eric W. Biedermann | 3 | 0.03% | 1 | 2.44% |
Eric Dumazet | 3 | 0.03% | 1 | 2.44% |
Randy Dunlap | 3 | 0.03% | 1 | 2.44% |
Thomas Gleixner | 2 | 0.02% | 1 | 2.44% |
Fuqian Huang | 2 | 0.02% | 1 | 2.44% |
Dan Carpenter | 1 | 0.01% | 1 | 2.44% |
Danny Kukawka | 1 | 0.01% | 1 | 2.44% |
Total | 8844 | 41 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2010-2011 Calxeda, Inc. */ #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/kernel.h> #include <linux/circ_buf.h> #include <linux/interrupt.h> #include <linux/etherdevice.h> #include <linux/platform_device.h> #include <linux/skbuff.h> #include <linux/ethtool.h> #include <linux/if.h> #include <linux/crc32.h> #include <linux/dma-mapping.h> #include <linux/slab.h> /* XGMAC Register definitions */ #define XGMAC_CONTROL 0x00000000 /* MAC Configuration */ #define XGMAC_FRAME_FILTER 0x00000004 /* MAC Frame Filter */ #define XGMAC_FLOW_CTRL 0x00000018 /* MAC Flow Control */ #define XGMAC_VLAN_TAG 0x0000001C /* VLAN Tags */ #define XGMAC_VERSION 0x00000020 /* Version */ #define XGMAC_VLAN_INCL 0x00000024 /* VLAN tag for tx frames */ #define XGMAC_LPI_CTRL 0x00000028 /* LPI Control and Status */ #define XGMAC_LPI_TIMER 0x0000002C /* LPI Timers Control */ #define XGMAC_TX_PACE 0x00000030 /* Transmit Pace and Stretch */ #define XGMAC_VLAN_HASH 0x00000034 /* VLAN Hash Table */ #define XGMAC_DEBUG 0x00000038 /* Debug */ #define XGMAC_INT_STAT 0x0000003C /* Interrupt and Control */ #define XGMAC_ADDR_HIGH(reg) (0x00000040 + ((reg) * 8)) #define XGMAC_ADDR_LOW(reg) (0x00000044 + ((reg) * 8)) #define XGMAC_HASH(n) (0x00000300 + (n) * 4) /* HASH table regs */ #define XGMAC_NUM_HASH 16 #define XGMAC_OMR 0x00000400 #define XGMAC_REMOTE_WAKE 0x00000700 /* Remote Wake-Up Frm Filter */ #define XGMAC_PMT 0x00000704 /* PMT Control and Status */ #define XGMAC_MMC_CTRL 0x00000800 /* XGMAC MMC Control */ #define XGMAC_MMC_INTR_RX 0x00000804 /* Receive Interrupt */ #define XGMAC_MMC_INTR_TX 0x00000808 /* Transmit Interrupt */ #define XGMAC_MMC_INTR_MASK_RX 0x0000080c /* Receive Interrupt Mask */ #define XGMAC_MMC_INTR_MASK_TX 0x00000810 /* Transmit Interrupt Mask */ /* Hardware TX Statistics Counters */ #define XGMAC_MMC_TXOCTET_GB_LO 0x00000814 #define XGMAC_MMC_TXOCTET_GB_HI 0x00000818 #define XGMAC_MMC_TXFRAME_GB_LO 0x0000081C #define XGMAC_MMC_TXFRAME_GB_HI 0x00000820 #define XGMAC_MMC_TXBCFRAME_G 0x00000824 #define XGMAC_MMC_TXMCFRAME_G 0x0000082C #define XGMAC_MMC_TXUCFRAME_GB 0x00000864 #define XGMAC_MMC_TXMCFRAME_GB 0x0000086C #define XGMAC_MMC_TXBCFRAME_GB 0x00000874 #define XGMAC_MMC_TXUNDERFLOW 0x0000087C #define XGMAC_MMC_TXOCTET_G_LO 0x00000884 #define XGMAC_MMC_TXOCTET_G_HI 0x00000888 #define XGMAC_MMC_TXFRAME_G_LO 0x0000088C #define XGMAC_MMC_TXFRAME_G_HI 0x00000890 #define XGMAC_MMC_TXPAUSEFRAME 0x00000894 #define XGMAC_MMC_TXVLANFRAME 0x0000089C /* Hardware RX Statistics Counters */ #define XGMAC_MMC_RXFRAME_GB_LO 0x00000900 #define XGMAC_MMC_RXFRAME_GB_HI 0x00000904 #define XGMAC_MMC_RXOCTET_GB_LO 0x00000908 #define XGMAC_MMC_RXOCTET_GB_HI 0x0000090C #define XGMAC_MMC_RXOCTET_G_LO 0x00000910 #define XGMAC_MMC_RXOCTET_G_HI 0x00000914 #define XGMAC_MMC_RXBCFRAME_G 0x00000918 #define XGMAC_MMC_RXMCFRAME_G 0x00000920 #define XGMAC_MMC_RXCRCERR 0x00000928 #define XGMAC_MMC_RXRUNT 0x00000930 #define XGMAC_MMC_RXJABBER 0x00000934 #define XGMAC_MMC_RXUCFRAME_G 0x00000970 #define XGMAC_MMC_RXLENGTHERR 0x00000978 #define XGMAC_MMC_RXPAUSEFRAME 0x00000988 #define XGMAC_MMC_RXOVERFLOW 0x00000990 #define XGMAC_MMC_RXVLANFRAME 0x00000998 #define XGMAC_MMC_RXWATCHDOG 0x000009a0 /* DMA Control and Status Registers */ #define XGMAC_DMA_BUS_MODE 0x00000f00 /* Bus Mode */ #define XGMAC_DMA_TX_POLL 0x00000f04 /* Transmit Poll Demand */ #define XGMAC_DMA_RX_POLL 0x00000f08 /* Received Poll Demand */ #define XGMAC_DMA_RX_BASE_ADDR 0x00000f0c /* Receive List Base */ #define XGMAC_DMA_TX_BASE_ADDR 0x00000f10 /* Transmit List Base */ #define XGMAC_DMA_STATUS 0x00000f14 /* Status Register */ #define XGMAC_DMA_CONTROL 0x00000f18 /* Ctrl (Operational Mode) */ #define XGMAC_DMA_INTR_ENA 0x00000f1c /* Interrupt Enable */ #define XGMAC_DMA_MISS_FRAME_CTR 0x00000f20 /* Missed Frame Counter */ #define XGMAC_DMA_RI_WDOG_TIMER 0x00000f24 /* RX Intr Watchdog Timer */ #define XGMAC_DMA_AXI_BUS 0x00000f28 /* AXI Bus Mode */ #define XGMAC_DMA_AXI_STATUS 0x00000f2C /* AXI Status */ #define XGMAC_DMA_HW_FEATURE 0x00000f58 /* Enabled Hardware Features */ #define XGMAC_ADDR_AE 0x80000000 /* PMT Control and Status */ #define XGMAC_PMT_POINTER_RESET 0x80000000 #define XGMAC_PMT_GLBL_UNICAST 0x00000200 #define XGMAC_PMT_WAKEUP_RX_FRM 0x00000040 #define XGMAC_PMT_MAGIC_PKT 0x00000020 #define XGMAC_PMT_WAKEUP_FRM_EN 0x00000004 #define XGMAC_PMT_MAGIC_PKT_EN 0x00000002 #define XGMAC_PMT_POWERDOWN 0x00000001 #define XGMAC_CONTROL_SPD 0x40000000 /* Speed control */ #define XGMAC_CONTROL_SPD_MASK 0x60000000 #define XGMAC_CONTROL_SPD_1G 0x60000000 #define XGMAC_CONTROL_SPD_2_5G 0x40000000 #define XGMAC_CONTROL_SPD_10G 0x00000000 #define XGMAC_CONTROL_SARC 0x10000000 /* Source Addr Insert/Replace */ #define XGMAC_CONTROL_SARK_MASK 0x18000000 #define XGMAC_CONTROL_CAR 0x04000000 /* CRC Addition/Replacement */ #define XGMAC_CONTROL_CAR_MASK 0x06000000 #define XGMAC_CONTROL_DP 0x01000000 /* Disable Padding */ #define XGMAC_CONTROL_WD 0x00800000 /* Disable Watchdog on rx */ #define XGMAC_CONTROL_JD 0x00400000 /* Jabber disable */ #define XGMAC_CONTROL_JE 0x00100000 /* Jumbo frame */ #define XGMAC_CONTROL_LM 0x00001000 /* Loop-back mode */ #define XGMAC_CONTROL_IPC 0x00000400 /* Checksum Offload */ #define XGMAC_CONTROL_ACS 0x00000080 /* Automatic Pad/FCS Strip */ #define XGMAC_CONTROL_DDIC 0x00000010 /* Disable Deficit Idle Count */ #define XGMAC_CONTROL_TE 0x00000008 /* Transmitter Enable */ #define XGMAC_CONTROL_RE 0x00000004 /* Receiver Enable */ /* XGMAC Frame Filter defines */ #define XGMAC_FRAME_FILTER_PR 0x00000001 /* Promiscuous Mode */ #define XGMAC_FRAME_FILTER_HUC 0x00000002 /* Hash Unicast */ #define XGMAC_FRAME_FILTER_HMC 0x00000004 /* Hash Multicast */ #define XGMAC_FRAME_FILTER_DAIF 0x00000008 /* DA Inverse Filtering */ #define XGMAC_FRAME_FILTER_PM 0x00000010 /* Pass all multicast */ #define XGMAC_FRAME_FILTER_DBF 0x00000020 /* Disable Broadcast frames */ #define XGMAC_FRAME_FILTER_SAIF 0x00000100 /* Inverse Filtering */ #define XGMAC_FRAME_FILTER_SAF 0x00000200 /* Source Address Filter */ #define XGMAC_FRAME_FILTER_HPF 0x00000400 /* Hash or perfect Filter */ #define XGMAC_FRAME_FILTER_VHF 0x00000800 /* VLAN Hash Filter */ #define XGMAC_FRAME_FILTER_VPF 0x00001000 /* VLAN Perfect Filter */ #define XGMAC_FRAME_FILTER_RA 0x80000000 /* Receive all mode */ /* XGMAC FLOW CTRL defines */ #define XGMAC_FLOW_CTRL_PT_MASK 0xffff0000 /* Pause Time Mask */ #define XGMAC_FLOW_CTRL_PT_SHIFT 16 #define XGMAC_FLOW_CTRL_DZQP 0x00000080 /* Disable Zero-Quanta Phase */ #define XGMAC_FLOW_CTRL_PLT 0x00000020 /* Pause Low Threshold */ #define XGMAC_FLOW_CTRL_PLT_MASK 0x00000030 /* PLT MASK */ #define XGMAC_FLOW_CTRL_UP 0x00000008 /* Unicast Pause Frame Detect */ #define XGMAC_FLOW_CTRL_RFE 0x00000004 /* Rx Flow Control Enable */ #define XGMAC_FLOW_CTRL_TFE 0x00000002 /* Tx Flow Control Enable */ #define XGMAC_FLOW_CTRL_FCB_BPA 0x00000001 /* Flow Control Busy ... */ /* XGMAC_INT_STAT reg */ #define XGMAC_INT_STAT_PMTIM 0x00800000 /* PMT Interrupt Mask */ #define XGMAC_INT_STAT_PMT 0x0080 /* PMT Interrupt Status */ #define XGMAC_INT_STAT_LPI 0x0040 /* LPI Interrupt Status */ /* DMA Bus Mode register defines */ #define DMA_BUS_MODE_SFT_RESET 0x00000001 /* Software Reset */ #define DMA_BUS_MODE_DSL_MASK 0x0000007c /* Descriptor Skip Length */ #define DMA_BUS_MODE_DSL_SHIFT 2 /* (in DWORDS) */ #define DMA_BUS_MODE_ATDS 0x00000080 /* Alternate Descriptor Size */ /* Programmable burst length */ #define DMA_BUS_MODE_PBL_MASK 0x00003f00 /* Programmable Burst Len */ #define DMA_BUS_MODE_PBL_SHIFT 8 #define DMA_BUS_MODE_FB 0x00010000 /* Fixed burst */ #define DMA_BUS_MODE_RPBL_MASK 0x003e0000 /* Rx-Programmable Burst Len */ #define DMA_BUS_MODE_RPBL_SHIFT 17 #define DMA_BUS_MODE_USP 0x00800000 #define DMA_BUS_MODE_8PBL 0x01000000 #define DMA_BUS_MODE_AAL 0x02000000 /* DMA Bus Mode register defines */ #define DMA_BUS_PR_RATIO_MASK 0x0000c000 /* Rx/Tx priority ratio */ #define DMA_BUS_PR_RATIO_SHIFT 14 #define DMA_BUS_FB 0x00010000 /* Fixed Burst */ /* DMA Control register defines */ #define DMA_CONTROL_ST 0x00002000 /* Start/Stop Transmission */ #define DMA_CONTROL_SR 0x00000002 /* Start/Stop Receive */ #define DMA_CONTROL_DFF 0x01000000 /* Disable flush of rx frames */ #define DMA_CONTROL_OSF 0x00000004 /* Operate on 2nd tx frame */ /* DMA Normal interrupt */ #define DMA_INTR_ENA_NIE 0x00010000 /* Normal Summary */ #define DMA_INTR_ENA_AIE 0x00008000 /* Abnormal Summary */ #define DMA_INTR_ENA_ERE 0x00004000 /* Early Receive */ #define DMA_INTR_ENA_FBE 0x00002000 /* Fatal Bus Error */ #define DMA_INTR_ENA_ETE 0x00000400 /* Early Transmit */ #define DMA_INTR_ENA_RWE 0x00000200 /* Receive Watchdog */ #define DMA_INTR_ENA_RSE 0x00000100 /* Receive Stopped */ #define DMA_INTR_ENA_RUE 0x00000080 /* Receive Buffer Unavailable */ #define DMA_INTR_ENA_RIE 0x00000040 /* Receive Interrupt */ #define DMA_INTR_ENA_UNE 0x00000020 /* Tx Underflow */ #define DMA_INTR_ENA_OVE 0x00000010 /* Receive Overflow */ #define DMA_INTR_ENA_TJE 0x00000008 /* Transmit Jabber */ #define DMA_INTR_ENA_TUE 0x00000004 /* Transmit Buffer Unavail */ #define DMA_INTR_ENA_TSE 0x00000002 /* Transmit Stopped */ #define DMA_INTR_ENA_TIE 0x00000001 /* Transmit Interrupt */ #define DMA_INTR_NORMAL (DMA_INTR_ENA_NIE | DMA_INTR_ENA_RIE | \ DMA_INTR_ENA_TUE | DMA_INTR_ENA_TIE) #define DMA_INTR_ABNORMAL (DMA_INTR_ENA_AIE | DMA_INTR_ENA_FBE | \ DMA_INTR_ENA_RWE | DMA_INTR_ENA_RSE | \ DMA_INTR_ENA_RUE | DMA_INTR_ENA_UNE | \ DMA_INTR_ENA_OVE | DMA_INTR_ENA_TJE | \ DMA_INTR_ENA_TSE) /* DMA default interrupt mask */ #define DMA_INTR_DEFAULT_MASK (DMA_INTR_NORMAL | DMA_INTR_ABNORMAL) /* DMA Status register defines */ #define DMA_STATUS_GMI 0x08000000 /* MMC interrupt */ #define DMA_STATUS_GLI 0x04000000 /* GMAC Line interface int */ #define DMA_STATUS_EB_MASK 0x00380000 /* Error Bits Mask */ #define DMA_STATUS_EB_TX_ABORT 0x00080000 /* Error Bits - TX Abort */ #define DMA_STATUS_EB_RX_ABORT 0x00100000 /* Error Bits - RX Abort */ #define DMA_STATUS_TS_MASK 0x00700000 /* Transmit Process State */ #define DMA_STATUS_TS_SHIFT 20 #define DMA_STATUS_RS_MASK 0x000e0000 /* Receive Process State */ #define DMA_STATUS_RS_SHIFT 17 #define DMA_STATUS_NIS 0x00010000 /* Normal Interrupt Summary */ #define DMA_STATUS_AIS 0x00008000 /* Abnormal Interrupt Summary */ #define DMA_STATUS_ERI 0x00004000 /* Early Receive Interrupt */ #define DMA_STATUS_FBI 0x00002000 /* Fatal Bus Error Interrupt */ #define DMA_STATUS_ETI 0x00000400 /* Early Transmit Interrupt */ #define DMA_STATUS_RWT 0x00000200 /* Receive Watchdog Timeout */ #define DMA_STATUS_RPS 0x00000100 /* Receive Process Stopped */ #define DMA_STATUS_RU 0x00000080 /* Receive Buffer Unavailable */ #define DMA_STATUS_RI 0x00000040 /* Receive Interrupt */ #define DMA_STATUS_UNF 0x00000020 /* Transmit Underflow */ #define DMA_STATUS_OVF 0x00000010 /* Receive Overflow */ #define DMA_STATUS_TJT 0x00000008 /* Transmit Jabber Timeout */ #define DMA_STATUS_TU 0x00000004 /* Transmit Buffer Unavail */ #define DMA_STATUS_TPS 0x00000002 /* Transmit Process Stopped */ #define DMA_STATUS_TI 0x00000001 /* Transmit Interrupt */ /* Common MAC defines */ #define MAC_ENABLE_TX 0x00000008 /* Transmitter Enable */ #define MAC_ENABLE_RX 0x00000004 /* Receiver Enable */ /* XGMAC Operation Mode Register */ #define XGMAC_OMR_TSF 0x00200000 /* TX FIFO Store and Forward */ #define XGMAC_OMR_FTF 0x00100000 /* Flush Transmit FIFO */ #define XGMAC_OMR_TTC 0x00020000 /* Transmit Threshold Ctrl */ #define XGMAC_OMR_TTC_MASK 0x00030000 #define XGMAC_OMR_RFD 0x00006000 /* FC Deactivation Threshold */ #define XGMAC_OMR_RFD_MASK 0x00007000 /* FC Deact Threshold MASK */ #define XGMAC_OMR_RFA 0x00000600 /* FC Activation Threshold */ #define XGMAC_OMR_RFA_MASK 0x00000E00 /* FC Act Threshold MASK */ #define XGMAC_OMR_EFC 0x00000100 /* Enable Hardware FC */ #define XGMAC_OMR_FEF 0x00000080 /* Forward Error Frames */ #define XGMAC_OMR_DT 0x00000040 /* Drop TCP/IP csum Errors */ #define XGMAC_OMR_RSF 0x00000020 /* RX FIFO Store and Forward */ #define XGMAC_OMR_RTC_256 0x00000018 /* RX Threshold Ctrl */ #define XGMAC_OMR_RTC_MASK 0x00000018 /* RX Threshold Ctrl MASK */ /* XGMAC HW Features Register */ #define DMA_HW_FEAT_TXCOESEL 0x00010000 /* TX Checksum offload */ #define XGMAC_MMC_CTRL_CNT_FRZ 0x00000008 /* XGMAC Descriptor Defines */ #define MAX_DESC_BUF_SZ (0x2000 - 8) #define RXDESC_EXT_STATUS 0x00000001 #define RXDESC_CRC_ERR 0x00000002 #define RXDESC_RX_ERR 0x00000008 #define RXDESC_RX_WDOG 0x00000010 #define RXDESC_FRAME_TYPE 0x00000020 #define RXDESC_GIANT_FRAME 0x00000080 #define RXDESC_LAST_SEG 0x00000100 #define RXDESC_FIRST_SEG 0x00000200 #define RXDESC_VLAN_FRAME 0x00000400 #define RXDESC_OVERFLOW_ERR 0x00000800 #define RXDESC_LENGTH_ERR 0x00001000 #define RXDESC_SA_FILTER_FAIL 0x00002000 #define RXDESC_DESCRIPTOR_ERR 0x00004000 #define RXDESC_ERROR_SUMMARY 0x00008000 #define RXDESC_FRAME_LEN_OFFSET 16 #define RXDESC_FRAME_LEN_MASK 0x3fff0000 #define RXDESC_DA_FILTER_FAIL 0x40000000 #define RXDESC1_END_RING 0x00008000 #define RXDESC_IP_PAYLOAD_MASK 0x00000003 #define RXDESC_IP_PAYLOAD_UDP 0x00000001 #define RXDESC_IP_PAYLOAD_TCP 0x00000002 #define RXDESC_IP_PAYLOAD_ICMP 0x00000003 #define RXDESC_IP_HEADER_ERR 0x00000008 #define RXDESC_IP_PAYLOAD_ERR 0x00000010 #define RXDESC_IPV4_PACKET 0x00000040 #define RXDESC_IPV6_PACKET 0x00000080 #define TXDESC_UNDERFLOW_ERR 0x00000001 #define TXDESC_JABBER_TIMEOUT 0x00000002 #define TXDESC_LOCAL_FAULT 0x00000004 #define TXDESC_REMOTE_FAULT 0x00000008 #define TXDESC_VLAN_FRAME 0x00000010 #define TXDESC_FRAME_FLUSHED 0x00000020 #define TXDESC_IP_HEADER_ERR 0x00000040 #define TXDESC_PAYLOAD_CSUM_ERR 0x00000080 #define TXDESC_ERROR_SUMMARY 0x00008000 #define TXDESC_SA_CTRL_INSERT 0x00040000 #define TXDESC_SA_CTRL_REPLACE 0x00080000 #define TXDESC_2ND_ADDR_CHAINED 0x00100000 #define TXDESC_END_RING 0x00200000 #define TXDESC_CSUM_IP 0x00400000 #define TXDESC_CSUM_IP_PAYLD 0x00800000 #define TXDESC_CSUM_ALL 0x00C00000 #define TXDESC_CRC_EN_REPLACE 0x01000000 #define TXDESC_CRC_EN_APPEND 0x02000000 #define TXDESC_DISABLE_PAD 0x04000000 #define TXDESC_FIRST_SEG 0x10000000 #define TXDESC_LAST_SEG 0x20000000 #define TXDESC_INTERRUPT 0x40000000 #define DESC_OWN 0x80000000 #define DESC_BUFFER1_SZ_MASK 0x00001fff #define DESC_BUFFER2_SZ_MASK 0x1fff0000 #define DESC_BUFFER2_SZ_OFFSET 16 struct xgmac_dma_desc { __le32 flags; __le32 buf_size; __le32 buf1_addr; /* Buffer 1 Address Pointer */ __le32 buf2_addr; /* Buffer 2 Address Pointer */ __le32 ext_status; __le32 res[3]; }; struct xgmac_extra_stats { /* Transmit errors */ unsigned long tx_jabber; unsigned long tx_frame_flushed; unsigned long tx_payload_error; unsigned long tx_ip_header_error; unsigned long tx_local_fault; unsigned long tx_remote_fault; /* Receive errors */ unsigned long rx_watchdog; unsigned long rx_da_filter_fail; unsigned long rx_payload_error; unsigned long rx_ip_header_error; /* Tx/Rx IRQ errors */ unsigned long tx_process_stopped; unsigned long rx_buf_unav; unsigned long rx_process_stopped; unsigned long tx_early; unsigned long fatal_bus_error; }; struct xgmac_priv { struct xgmac_dma_desc *dma_rx; struct sk_buff **rx_skbuff; unsigned int rx_tail; unsigned int rx_head; struct xgmac_dma_desc *dma_tx; struct sk_buff **tx_skbuff; unsigned int tx_head; unsigned int tx_tail; int tx_irq_cnt; void __iomem *base; unsigned int dma_buf_sz; dma_addr_t dma_rx_phy; dma_addr_t dma_tx_phy; struct net_device *dev; struct device *device; struct napi_struct napi; int max_macs; struct xgmac_extra_stats xstats; spinlock_t stats_lock; int pmt_irq; char rx_pause; char tx_pause; int wolopts; struct work_struct tx_timeout_work; }; /* XGMAC Configuration Settings */ #define XGMAC_MAX_MTU 9000 #define PAUSE_TIME 0x400 #define DMA_RX_RING_SZ 256 #define DMA_TX_RING_SZ 128 /* minimum number of free TX descriptors required to wake up TX process */ #define TX_THRESH (DMA_TX_RING_SZ/4) /* DMA descriptor ring helpers */ #define dma_ring_incr(n, s) (((n) + 1) & ((s) - 1)) #define dma_ring_space(h, t, s) CIRC_SPACE(h, t, s) #define dma_ring_cnt(h, t, s) CIRC_CNT(h, t, s) #define tx_dma_ring_space(p) \ dma_ring_space((p)->tx_head, (p)->tx_tail, DMA_TX_RING_SZ) /* XGMAC Descriptor Access Helpers */ static inline void desc_set_buf_len(struct xgmac_dma_desc *p, u32 buf_sz) { if (buf_sz > MAX_DESC_BUF_SZ) p->buf_size = cpu_to_le32(MAX_DESC_BUF_SZ | (buf_sz - MAX_DESC_BUF_SZ) << DESC_BUFFER2_SZ_OFFSET); else p->buf_size = cpu_to_le32(buf_sz); } static inline int desc_get_buf_len(struct xgmac_dma_desc *p) { u32 len = le32_to_cpu(p->buf_size); return (len & DESC_BUFFER1_SZ_MASK) + ((len & DESC_BUFFER2_SZ_MASK) >> DESC_BUFFER2_SZ_OFFSET); } static inline void desc_init_rx_desc(struct xgmac_dma_desc *p, int ring_size, int buf_sz) { struct xgmac_dma_desc *end = p + ring_size - 1; memset(p, 0, sizeof(*p) * ring_size); for (; p <= end; p++) desc_set_buf_len(p, buf_sz); end->buf_size |= cpu_to_le32(RXDESC1_END_RING); } static inline void desc_init_tx_desc(struct xgmac_dma_desc *p, u32 ring_size) { memset(p, 0, sizeof(*p) * ring_size); p[ring_size - 1].flags = cpu_to_le32(TXDESC_END_RING); } static inline int desc_get_owner(struct xgmac_dma_desc *p) { return le32_to_cpu(p->flags) & DESC_OWN; } static inline void desc_set_rx_owner(struct xgmac_dma_desc *p) { /* Clear all fields and set the owner */ p->flags = cpu_to_le32(DESC_OWN); } static inline void desc_set_tx_owner(struct xgmac_dma_desc *p, u32 flags) { u32 tmpflags = le32_to_cpu(p->flags); tmpflags &= TXDESC_END_RING; tmpflags |= flags | DESC_OWN; p->flags = cpu_to_le32(tmpflags); } static inline void desc_clear_tx_owner(struct xgmac_dma_desc *p) { u32 tmpflags = le32_to_cpu(p->flags); tmpflags &= TXDESC_END_RING; p->flags = cpu_to_le32(tmpflags); } static inline int desc_get_tx_ls(struct xgmac_dma_desc *p) { return le32_to_cpu(p->flags) & TXDESC_LAST_SEG; } static inline int desc_get_tx_fs(struct xgmac_dma_desc *p) { return le32_to_cpu(p->flags) & TXDESC_FIRST_SEG; } static inline u32 desc_get_buf_addr(struct xgmac_dma_desc *p) { return le32_to_cpu(p->buf1_addr); } static inline void desc_set_buf_addr(struct xgmac_dma_desc *p, u32 paddr, int len) { p->buf1_addr = cpu_to_le32(paddr); if (len > MAX_DESC_BUF_SZ) p->buf2_addr = cpu_to_le32(paddr + MAX_DESC_BUF_SZ); } static inline void desc_set_buf_addr_and_size(struct xgmac_dma_desc *p, u32 paddr, int len) { desc_set_buf_len(p, len); desc_set_buf_addr(p, paddr, len); } static inline int desc_get_rx_frame_len(struct xgmac_dma_desc *p) { u32 data = le32_to_cpu(p->flags); u32 len = (data & RXDESC_FRAME_LEN_MASK) >> RXDESC_FRAME_LEN_OFFSET; if (data & RXDESC_FRAME_TYPE) len -= ETH_FCS_LEN; return len; } static void xgmac_dma_flush_tx_fifo(void __iomem *ioaddr) { int timeout = 1000; u32 reg = readl(ioaddr + XGMAC_OMR); writel(reg | XGMAC_OMR_FTF, ioaddr + XGMAC_OMR); while ((timeout-- > 0) && readl(ioaddr + XGMAC_OMR) & XGMAC_OMR_FTF) udelay(1); } static int desc_get_tx_status(struct xgmac_priv *priv, struct xgmac_dma_desc *p) { struct xgmac_extra_stats *x = &priv->xstats; u32 status = le32_to_cpu(p->flags); if (!(status & TXDESC_ERROR_SUMMARY)) return 0; netdev_dbg(priv->dev, "tx desc error = 0x%08x\n", status); if (status & TXDESC_JABBER_TIMEOUT) x->tx_jabber++; if (status & TXDESC_FRAME_FLUSHED) x->tx_frame_flushed++; if (status & TXDESC_UNDERFLOW_ERR) xgmac_dma_flush_tx_fifo(priv->base); if (status & TXDESC_IP_HEADER_ERR) x->tx_ip_header_error++; if (status & TXDESC_LOCAL_FAULT) x->tx_local_fault++; if (status & TXDESC_REMOTE_FAULT) x->tx_remote_fault++; if (status & TXDESC_PAYLOAD_CSUM_ERR) x->tx_payload_error++; return -1; } static int desc_get_rx_status(struct xgmac_priv *priv, struct xgmac_dma_desc *p) { struct xgmac_extra_stats *x = &priv->xstats; int ret = CHECKSUM_UNNECESSARY; u32 status = le32_to_cpu(p->flags); u32 ext_status = le32_to_cpu(p->ext_status); if (status & RXDESC_DA_FILTER_FAIL) { netdev_dbg(priv->dev, "XGMAC RX : Dest Address filter fail\n"); x->rx_da_filter_fail++; return -1; } /* All frames should fit into a single buffer */ if (!(status & RXDESC_FIRST_SEG) || !(status & RXDESC_LAST_SEG)) return -1; /* Check if packet has checksum already */ if ((status & RXDESC_FRAME_TYPE) && (status & RXDESC_EXT_STATUS) && !(ext_status & RXDESC_IP_PAYLOAD_MASK)) ret = CHECKSUM_NONE; netdev_dbg(priv->dev, "rx status - frame type=%d, csum = %d, ext stat %08x\n", (status & RXDESC_FRAME_TYPE) ? 1 : 0, ret, ext_status); if (!(status & RXDESC_ERROR_SUMMARY)) return ret; /* Handle any errors */ if (status & (RXDESC_DESCRIPTOR_ERR | RXDESC_OVERFLOW_ERR | RXDESC_GIANT_FRAME | RXDESC_LENGTH_ERR | RXDESC_CRC_ERR)) return -1; if (status & RXDESC_EXT_STATUS) { if (ext_status & RXDESC_IP_HEADER_ERR) x->rx_ip_header_error++; if (ext_status & RXDESC_IP_PAYLOAD_ERR) x->rx_payload_error++; netdev_dbg(priv->dev, "IP checksum error - stat %08x\n", ext_status); return CHECKSUM_NONE; } return ret; } static inline void xgmac_mac_enable(void __iomem *ioaddr) { u32 value = readl(ioaddr + XGMAC_CONTROL); value |= MAC_ENABLE_RX | MAC_ENABLE_TX; writel(value, ioaddr + XGMAC_CONTROL); value = readl(ioaddr + XGMAC_DMA_CONTROL); value |= DMA_CONTROL_ST | DMA_CONTROL_SR; writel(value, ioaddr + XGMAC_DMA_CONTROL); } static inline void xgmac_mac_disable(void __iomem *ioaddr) { u32 value = readl(ioaddr + XGMAC_DMA_CONTROL); value &= ~(DMA_CONTROL_ST | DMA_CONTROL_SR); writel(value, ioaddr + XGMAC_DMA_CONTROL); value = readl(ioaddr + XGMAC_CONTROL); value &= ~(MAC_ENABLE_TX | MAC_ENABLE_RX); writel(value, ioaddr + XGMAC_CONTROL); } static void xgmac_set_mac_addr(void __iomem *ioaddr, unsigned char *addr, int num) { u32 data; if (addr) { data = (addr[5] << 8) | addr[4] | (num ? XGMAC_ADDR_AE : 0); writel(data, ioaddr + XGMAC_ADDR_HIGH(num)); data = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0]; writel(data, ioaddr + XGMAC_ADDR_LOW(num)); } else { writel(0, ioaddr + XGMAC_ADDR_HIGH(num)); writel(0, ioaddr + XGMAC_ADDR_LOW(num)); } } static void xgmac_get_mac_addr(void __iomem *ioaddr, unsigned char *addr, int num) { u32 hi_addr, lo_addr; /* Read the MAC address from the hardware */ hi_addr = readl(ioaddr + XGMAC_ADDR_HIGH(num)); lo_addr = readl(ioaddr + XGMAC_ADDR_LOW(num)); /* Extract the MAC address from the high and low words */ addr[0] = lo_addr & 0xff; addr[1] = (lo_addr >> 8) & 0xff; addr[2] = (lo_addr >> 16) & 0xff; addr[3] = (lo_addr >> 24) & 0xff; addr[4] = hi_addr & 0xff; addr[5] = (hi_addr >> 8) & 0xff; } static int xgmac_set_flow_ctrl(struct xgmac_priv *priv, int rx, int tx) { u32 reg; unsigned int flow = 0; priv->rx_pause = rx; priv->tx_pause = tx; if (rx || tx) { if (rx) flow |= XGMAC_FLOW_CTRL_RFE; if (tx) flow |= XGMAC_FLOW_CTRL_TFE; flow |= XGMAC_FLOW_CTRL_PLT | XGMAC_FLOW_CTRL_UP; flow |= (PAUSE_TIME << XGMAC_FLOW_CTRL_PT_SHIFT); writel(flow, priv->base + XGMAC_FLOW_CTRL); reg = readl(priv->base + XGMAC_OMR); reg |= XGMAC_OMR_EFC; writel(reg, priv->base + XGMAC_OMR); } else { writel(0, priv->base + XGMAC_FLOW_CTRL); reg = readl(priv->base + XGMAC_OMR); reg &= ~XGMAC_OMR_EFC; writel(reg, priv->base + XGMAC_OMR); } return 0; } static void xgmac_rx_refill(struct xgmac_priv *priv) { struct xgmac_dma_desc *p; dma_addr_t paddr; int bufsz = priv->dev->mtu + ETH_HLEN + ETH_FCS_LEN; while (dma_ring_space(priv->rx_head, priv->rx_tail, DMA_RX_RING_SZ) > 1) { int entry = priv->rx_head; struct sk_buff *skb; p = priv->dma_rx + entry; if (priv->rx_skbuff[entry] == NULL) { skb = netdev_alloc_skb_ip_align(priv->dev, bufsz); if (unlikely(skb == NULL)) break; paddr = dma_map_single(priv->device, skb->data, priv->dma_buf_sz - NET_IP_ALIGN, DMA_FROM_DEVICE); if (dma_mapping_error(priv->device, paddr)) { dev_kfree_skb_any(skb); break; } priv->rx_skbuff[entry] = skb; desc_set_buf_addr(p, paddr, priv->dma_buf_sz); } netdev_dbg(priv->dev, "rx ring: head %d, tail %d\n", priv->rx_head, priv->rx_tail); priv->rx_head = dma_ring_incr(priv->rx_head, DMA_RX_RING_SZ); desc_set_rx_owner(p); } } /** * init_xgmac_dma_desc_rings - init the RX/TX descriptor rings * @dev: net device structure * Description: this function initializes the DMA RX/TX descriptors * and allocates the socket buffers. */ static int xgmac_dma_desc_rings_init(struct net_device *dev) { struct xgmac_priv *priv = netdev_priv(dev); unsigned int bfsize; /* Set the Buffer size according to the MTU; * The total buffer size including any IP offset must be a multiple * of 8 bytes. */ bfsize = ALIGN(dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN, 8); netdev_dbg(priv->dev, "mtu [%d] bfsize [%d]\n", dev->mtu, bfsize); priv->rx_skbuff = kcalloc(DMA_RX_RING_SZ, sizeof(struct sk_buff *), GFP_KERNEL); if (!priv->rx_skbuff) return -ENOMEM; priv->dma_rx = dma_alloc_coherent(priv->device, DMA_RX_RING_SZ * sizeof(struct xgmac_dma_desc), &priv->dma_rx_phy, GFP_KERNEL); if (!priv->dma_rx) goto err_dma_rx; priv->tx_skbuff = kcalloc(DMA_TX_RING_SZ, sizeof(struct sk_buff *), GFP_KERNEL); if (!priv->tx_skbuff) goto err_tx_skb; priv->dma_tx = dma_alloc_coherent(priv->device, DMA_TX_RING_SZ * sizeof(struct xgmac_dma_desc), &priv->dma_tx_phy, GFP_KERNEL); if (!priv->dma_tx) goto err_dma_tx; netdev_dbg(priv->dev, "DMA desc rings: virt addr (Rx %p, " "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n", priv->dma_rx, priv->dma_tx, (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy); priv->rx_tail = 0; priv->rx_head = 0; priv->dma_buf_sz = bfsize; desc_init_rx_desc(priv->dma_rx, DMA_RX_RING_SZ, priv->dma_buf_sz); xgmac_rx_refill(priv); priv->tx_tail = 0; priv->tx_head = 0; desc_init_tx_desc(priv->dma_tx, DMA_TX_RING_SZ); writel(priv->dma_tx_phy, priv->base + XGMAC_DMA_TX_BASE_ADDR); writel(priv->dma_rx_phy, priv->base + XGMAC_DMA_RX_BASE_ADDR); return 0; err_dma_tx: kfree(priv->tx_skbuff); err_tx_skb: dma_free_coherent(priv->device, DMA_RX_RING_SZ * sizeof(struct xgmac_dma_desc), priv->dma_rx, priv->dma_rx_phy); err_dma_rx: kfree(priv->rx_skbuff); return -ENOMEM; } static void xgmac_free_rx_skbufs(struct xgmac_priv *priv) { int i; struct xgmac_dma_desc *p; if (!priv->rx_skbuff) return; for (i = 0; i < DMA_RX_RING_SZ; i++) { struct sk_buff *skb = priv->rx_skbuff[i]; if (skb == NULL) continue; p = priv->dma_rx + i; dma_unmap_single(priv->device, desc_get_buf_addr(p), priv->dma_buf_sz - NET_IP_ALIGN, DMA_FROM_DEVICE); dev_kfree_skb_any(skb); priv->rx_skbuff[i] = NULL; } } static void xgmac_free_tx_skbufs(struct xgmac_priv *priv) { int i; struct xgmac_dma_desc *p; if (!priv->tx_skbuff) return; for (i = 0; i < DMA_TX_RING_SZ; i++) { if (priv->tx_skbuff[i] == NULL) continue; p = priv->dma_tx + i; if (desc_get_tx_fs(p)) dma_unmap_single(priv->device, desc_get_buf_addr(p), desc_get_buf_len(p), DMA_TO_DEVICE); else dma_unmap_page(priv->device, desc_get_buf_addr(p), desc_get_buf_len(p), DMA_TO_DEVICE); if (desc_get_tx_ls(p)) dev_kfree_skb_any(priv->tx_skbuff[i]); priv->tx_skbuff[i] = NULL; } } static void xgmac_free_dma_desc_rings(struct xgmac_priv *priv) { /* Release the DMA TX/RX socket buffers */ xgmac_free_rx_skbufs(priv); xgmac_free_tx_skbufs(priv); /* Free the consistent memory allocated for descriptor rings */ if (priv->dma_tx) { dma_free_coherent(priv->device, DMA_TX_RING_SZ * sizeof(struct xgmac_dma_desc), priv->dma_tx, priv->dma_tx_phy); priv->dma_tx = NULL; } if (priv->dma_rx) { dma_free_coherent(priv->device, DMA_RX_RING_SZ * sizeof(struct xgmac_dma_desc), priv->dma_rx, priv->dma_rx_phy); priv->dma_rx = NULL; } kfree(priv->rx_skbuff); priv->rx_skbuff = NULL; kfree(priv->tx_skbuff); priv->tx_skbuff = NULL; } /** * xgmac_tx: * @priv: private driver structure * Description: it reclaims resources after transmission completes. */ static void xgmac_tx_complete(struct xgmac_priv *priv) { while (dma_ring_cnt(priv->tx_head, priv->tx_tail, DMA_TX_RING_SZ)) { unsigned int entry = priv->tx_tail; struct sk_buff *skb = priv->tx_skbuff[entry]; struct xgmac_dma_desc *p = priv->dma_tx + entry; /* Check if the descriptor is owned by the DMA. */ if (desc_get_owner(p)) break; netdev_dbg(priv->dev, "tx ring: curr %d, dirty %d\n", priv->tx_head, priv->tx_tail); if (desc_get_tx_fs(p)) dma_unmap_single(priv->device, desc_get_buf_addr(p), desc_get_buf_len(p), DMA_TO_DEVICE); else dma_unmap_page(priv->device, desc_get_buf_addr(p), desc_get_buf_len(p), DMA_TO_DEVICE); /* Check tx error on the last segment */ if (desc_get_tx_ls(p)) { desc_get_tx_status(priv, p); dev_consume_skb_any(skb); } priv->tx_skbuff[entry] = NULL; priv->tx_tail = dma_ring_incr(entry, DMA_TX_RING_SZ); } /* Ensure tx_tail is visible to xgmac_xmit */ smp_mb(); if (unlikely(netif_queue_stopped(priv->dev) && (tx_dma_ring_space(priv) > MAX_SKB_FRAGS))) netif_wake_queue(priv->dev); } static void xgmac_tx_timeout_work(struct work_struct *work) { u32 reg, value; struct xgmac_priv *priv = container_of(work, struct xgmac_priv, tx_timeout_work); napi_disable(&priv->napi); writel(0, priv->base + XGMAC_DMA_INTR_ENA); netif_tx_lock(priv->dev); reg = readl(priv->base + XGMAC_DMA_CONTROL); writel(reg & ~DMA_CONTROL_ST, priv->base + XGMAC_DMA_CONTROL); do { value = readl(priv->base + XGMAC_DMA_STATUS) & 0x700000; } while (value && (value != 0x600000)); xgmac_free_tx_skbufs(priv); desc_init_tx_desc(priv->dma_tx, DMA_TX_RING_SZ); priv->tx_tail = 0; priv->tx_head = 0; writel(priv->dma_tx_phy, priv->base + XGMAC_DMA_TX_BASE_ADDR); writel(reg | DMA_CONTROL_ST, priv->base + XGMAC_DMA_CONTROL); writel(DMA_STATUS_TU | DMA_STATUS_TPS | DMA_STATUS_NIS | DMA_STATUS_AIS, priv->base + XGMAC_DMA_STATUS); netif_tx_unlock(priv->dev); netif_wake_queue(priv->dev); napi_enable(&priv->napi); /* Enable interrupts */ writel(DMA_INTR_DEFAULT_MASK, priv->base + XGMAC_DMA_STATUS); writel(DMA_INTR_DEFAULT_MASK, priv->base + XGMAC_DMA_INTR_ENA); } static int xgmac_hw_init(struct net_device *dev) { u32 value, ctrl; int limit; struct xgmac_priv *priv = netdev_priv(dev); void __iomem *ioaddr = priv->base; /* Save the ctrl register value */ ctrl = readl(ioaddr + XGMAC_CONTROL) & XGMAC_CONTROL_SPD_MASK; /* SW reset */ value = DMA_BUS_MODE_SFT_RESET; writel(value, ioaddr + XGMAC_DMA_BUS_MODE); limit = 15000; while (limit-- && (readl(ioaddr + XGMAC_DMA_BUS_MODE) & DMA_BUS_MODE_SFT_RESET)) cpu_relax(); if (limit < 0) return -EBUSY; value = (0x10 << DMA_BUS_MODE_PBL_SHIFT) | (0x10 << DMA_BUS_MODE_RPBL_SHIFT) | DMA_BUS_MODE_FB | DMA_BUS_MODE_ATDS | DMA_BUS_MODE_AAL; writel(value, ioaddr + XGMAC_DMA_BUS_MODE); writel(0, ioaddr + XGMAC_DMA_INTR_ENA); /* Mask power mgt interrupt */ writel(XGMAC_INT_STAT_PMTIM, ioaddr + XGMAC_INT_STAT); /* XGMAC requires AXI bus init. This is a 'magic number' for now */ writel(0x0077000E, ioaddr + XGMAC_DMA_AXI_BUS); ctrl |= XGMAC_CONTROL_DDIC | XGMAC_CONTROL_JE | XGMAC_CONTROL_ACS | XGMAC_CONTROL_CAR; if (dev->features & NETIF_F_RXCSUM) ctrl |= XGMAC_CONTROL_IPC; writel(ctrl, ioaddr + XGMAC_CONTROL); writel(DMA_CONTROL_OSF, ioaddr + XGMAC_DMA_CONTROL); /* Set the HW DMA mode and the COE */ writel(XGMAC_OMR_TSF | XGMAC_OMR_RFD | XGMAC_OMR_RFA | XGMAC_OMR_RTC_256, ioaddr + XGMAC_OMR); /* Reset the MMC counters */ writel(1, ioaddr + XGMAC_MMC_CTRL); return 0; } /** * xgmac_open - open entry point of the driver * @dev : pointer to the device structure. * Description: * This function is the open entry point of the driver. * Return value: * 0 on success and an appropriate (-)ve integer as defined in errno.h * file on failure. */ static int xgmac_open(struct net_device *dev) { int ret; struct xgmac_priv *priv = netdev_priv(dev); void __iomem *ioaddr = priv->base; /* Check that the MAC address is valid. If its not, refuse * to bring the device up. The user must specify an * address using the following linux command: * ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx */ if (!is_valid_ether_addr(dev->dev_addr)) { eth_hw_addr_random(dev); netdev_dbg(priv->dev, "generated random MAC address %pM\n", dev->dev_addr); } memset(&priv->xstats, 0, sizeof(struct xgmac_extra_stats)); /* Initialize the XGMAC and descriptors */ xgmac_hw_init(dev); xgmac_set_mac_addr(ioaddr, dev->dev_addr, 0); xgmac_set_flow_ctrl(priv, priv->rx_pause, priv->tx_pause); ret = xgmac_dma_desc_rings_init(dev); if (ret < 0) return ret; /* Enable the MAC Rx/Tx */ xgmac_mac_enable(ioaddr); napi_enable(&priv->napi); netif_start_queue(dev); /* Enable interrupts */ writel(DMA_INTR_DEFAULT_MASK, ioaddr + XGMAC_DMA_STATUS); writel(DMA_INTR_DEFAULT_MASK, ioaddr + XGMAC_DMA_INTR_ENA); return 0; } /** * xgmac_release - close entry point of the driver * @dev : device pointer. * Description: * This is the stop entry point of the driver. */ static int xgmac_stop(struct net_device *dev) { struct xgmac_priv *priv = netdev_priv(dev); if (readl(priv->base + XGMAC_DMA_INTR_ENA)) napi_disable(&priv->napi); writel(0, priv->base + XGMAC_DMA_INTR_ENA); netif_tx_disable(dev); /* Disable the MAC core */ xgmac_mac_disable(priv->base); /* Release and free the Rx/Tx resources */ xgmac_free_dma_desc_rings(priv); return 0; } /** * xgmac_xmit: * @skb : the socket buffer * @dev : device pointer * Description : Tx entry point of the driver. */ static netdev_tx_t xgmac_xmit(struct sk_buff *skb, struct net_device *dev) { struct xgmac_priv *priv = netdev_priv(dev); unsigned int entry; int i; u32 irq_flag; int nfrags = skb_shinfo(skb)->nr_frags; struct xgmac_dma_desc *desc, *first; unsigned int desc_flags; unsigned int len; dma_addr_t paddr; priv->tx_irq_cnt = (priv->tx_irq_cnt + 1) & (DMA_TX_RING_SZ/4 - 1); irq_flag = priv->tx_irq_cnt ? 0 : TXDESC_INTERRUPT; desc_flags = (skb->ip_summed == CHECKSUM_PARTIAL) ? TXDESC_CSUM_ALL : 0; entry = priv->tx_head; desc = priv->dma_tx + entry; first = desc; len = skb_headlen(skb); paddr = dma_map_single(priv->device, skb->data, len, DMA_TO_DEVICE); if (dma_mapping_error(priv->device, paddr)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } priv->tx_skbuff[entry] = skb; desc_set_buf_addr_and_size(desc, paddr, len); for (i = 0; i < nfrags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; len = skb_frag_size(frag); paddr = skb_frag_dma_map(priv->device, frag, 0, len, DMA_TO_DEVICE); if (dma_mapping_error(priv->device, paddr)) goto dma_err; entry = dma_ring_incr(entry, DMA_TX_RING_SZ); desc = priv->dma_tx + entry; priv->tx_skbuff[entry] = skb; desc_set_buf_addr_and_size(desc, paddr, len); if (i < (nfrags - 1)) desc_set_tx_owner(desc, desc_flags); } /* Interrupt on completition only for the latest segment */ if (desc != first) desc_set_tx_owner(desc, desc_flags | TXDESC_LAST_SEG | irq_flag); else desc_flags |= TXDESC_LAST_SEG | irq_flag; /* Set owner on first desc last to avoid race condition */ wmb(); desc_set_tx_owner(first, desc_flags | TXDESC_FIRST_SEG); writel(1, priv->base + XGMAC_DMA_TX_POLL); priv->tx_head = dma_ring_incr(entry, DMA_TX_RING_SZ); /* Ensure tx_head update is visible to tx completion */ smp_mb(); if (unlikely(tx_dma_ring_space(priv) <= MAX_SKB_FRAGS)) { netif_stop_queue(dev); /* Ensure netif_stop_queue is visible to tx completion */ smp_mb(); if (tx_dma_ring_space(priv) > MAX_SKB_FRAGS) netif_start_queue(dev); } return NETDEV_TX_OK; dma_err: entry = priv->tx_head; for ( ; i > 0; i--) { entry = dma_ring_incr(entry, DMA_TX_RING_SZ); desc = priv->dma_tx + entry; priv->tx_skbuff[entry] = NULL; dma_unmap_page(priv->device, desc_get_buf_addr(desc), desc_get_buf_len(desc), DMA_TO_DEVICE); desc_clear_tx_owner(desc); } desc = first; dma_unmap_single(priv->device, desc_get_buf_addr(desc), desc_get_buf_len(desc), DMA_TO_DEVICE); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } static int xgmac_rx(struct xgmac_priv *priv, int limit) { unsigned int entry; unsigned int count = 0; struct xgmac_dma_desc *p; while (count < limit) { int ip_checksum; struct sk_buff *skb; int frame_len; if (!dma_ring_cnt(priv->rx_head, priv->rx_tail, DMA_RX_RING_SZ)) break; entry = priv->rx_tail; p = priv->dma_rx + entry; if (desc_get_owner(p)) break; count++; priv->rx_tail = dma_ring_incr(priv->rx_tail, DMA_RX_RING_SZ); /* read the status of the incoming frame */ ip_checksum = desc_get_rx_status(priv, p); if (ip_checksum < 0) continue; skb = priv->rx_skbuff[entry]; if (unlikely(!skb)) { netdev_err(priv->dev, "Inconsistent Rx descriptor chain\n"); break; } priv->rx_skbuff[entry] = NULL; frame_len = desc_get_rx_frame_len(p); netdev_dbg(priv->dev, "RX frame size %d, COE status: %d\n", frame_len, ip_checksum); skb_put(skb, frame_len); dma_unmap_single(priv->device, desc_get_buf_addr(p), priv->dma_buf_sz - NET_IP_ALIGN, DMA_FROM_DEVICE); skb->protocol = eth_type_trans(skb, priv->dev); skb->ip_summed = ip_checksum; if (ip_checksum == CHECKSUM_NONE) netif_receive_skb(skb); else napi_gro_receive(&priv->napi, skb); } xgmac_rx_refill(priv); return count; } /** * xgmac_poll - xgmac poll method (NAPI) * @napi : pointer to the napi structure. * @budget : maximum number of packets that the current CPU can receive from * all interfaces. * Description : * This function implements the the reception process. * Also it runs the TX completion thread */ static int xgmac_poll(struct napi_struct *napi, int budget) { struct xgmac_priv *priv = container_of(napi, struct xgmac_priv, napi); int work_done = 0; xgmac_tx_complete(priv); work_done = xgmac_rx(priv, budget); if (work_done < budget) { napi_complete_done(napi, work_done); __raw_writel(DMA_INTR_DEFAULT_MASK, priv->base + XGMAC_DMA_INTR_ENA); } return work_done; } /** * xgmac_tx_timeout * @dev : Pointer to net device structure * Description: this function is called when a packet transmission fails to * complete within a reasonable tmrate. The driver will mark the error in the * netdev structure and arrange for the device to be reset to a sane state * in order to transmit a new packet. */ static void xgmac_tx_timeout(struct net_device *dev) { struct xgmac_priv *priv = netdev_priv(dev); schedule_work(&priv->tx_timeout_work); } /** * xgmac_set_rx_mode - entry point for multicast addressing * @dev : pointer to the device structure * Description: * This function is a driver entry point which gets called by the kernel * whenever multicast addresses must be enabled/disabled. * Return value: * void. */ static void xgmac_set_rx_mode(struct net_device *dev) { int i; struct xgmac_priv *priv = netdev_priv(dev); void __iomem *ioaddr = priv->base; unsigned int value = 0; u32 hash_filter[XGMAC_NUM_HASH]; int reg = 1; struct netdev_hw_addr *ha; bool use_hash = false; netdev_dbg(priv->dev, "# mcasts %d, # unicast %d\n", netdev_mc_count(dev), netdev_uc_count(dev)); if (dev->flags & IFF_PROMISC) value |= XGMAC_FRAME_FILTER_PR; memset(hash_filter, 0, sizeof(hash_filter)); if (netdev_uc_count(dev) > priv->max_macs) { use_hash = true; value |= XGMAC_FRAME_FILTER_HUC | XGMAC_FRAME_FILTER_HPF; } netdev_for_each_uc_addr(ha, dev) { if (use_hash) { u32 bit_nr = ~ether_crc(ETH_ALEN, ha->addr) >> 23; /* The most significant 4 bits determine the register to * use (H/L) while the other 5 bits determine the bit * within the register. */ hash_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); } else { xgmac_set_mac_addr(ioaddr, ha->addr, reg); reg++; } } if (dev->flags & IFF_ALLMULTI) { value |= XGMAC_FRAME_FILTER_PM; goto out; } if ((netdev_mc_count(dev) + reg - 1) > priv->max_macs) { use_hash = true; value |= XGMAC_FRAME_FILTER_HMC | XGMAC_FRAME_FILTER_HPF; } else { use_hash = false; } netdev_for_each_mc_addr(ha, dev) { if (use_hash) { u32 bit_nr = ~ether_crc(ETH_ALEN, ha->addr) >> 23; /* The most significant 4 bits determine the register to * use (H/L) while the other 5 bits determine the bit * within the register. */ hash_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); } else { xgmac_set_mac_addr(ioaddr, ha->addr, reg); reg++; } } out: for (i = reg; i <= priv->max_macs; i++) xgmac_set_mac_addr(ioaddr, NULL, i); for (i = 0; i < XGMAC_NUM_HASH; i++) writel(hash_filter[i], ioaddr + XGMAC_HASH(i)); writel(value, ioaddr + XGMAC_FRAME_FILTER); } /** * xgmac_change_mtu - entry point to change MTU size for the device. * @dev : device pointer. * @new_mtu : the new MTU size for the device. * Description: the Maximum Transfer Unit (MTU) is used by the network layer * to drive packet transmission. Ethernet has an MTU of 1500 octets * (ETH_DATA_LEN). This value can be changed with ifconfig. * Return value: * 0 on success and an appropriate (-)ve integer as defined in errno.h * file on failure. */ static int xgmac_change_mtu(struct net_device *dev, int new_mtu) { /* Stop everything, get ready to change the MTU */ if (!netif_running(dev)) return 0; /* Bring interface down, change mtu and bring interface back up */ xgmac_stop(dev); dev->mtu = new_mtu; return xgmac_open(dev); } static irqreturn_t xgmac_pmt_interrupt(int irq, void *dev_id) { u32 intr_status; struct net_device *dev = (struct net_device *)dev_id; struct xgmac_priv *priv = netdev_priv(dev); void __iomem *ioaddr = priv->base; intr_status = __raw_readl(ioaddr + XGMAC_INT_STAT); if (intr_status & XGMAC_INT_STAT_PMT) { netdev_dbg(priv->dev, "received Magic frame\n"); /* clear the PMT bits 5 and 6 by reading the PMT */ readl(ioaddr + XGMAC_PMT); } return IRQ_HANDLED; } static irqreturn_t xgmac_interrupt(int irq, void *dev_id) { u32 intr_status; struct net_device *dev = (struct net_device *)dev_id; struct xgmac_priv *priv = netdev_priv(dev); struct xgmac_extra_stats *x = &priv->xstats; /* read the status register (CSR5) */ intr_status = __raw_readl(priv->base + XGMAC_DMA_STATUS); intr_status &= __raw_readl(priv->base + XGMAC_DMA_INTR_ENA); __raw_writel(intr_status, priv->base + XGMAC_DMA_STATUS); /* It displays the DMA process states (CSR5 register) */ /* ABNORMAL interrupts */ if (unlikely(intr_status & DMA_STATUS_AIS)) { if (intr_status & DMA_STATUS_TJT) { netdev_err(priv->dev, "transmit jabber\n"); x->tx_jabber++; } if (intr_status & DMA_STATUS_RU) x->rx_buf_unav++; if (intr_status & DMA_STATUS_RPS) { netdev_err(priv->dev, "receive process stopped\n"); x->rx_process_stopped++; } if (intr_status & DMA_STATUS_ETI) { netdev_err(priv->dev, "transmit early interrupt\n"); x->tx_early++; } if (intr_status & DMA_STATUS_TPS) { netdev_err(priv->dev, "transmit process stopped\n"); x->tx_process_stopped++; schedule_work(&priv->tx_timeout_work); } if (intr_status & DMA_STATUS_FBI) { netdev_err(priv->dev, "fatal bus error\n"); x->fatal_bus_error++; } } /* TX/RX NORMAL interrupts */ if (intr_status & (DMA_STATUS_RI | DMA_STATUS_TU | DMA_STATUS_TI)) { __raw_writel(DMA_INTR_ABNORMAL, priv->base + XGMAC_DMA_INTR_ENA); napi_schedule(&priv->napi); } return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER /* Polling receive - used by NETCONSOLE and other diagnostic tools * to allow network I/O with interrupts disabled. */ static void xgmac_poll_controller(struct net_device *dev) { disable_irq(dev->irq); xgmac_interrupt(dev->irq, dev); enable_irq(dev->irq); } #endif static void xgmac_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage) { struct xgmac_priv *priv = netdev_priv(dev); void __iomem *base = priv->base; u32 count; spin_lock_bh(&priv->stats_lock); writel(XGMAC_MMC_CTRL_CNT_FRZ, base + XGMAC_MMC_CTRL); storage->rx_bytes = readl(base + XGMAC_MMC_RXOCTET_G_LO); storage->rx_bytes |= (u64)(readl(base + XGMAC_MMC_RXOCTET_G_HI)) << 32; storage->rx_packets = readl(base + XGMAC_MMC_RXFRAME_GB_LO); storage->multicast = readl(base + XGMAC_MMC_RXMCFRAME_G); storage->rx_crc_errors = readl(base + XGMAC_MMC_RXCRCERR); storage->rx_length_errors = readl(base + XGMAC_MMC_RXLENGTHERR); storage->rx_missed_errors = readl(base + XGMAC_MMC_RXOVERFLOW); storage->tx_bytes = readl(base + XGMAC_MMC_TXOCTET_G_LO); storage->tx_bytes |= (u64)(readl(base + XGMAC_MMC_TXOCTET_G_HI)) << 32; count = readl(base + XGMAC_MMC_TXFRAME_GB_LO); storage->tx_errors = count - readl(base + XGMAC_MMC_TXFRAME_G_LO); storage->tx_packets = count; storage->tx_fifo_errors = readl(base + XGMAC_MMC_TXUNDERFLOW); writel(0, base + XGMAC_MMC_CTRL); spin_unlock_bh(&priv->stats_lock); } static int xgmac_set_mac_address(struct net_device *dev, void *p) { struct xgmac_priv *priv = netdev_priv(dev); void __iomem *ioaddr = priv->base; struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); xgmac_set_mac_addr(ioaddr, dev->dev_addr, 0); return 0; } static int xgmac_set_features(struct net_device *dev, netdev_features_t features) { u32 ctrl; struct xgmac_priv *priv = netdev_priv(dev); void __iomem *ioaddr = priv->base; netdev_features_t changed = dev->features ^ features; if (!(changed & NETIF_F_RXCSUM)) return 0; ctrl = readl(ioaddr + XGMAC_CONTROL); if (features & NETIF_F_RXCSUM) ctrl |= XGMAC_CONTROL_IPC; else ctrl &= ~XGMAC_CONTROL_IPC; writel(ctrl, ioaddr + XGMAC_CONTROL); return 0; } static const struct net_device_ops xgmac_netdev_ops = { .ndo_open = xgmac_open, .ndo_start_xmit = xgmac_xmit, .ndo_stop = xgmac_stop, .ndo_change_mtu = xgmac_change_mtu, .ndo_set_rx_mode = xgmac_set_rx_mode, .ndo_tx_timeout = xgmac_tx_timeout, .ndo_get_stats64 = xgmac_get_stats64, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = xgmac_poll_controller, #endif .ndo_set_mac_address = xgmac_set_mac_address, .ndo_set_features = xgmac_set_features, }; static int xgmac_ethtool_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { cmd->base.autoneg = 0; cmd->base.duplex = DUPLEX_FULL; cmd->base.speed = 10000; ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 0); ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising, 0); return 0; } static void xgmac_get_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) { struct xgmac_priv *priv = netdev_priv(netdev); pause->rx_pause = priv->rx_pause; pause->tx_pause = priv->tx_pause; } static int xgmac_set_pauseparam(struct net_device *netdev, struct ethtool_pauseparam *pause) { struct xgmac_priv *priv = netdev_priv(netdev); if (pause->autoneg) return -EINVAL; return xgmac_set_flow_ctrl(priv, pause->rx_pause, pause->tx_pause); } struct xgmac_stats { char stat_string[ETH_GSTRING_LEN]; int stat_offset; bool is_reg; }; #define XGMAC_STAT(m) \ { #m, offsetof(struct xgmac_priv, xstats.m), false } #define XGMAC_HW_STAT(m, reg_offset) \ { #m, reg_offset, true } static const struct xgmac_stats xgmac_gstrings_stats[] = { XGMAC_STAT(tx_frame_flushed), XGMAC_STAT(tx_payload_error), XGMAC_STAT(tx_ip_header_error), XGMAC_STAT(tx_local_fault), XGMAC_STAT(tx_remote_fault), XGMAC_STAT(tx_early), XGMAC_STAT(tx_process_stopped), XGMAC_STAT(tx_jabber), XGMAC_STAT(rx_buf_unav), XGMAC_STAT(rx_process_stopped), XGMAC_STAT(rx_payload_error), XGMAC_STAT(rx_ip_header_error), XGMAC_STAT(rx_da_filter_fail), XGMAC_STAT(fatal_bus_error), XGMAC_HW_STAT(rx_watchdog, XGMAC_MMC_RXWATCHDOG), XGMAC_HW_STAT(tx_vlan, XGMAC_MMC_TXVLANFRAME), XGMAC_HW_STAT(rx_vlan, XGMAC_MMC_RXVLANFRAME), XGMAC_HW_STAT(tx_pause, XGMAC_MMC_TXPAUSEFRAME), XGMAC_HW_STAT(rx_pause, XGMAC_MMC_RXPAUSEFRAME), }; #define XGMAC_STATS_LEN ARRAY_SIZE(xgmac_gstrings_stats) static void xgmac_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *dummy, u64 *data) { struct xgmac_priv *priv = netdev_priv(dev); void *p = priv; int i; for (i = 0; i < XGMAC_STATS_LEN; i++) { if (xgmac_gstrings_stats[i].is_reg) *data++ = readl(priv->base + xgmac_gstrings_stats[i].stat_offset); else *data++ = *(u32 *)(p + xgmac_gstrings_stats[i].stat_offset); } } static int xgmac_get_sset_count(struct net_device *netdev, int sset) { switch (sset) { case ETH_SS_STATS: return XGMAC_STATS_LEN; default: return -EINVAL; } } static void xgmac_get_strings(struct net_device *dev, u32 stringset, u8 *data) { int i; u8 *p = data; switch (stringset) { case ETH_SS_STATS: for (i = 0; i < XGMAC_STATS_LEN; i++) { memcpy(p, xgmac_gstrings_stats[i].stat_string, ETH_GSTRING_LEN); p += ETH_GSTRING_LEN; } break; default: WARN_ON(1); break; } } static void xgmac_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct xgmac_priv *priv = netdev_priv(dev); if (device_can_wakeup(priv->device)) { wol->supported = WAKE_MAGIC | WAKE_UCAST; wol->wolopts = priv->wolopts; } } static int xgmac_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct xgmac_priv *priv = netdev_priv(dev); u32 support = WAKE_MAGIC | WAKE_UCAST; if (!device_can_wakeup(priv->device)) return -ENOTSUPP; if (wol->wolopts & ~support) return -EINVAL; priv->wolopts = wol->wolopts; if (wol->wolopts) { device_set_wakeup_enable(priv->device, 1); enable_irq_wake(dev->irq); } else { device_set_wakeup_enable(priv->device, 0); disable_irq_wake(dev->irq); } return 0; } static const struct ethtool_ops xgmac_ethtool_ops = { .get_link = ethtool_op_get_link, .get_pauseparam = xgmac_get_pauseparam, .set_pauseparam = xgmac_set_pauseparam, .get_ethtool_stats = xgmac_get_ethtool_stats, .get_strings = xgmac_get_strings, .get_wol = xgmac_get_wol, .set_wol = xgmac_set_wol, .get_sset_count = xgmac_get_sset_count, .get_link_ksettings = xgmac_ethtool_get_link_ksettings, }; /** * xgmac_probe * @pdev: platform device pointer * Description: the driver is initialized through platform_device. */ static int xgmac_probe(struct platform_device *pdev) { int ret = 0; struct resource *res; struct net_device *ndev = NULL; struct xgmac_priv *priv = NULL; u32 uid; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -ENODEV; if (!request_mem_region(res->start, resource_size(res), pdev->name)) return -EBUSY; ndev = alloc_etherdev(sizeof(struct xgmac_priv)); if (!ndev) { ret = -ENOMEM; goto err_alloc; } SET_NETDEV_DEV(ndev, &pdev->dev); priv = netdev_priv(ndev); platform_set_drvdata(pdev, ndev); ndev->netdev_ops = &xgmac_netdev_ops; ndev->ethtool_ops = &xgmac_ethtool_ops; spin_lock_init(&priv->stats_lock); INIT_WORK(&priv->tx_timeout_work, xgmac_tx_timeout_work); priv->device = &pdev->dev; priv->dev = ndev; priv->rx_pause = 1; priv->tx_pause = 1; priv->base = ioremap(res->start, resource_size(res)); if (!priv->base) { netdev_err(ndev, "ioremap failed\n"); ret = -ENOMEM; goto err_io; } uid = readl(priv->base + XGMAC_VERSION); netdev_info(ndev, "h/w version is 0x%x\n", uid); /* Figure out how many valid mac address filter registers we have */ writel(1, priv->base + XGMAC_ADDR_HIGH(31)); if (readl(priv->base + XGMAC_ADDR_HIGH(31)) == 1) priv->max_macs = 31; else priv->max_macs = 7; writel(0, priv->base + XGMAC_DMA_INTR_ENA); ndev->irq = platform_get_irq(pdev, 0); if (ndev->irq == -ENXIO) { netdev_err(ndev, "No irq resource\n"); ret = ndev->irq; goto err_irq; } ret = request_irq(ndev->irq, xgmac_interrupt, 0, dev_name(&pdev->dev), ndev); if (ret < 0) { netdev_err(ndev, "Could not request irq %d - ret %d)\n", ndev->irq, ret); goto err_irq; } priv->pmt_irq = platform_get_irq(pdev, 1); if (priv->pmt_irq == -ENXIO) { netdev_err(ndev, "No pmt irq resource\n"); ret = priv->pmt_irq; goto err_pmt_irq; } ret = request_irq(priv->pmt_irq, xgmac_pmt_interrupt, 0, dev_name(&pdev->dev), ndev); if (ret < 0) { netdev_err(ndev, "Could not request irq %d - ret %d)\n", priv->pmt_irq, ret); goto err_pmt_irq; } device_set_wakeup_capable(&pdev->dev, 1); if (device_can_wakeup(priv->device)) priv->wolopts = WAKE_MAGIC; /* Magic Frame as default */ ndev->hw_features = NETIF_F_SG | NETIF_F_HIGHDMA; if (readl(priv->base + XGMAC_DMA_HW_FEATURE) & DMA_HW_FEAT_TXCOESEL) ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; ndev->features |= ndev->hw_features; ndev->priv_flags |= IFF_UNICAST_FLT; /* MTU range: 46 - 9000 */ ndev->min_mtu = ETH_ZLEN - ETH_HLEN; ndev->max_mtu = XGMAC_MAX_MTU; /* Get the MAC address */ xgmac_get_mac_addr(priv->base, ndev->dev_addr, 0); if (!is_valid_ether_addr(ndev->dev_addr)) netdev_warn(ndev, "MAC address %pM not valid", ndev->dev_addr); netif_napi_add(ndev, &priv->napi, xgmac_poll, 64); ret = register_netdev(ndev); if (ret) goto err_reg; return 0; err_reg: netif_napi_del(&priv->napi); free_irq(priv->pmt_irq, ndev); err_pmt_irq: free_irq(ndev->irq, ndev); err_irq: iounmap(priv->base); err_io: free_netdev(ndev); err_alloc: release_mem_region(res->start, resource_size(res)); return ret; } /** * xgmac_dvr_remove * @pdev: platform device pointer * Description: this function resets the TX/RX processes, disables the MAC RX/TX * changes the link status, releases the DMA descriptor rings, * unregisters the MDIO bus and unmaps the allocated memory. */ static int xgmac_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct xgmac_priv *priv = netdev_priv(ndev); struct resource *res; xgmac_mac_disable(priv->base); /* Free the IRQ lines */ free_irq(ndev->irq, ndev); free_irq(priv->pmt_irq, ndev); unregister_netdev(ndev); netif_napi_del(&priv->napi); iounmap(priv->base); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); release_mem_region(res->start, resource_size(res)); free_netdev(ndev); return 0; } #ifdef CONFIG_PM_SLEEP static void xgmac_pmt(void __iomem *ioaddr, unsigned long mode) { unsigned int pmt = 0; if (mode & WAKE_MAGIC) pmt |= XGMAC_PMT_POWERDOWN | XGMAC_PMT_MAGIC_PKT_EN; if (mode & WAKE_UCAST) pmt |= XGMAC_PMT_POWERDOWN | XGMAC_PMT_GLBL_UNICAST; writel(pmt, ioaddr + XGMAC_PMT); } static int xgmac_suspend(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct xgmac_priv *priv = netdev_priv(ndev); u32 value; if (!ndev || !netif_running(ndev)) return 0; netif_device_detach(ndev); napi_disable(&priv->napi); writel(0, priv->base + XGMAC_DMA_INTR_ENA); if (device_may_wakeup(priv->device)) { /* Stop TX/RX DMA Only */ value = readl(priv->base + XGMAC_DMA_CONTROL); value &= ~(DMA_CONTROL_ST | DMA_CONTROL_SR); writel(value, priv->base + XGMAC_DMA_CONTROL); xgmac_pmt(priv->base, priv->wolopts); } else xgmac_mac_disable(priv->base); return 0; } static int xgmac_resume(struct device *dev) { struct net_device *ndev = dev_get_drvdata(dev); struct xgmac_priv *priv = netdev_priv(ndev); void __iomem *ioaddr = priv->base; if (!netif_running(ndev)) return 0; xgmac_pmt(ioaddr, 0); /* Enable the MAC and DMA */ xgmac_mac_enable(ioaddr); writel(DMA_INTR_DEFAULT_MASK, ioaddr + XGMAC_DMA_STATUS); writel(DMA_INTR_DEFAULT_MASK, ioaddr + XGMAC_DMA_INTR_ENA); netif_device_attach(ndev); napi_enable(&priv->napi); return 0; } #endif /* CONFIG_PM_SLEEP */ static SIMPLE_DEV_PM_OPS(xgmac_pm_ops, xgmac_suspend, xgmac_resume); static const struct of_device_id xgmac_of_match[] = { { .compatible = "calxeda,hb-xgmac", }, {}, }; MODULE_DEVICE_TABLE(of, xgmac_of_match); static struct platform_driver xgmac_driver = { .driver = { .name = "calxedaxgmac", .of_match_table = xgmac_of_match, }, .probe = xgmac_probe, .remove = xgmac_remove, .driver.pm = &xgmac_pm_ops, }; module_platform_driver(xgmac_driver); MODULE_AUTHOR("Calxeda, Inc."); MODULE_DESCRIPTION("Calxeda 10G XGMAC driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1