Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Raghu Vatsavayi | 1385 | 64.63% | 13 | 27.08% |
Intiyaz Basha | 466 | 21.75% | 22 | 45.83% |
Satanand Burla | 142 | 6.63% | 2 | 4.17% |
Weilin Chang | 77 | 3.59% | 3 | 6.25% |
VSR Burru | 53 | 2.47% | 3 | 6.25% |
Pradeep Nalla | 17 | 0.79% | 2 | 4.17% |
Johannes Berg | 1 | 0.05% | 1 | 2.08% |
Felix Manlunas | 1 | 0.05% | 1 | 2.08% |
Jarod Wilson | 1 | 0.05% | 1 | 2.08% |
Total | 2143 | 48 |
/********************************************************************** * Author: Cavium, Inc. * * Contact: support@cavium.com * Please include "LiquidIO" in the subject. * * Copyright (c) 2003-2016 Cavium, Inc. * * This file is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, Version 2, as * published by the Free Software Foundation. * * This file is distributed in the hope that it will be useful, but * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or * NONINFRINGEMENT. See the GNU General Public License for more * details. **********************************************************************/ /*! \file octeon_network.h * \brief Host NIC Driver: Structure and Macro definitions used by NIC Module. */ #ifndef __OCTEON_NETWORK_H__ #define __OCTEON_NETWORK_H__ #include <linux/ptp_clock_kernel.h> #define LIO_MAX_MTU_SIZE (OCTNET_MAX_FRM_SIZE - OCTNET_FRM_HEADER_SIZE) #define LIO_MIN_MTU_SIZE ETH_MIN_MTU /* Bit mask values for lio->ifstate */ #define LIO_IFSTATE_DROQ_OPS 0x01 #define LIO_IFSTATE_REGISTERED 0x02 #define LIO_IFSTATE_RUNNING 0x04 #define LIO_IFSTATE_RX_TIMESTAMP_ENABLED 0x08 #define LIO_IFSTATE_RESETTING 0x10 struct liquidio_if_cfg_resp { u64 rh; struct liquidio_if_cfg_info cfg_info; u64 status; }; #define LIO_IFCFG_WAIT_TIME 3000 /* In milli seconds */ #define LIQUIDIO_NDEV_STATS_POLL_TIME_MS 200 /* Structure of a node in list of gather components maintained by * NIC driver for each network device. */ struct octnic_gather { /* List manipulation. Next and prev pointers. */ struct list_head list; /* Size of the gather component at sg in bytes. */ int sg_size; /* Number of bytes that sg was adjusted to make it 8B-aligned. */ int adjust; /* Gather component that can accommodate max sized fragment list * received from the IP layer. */ struct octeon_sg_entry *sg; dma_addr_t sg_dma_ptr; }; struct oct_nic_stats_resp { u64 rh; struct oct_link_stats stats; u64 status; }; struct oct_nic_vf_stats_resp { u64 rh; u64 spoofmac_cnt; u64 status; }; struct oct_nic_stats_ctrl { struct completion complete; struct net_device *netdev; }; struct oct_nic_seapi_resp { u64 rh; union { u32 fec_setting; u32 speed; }; u64 status; }; /** LiquidIO per-interface network private data */ struct lio { /** State of the interface. Rx/Tx happens only in the RUNNING state. */ atomic_t ifstate; /** Octeon Interface index number. This device will be represented as * oct<ifidx> in the system. */ int ifidx; /** Octeon Input queue to use to transmit for this network interface. */ int txq; /** Octeon Output queue from which pkts arrive * for this network interface. */ int rxq; /** Guards each glist */ spinlock_t *glist_lock; /** Array of gather component linked lists */ struct list_head *glist; void **glists_virt_base; dma_addr_t *glists_dma_base; u32 glist_entry_size; /** Pointer to the NIC properties for the Octeon device this network * interface is associated with. */ struct octdev_props *octprops; /** Pointer to the octeon device structure. */ struct octeon_device *oct_dev; struct net_device *netdev; /** Link information sent by the core application for this interface. */ struct oct_link_info linfo; /** counter of link changes */ u64 link_changes; /** Size of Tx queue for this octeon device. */ u32 tx_qsize; /** Size of Rx queue for this octeon device. */ u32 rx_qsize; /** Size of MTU this octeon device. */ u32 mtu; /** msg level flag per interface. */ u32 msg_enable; /** Copy of Interface capabilities: TSO, TSO6, LRO, Chescksums . */ u64 dev_capability; /* Copy of transmit encapsulation capabilities: * TSO, TSO6, Checksums for this device for Kernel * 3.10.0 onwards */ u64 enc_dev_capability; /** Copy of beacaon reg in phy */ u32 phy_beacon_val; /** Copy of ctrl reg in phy */ u32 led_ctrl_val; /* PTP clock information */ struct ptp_clock_info ptp_info; struct ptp_clock *ptp_clock; s64 ptp_adjust; /* for atomic access to Octeon PTP reg and data struct */ spinlock_t ptp_lock; /* Interface info */ u32 intf_open; /* work queue for txq status */ struct cavium_wq txq_status_wq; /* work queue for rxq oom status */ struct cavium_wq rxq_status_wq[MAX_POSSIBLE_OCTEON_OUTPUT_QUEUES]; /* work queue for link status */ struct cavium_wq link_status_wq; /* work queue to regularly send local time to octeon firmware */ struct cavium_wq sync_octeon_time_wq; int netdev_uc_count; struct cavium_wk stats_wk; }; #define LIO_SIZE (sizeof(struct lio)) #define GET_LIO(netdev) ((struct lio *)netdev_priv(netdev)) #define LIO_MAX_CORES 16 /** * \brief Enable or disable feature * @param netdev pointer to network device * @param cmd Command that just requires acknowledgment * @param param1 Parameter to command */ int liquidio_set_feature(struct net_device *netdev, int cmd, u16 param1); int setup_rx_oom_poll_fn(struct net_device *netdev); void cleanup_rx_oom_poll_fn(struct net_device *netdev); /** * \brief Link control command completion callback * @param nctrl_ptr pointer to control packet structure * * This routine is called by the callback function when a ctrl pkt sent to * core app completes. The nctrl_ptr contains a copy of the command type * and data sent to the core app. This routine is only called if the ctrl * pkt was sent successfully to the core app. */ void liquidio_link_ctrl_cmd_completion(void *nctrl_ptr); int liquidio_setup_io_queues(struct octeon_device *octeon_dev, int ifidx, u32 num_iqs, u32 num_oqs); irqreturn_t liquidio_msix_intr_handler(int irq __attribute__((unused)), void *dev); int octeon_setup_interrupt(struct octeon_device *oct, u32 num_ioqs); void lio_fetch_stats(struct work_struct *work); int lio_wait_for_clean_oq(struct octeon_device *oct); /** * \brief Register ethtool operations * @param netdev pointer to network device */ void liquidio_set_ethtool_ops(struct net_device *netdev); void lio_delete_glists(struct lio *lio); int lio_setup_glists(struct octeon_device *oct, struct lio *lio, int num_qs); int liquidio_get_speed(struct lio *lio); int liquidio_set_speed(struct lio *lio, int speed); int liquidio_get_fec(struct lio *lio); int liquidio_set_fec(struct lio *lio, int on_off); /** * \brief Net device change_mtu * @param netdev network device */ int liquidio_change_mtu(struct net_device *netdev, int new_mtu); #define LIO_CHANGE_MTU_SUCCESS 1 #define LIO_CHANGE_MTU_FAIL 2 #define SKB_ADJ_MASK 0x3F #define SKB_ADJ (SKB_ADJ_MASK + 1) #define MIN_SKB_SIZE 256 /* 8 bytes and more - 8 bytes for PTP */ #define LIO_RXBUFFER_SZ 2048 static inline void *recv_buffer_alloc(struct octeon_device *oct, struct octeon_skb_page_info *pg_info) { struct page *page; struct sk_buff *skb; struct octeon_skb_page_info *skb_pg_info; page = alloc_page(GFP_ATOMIC); if (unlikely(!page)) return NULL; skb = dev_alloc_skb(MIN_SKB_SIZE + SKB_ADJ); if (unlikely(!skb)) { __free_page(page); pg_info->page = NULL; return NULL; } if ((unsigned long)skb->data & SKB_ADJ_MASK) { u32 r = SKB_ADJ - ((unsigned long)skb->data & SKB_ADJ_MASK); skb_reserve(skb, r); } skb_pg_info = ((struct octeon_skb_page_info *)(skb->cb)); /* Get DMA info */ pg_info->dma = dma_map_page(&oct->pci_dev->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); /* Mapping failed!! */ if (dma_mapping_error(&oct->pci_dev->dev, pg_info->dma)) { __free_page(page); dev_kfree_skb_any((struct sk_buff *)skb); pg_info->page = NULL; return NULL; } pg_info->page = page; pg_info->page_offset = 0; skb_pg_info->page = page; skb_pg_info->page_offset = 0; skb_pg_info->dma = pg_info->dma; return (void *)skb; } static inline void *recv_buffer_fast_alloc(u32 size) { struct sk_buff *skb; struct octeon_skb_page_info *skb_pg_info; skb = dev_alloc_skb(size + SKB_ADJ); if (unlikely(!skb)) return NULL; if ((unsigned long)skb->data & SKB_ADJ_MASK) { u32 r = SKB_ADJ - ((unsigned long)skb->data & SKB_ADJ_MASK); skb_reserve(skb, r); } skb_pg_info = ((struct octeon_skb_page_info *)(skb->cb)); skb_pg_info->page = NULL; skb_pg_info->page_offset = 0; skb_pg_info->dma = 0; return skb; } static inline int recv_buffer_recycle(struct octeon_device *oct, void *buf) { struct octeon_skb_page_info *pg_info = buf; if (!pg_info->page) { dev_err(&oct->pci_dev->dev, "%s: pg_info->page NULL\n", __func__); return -ENOMEM; } if (unlikely(page_count(pg_info->page) != 1) || unlikely(page_to_nid(pg_info->page) != numa_node_id())) { dma_unmap_page(&oct->pci_dev->dev, pg_info->dma, (PAGE_SIZE << 0), DMA_FROM_DEVICE); pg_info->dma = 0; pg_info->page = NULL; pg_info->page_offset = 0; return -ENOMEM; } /* Flip to other half of the buffer */ if (pg_info->page_offset == 0) pg_info->page_offset = LIO_RXBUFFER_SZ; else pg_info->page_offset = 0; page_ref_inc(pg_info->page); return 0; } static inline void *recv_buffer_reuse(struct octeon_device *oct, void *buf) { struct octeon_skb_page_info *pg_info = buf, *skb_pg_info; struct sk_buff *skb; skb = dev_alloc_skb(MIN_SKB_SIZE + SKB_ADJ); if (unlikely(!skb)) { dma_unmap_page(&oct->pci_dev->dev, pg_info->dma, (PAGE_SIZE << 0), DMA_FROM_DEVICE); return NULL; } if ((unsigned long)skb->data & SKB_ADJ_MASK) { u32 r = SKB_ADJ - ((unsigned long)skb->data & SKB_ADJ_MASK); skb_reserve(skb, r); } skb_pg_info = ((struct octeon_skb_page_info *)(skb->cb)); skb_pg_info->page = pg_info->page; skb_pg_info->page_offset = pg_info->page_offset; skb_pg_info->dma = pg_info->dma; return skb; } static inline void recv_buffer_destroy(void *buffer, struct octeon_skb_page_info *pg_info) { struct sk_buff *skb = (struct sk_buff *)buffer; put_page(pg_info->page); pg_info->dma = 0; pg_info->page = NULL; pg_info->page_offset = 0; if (skb) dev_kfree_skb_any(skb); } static inline void recv_buffer_free(void *buffer) { struct sk_buff *skb = (struct sk_buff *)buffer; struct octeon_skb_page_info *pg_info; pg_info = ((struct octeon_skb_page_info *)(skb->cb)); if (pg_info->page) { put_page(pg_info->page); pg_info->dma = 0; pg_info->page = NULL; pg_info->page_offset = 0; } dev_kfree_skb_any((struct sk_buff *)buffer); } static inline void recv_buffer_fast_free(void *buffer) { dev_kfree_skb_any((struct sk_buff *)buffer); } static inline void tx_buffer_free(void *buffer) { dev_kfree_skb_any((struct sk_buff *)buffer); } #define lio_dma_alloc(oct, size, dma_addr) \ dma_alloc_coherent(&(oct)->pci_dev->dev, size, dma_addr, GFP_KERNEL) #define lio_dma_free(oct, size, virt_addr, dma_addr) \ dma_free_coherent(&(oct)->pci_dev->dev, size, virt_addr, dma_addr) static inline void *get_rbd(struct sk_buff *skb) { struct octeon_skb_page_info *pg_info; unsigned char *va; pg_info = ((struct octeon_skb_page_info *)(skb->cb)); va = page_address(pg_info->page) + pg_info->page_offset; return va; } static inline u64 lio_map_ring(void *buf) { dma_addr_t dma_addr; struct sk_buff *skb = (struct sk_buff *)buf; struct octeon_skb_page_info *pg_info; pg_info = ((struct octeon_skb_page_info *)(skb->cb)); if (!pg_info->page) { pr_err("%s: pg_info->page NULL\n", __func__); WARN_ON(1); } /* Get DMA info */ dma_addr = pg_info->dma; if (!pg_info->dma) { pr_err("%s: ERROR it should be already available\n", __func__); WARN_ON(1); } dma_addr += pg_info->page_offset; return (u64)dma_addr; } static inline void lio_unmap_ring(struct pci_dev *pci_dev, u64 buf_ptr) { dma_unmap_page(&pci_dev->dev, buf_ptr, (PAGE_SIZE << 0), DMA_FROM_DEVICE); } static inline void *octeon_fast_packet_alloc(u32 size) { return recv_buffer_fast_alloc(size); } static inline void octeon_fast_packet_next(struct octeon_droq *droq, struct sk_buff *nicbuf, int copy_len, int idx) { skb_put_data(nicbuf, get_rbd(droq->recv_buf_list[idx].buffer), copy_len); } /** * \brief check interface state * @param lio per-network private data * @param state_flag flag state to check */ static inline int ifstate_check(struct lio *lio, int state_flag) { return atomic_read(&lio->ifstate) & state_flag; } /** * \brief set interface state * @param lio per-network private data * @param state_flag flag state to set */ static inline void ifstate_set(struct lio *lio, int state_flag) { atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) | state_flag)); } /** * \brief clear interface state * @param lio per-network private data * @param state_flag flag state to clear */ static inline void ifstate_reset(struct lio *lio, int state_flag) { atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) & ~(state_flag))); } /** * \brief wait for all pending requests to complete * @param oct Pointer to Octeon device * * Called during shutdown sequence */ static inline int wait_for_pending_requests(struct octeon_device *oct) { int i, pcount = 0; for (i = 0; i < MAX_IO_PENDING_PKT_COUNT; i++) { pcount = atomic_read( &oct->response_list[OCTEON_ORDERED_SC_LIST] .pending_req_count); if (pcount) schedule_timeout_uninterruptible(HZ / 10); else break; } if (pcount) return 1; return 0; } /** * \brief Stop Tx queues * @param netdev network device */ static inline void stop_txqs(struct net_device *netdev) { int i; for (i = 0; i < netdev->real_num_tx_queues; i++) netif_stop_subqueue(netdev, i); } /** * \brief Wake Tx queues * @param netdev network device */ static inline void wake_txqs(struct net_device *netdev) { struct lio *lio = GET_LIO(netdev); int i, qno; for (i = 0; i < netdev->real_num_tx_queues; i++) { qno = lio->linfo.txpciq[i % lio->oct_dev->num_iqs].s.q_no; if (__netif_subqueue_stopped(netdev, i)) { INCR_INSTRQUEUE_PKT_COUNT(lio->oct_dev, qno, tx_restart, 1); netif_wake_subqueue(netdev, i); } } } /** * \brief Start Tx queues * @param netdev network device */ static inline void start_txqs(struct net_device *netdev) { struct lio *lio = GET_LIO(netdev); int i; if (lio->linfo.link.s.link_up) { for (i = 0; i < netdev->real_num_tx_queues; i++) netif_start_subqueue(netdev, i); } } static inline int skb_iq(struct octeon_device *oct, struct sk_buff *skb) { return skb->queue_mapping % oct->num_iqs; } /** * Remove the node at the head of the list. The list would be empty at * the end of this call if there are no more nodes in the list. */ static inline struct list_head *lio_list_delete_head(struct list_head *root) { struct list_head *node; if (root->prev == root && root->next == root) node = NULL; else node = root->next; if (node) list_del(node); return node; } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1