Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Carolyn Wyborny | 2926 | 28.88% | 23 | 23.00% |
Auke-Jan H Kok | 2489 | 24.57% | 2 | 2.00% |
Alexander Duyck | 1845 | 18.21% | 27 | 27.00% |
Akeem G. Abodunrin | 1681 | 16.59% | 13 | 13.00% |
Nicholas Nunley | 495 | 4.89% | 5 | 5.00% |
Todd Fujinaka | 320 | 3.16% | 9 | 9.00% |
Matthew Vick | 138 | 1.36% | 2 | 2.00% |
Greg Rose | 77 | 0.76% | 1 | 1.00% |
Jeff Kirsher | 53 | 0.52% | 6 | 6.00% |
Joseph Gasparakis | 29 | 0.29% | 2 | 2.00% |
Lior Levy | 24 | 0.24% | 1 | 1.00% |
John W. Linville | 18 | 0.18% | 1 | 1.00% |
Jacob E Keller | 15 | 0.15% | 1 | 1.00% |
Joe Perches | 7 | 0.07% | 1 | 1.00% |
Manfred Rudigier | 6 | 0.06% | 1 | 1.00% |
Gustavo A. R. Silva | 2 | 0.02% | 2 | 2.00% |
Aaron Sierra | 2 | 0.02% | 1 | 1.00% |
Emil Tantilov | 2 | 0.02% | 1 | 1.00% |
Julia Lawall | 1 | 0.01% | 1 | 1.00% |
Total | 10130 | 100 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2007 - 2018 Intel Corporation. */ /* e1000_82575 * e1000_82576 */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/types.h> #include <linux/if_ether.h> #include <linux/i2c.h> #include "e1000_mac.h" #include "e1000_82575.h" #include "e1000_i210.h" #include "igb.h" static s32 igb_get_invariants_82575(struct e1000_hw *); static s32 igb_acquire_phy_82575(struct e1000_hw *); static void igb_release_phy_82575(struct e1000_hw *); static s32 igb_acquire_nvm_82575(struct e1000_hw *); static void igb_release_nvm_82575(struct e1000_hw *); static s32 igb_check_for_link_82575(struct e1000_hw *); static s32 igb_get_cfg_done_82575(struct e1000_hw *); static s32 igb_init_hw_82575(struct e1000_hw *); static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *); static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *); static s32 igb_reset_hw_82575(struct e1000_hw *); static s32 igb_reset_hw_82580(struct e1000_hw *); static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool); static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *, bool); static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *, bool); static s32 igb_setup_copper_link_82575(struct e1000_hw *); static s32 igb_setup_serdes_link_82575(struct e1000_hw *); static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16); static void igb_clear_hw_cntrs_82575(struct e1000_hw *); static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16); static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *, u16 *); static s32 igb_get_phy_id_82575(struct e1000_hw *); static void igb_release_swfw_sync_82575(struct e1000_hw *, u16); static bool igb_sgmii_active_82575(struct e1000_hw *); static s32 igb_reset_init_script_82575(struct e1000_hw *); static s32 igb_read_mac_addr_82575(struct e1000_hw *); static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw); static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw); static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw); static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw); static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw); static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw); static const u16 e1000_82580_rxpbs_table[] = { 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 }; /* Due to a hw errata, if the host tries to configure the VFTA register * while performing queries from the BMC or DMA, then the VFTA in some * cases won't be written. */ /** * igb_write_vfta_i350 - Write value to VLAN filter table * @hw: pointer to the HW structure * @offset: register offset in VLAN filter table * @value: register value written to VLAN filter table * * Writes value at the given offset in the register array which stores * the VLAN filter table. **/ static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value) { struct igb_adapter *adapter = hw->back; int i; for (i = 10; i--;) array_wr32(E1000_VFTA, offset, value); wrfl(); adapter->shadow_vfta[offset] = value; } /** * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO * @hw: pointer to the HW structure * * Called to determine if the I2C pins are being used for I2C or as an * external MDIO interface since the two options are mutually exclusive. **/ static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw) { u32 reg = 0; bool ext_mdio = false; switch (hw->mac.type) { case e1000_82575: case e1000_82576: reg = rd32(E1000_MDIC); ext_mdio = !!(reg & E1000_MDIC_DEST); break; case e1000_82580: case e1000_i350: case e1000_i354: case e1000_i210: case e1000_i211: reg = rd32(E1000_MDICNFG); ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO); break; default: break; } return ext_mdio; } /** * igb_check_for_link_media_swap - Check which M88E1112 interface linked * @hw: pointer to the HW structure * * Poll the M88E1112 interfaces to see which interface achieved link. */ static s32 igb_check_for_link_media_swap(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; u8 port = 0; /* Check the copper medium. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); if (ret_val) return ret_val; ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); if (ret_val) return ret_val; if (data & E1000_M88E1112_STATUS_LINK) port = E1000_MEDIA_PORT_COPPER; /* Check the other medium. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1); if (ret_val) return ret_val; ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data); if (ret_val) return ret_val; if (data & E1000_M88E1112_STATUS_LINK) port = E1000_MEDIA_PORT_OTHER; /* Determine if a swap needs to happen. */ if (port && (hw->dev_spec._82575.media_port != port)) { hw->dev_spec._82575.media_port = port; hw->dev_spec._82575.media_changed = true; } if (port == E1000_MEDIA_PORT_COPPER) { /* reset page to 0 */ ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); if (ret_val) return ret_val; igb_check_for_link_82575(hw); } else { igb_check_for_link_82575(hw); /* reset page to 0 */ ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0); if (ret_val) return ret_val; } return 0; } /** * igb_init_phy_params_82575 - Init PHY func ptrs. * @hw: pointer to the HW structure **/ static s32 igb_init_phy_params_82575(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = 0; u32 ctrl_ext; if (hw->phy.media_type != e1000_media_type_copper) { phy->type = e1000_phy_none; goto out; } phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; phy->reset_delay_us = 100; ctrl_ext = rd32(E1000_CTRL_EXT); if (igb_sgmii_active_82575(hw)) { phy->ops.reset = igb_phy_hw_reset_sgmii_82575; ctrl_ext |= E1000_CTRL_I2C_ENA; } else { phy->ops.reset = igb_phy_hw_reset; ctrl_ext &= ~E1000_CTRL_I2C_ENA; } wr32(E1000_CTRL_EXT, ctrl_ext); igb_reset_mdicnfg_82580(hw); if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) { phy->ops.read_reg = igb_read_phy_reg_sgmii_82575; phy->ops.write_reg = igb_write_phy_reg_sgmii_82575; } else { switch (hw->mac.type) { case e1000_82580: case e1000_i350: case e1000_i354: case e1000_i210: case e1000_i211: phy->ops.read_reg = igb_read_phy_reg_82580; phy->ops.write_reg = igb_write_phy_reg_82580; break; default: phy->ops.read_reg = igb_read_phy_reg_igp; phy->ops.write_reg = igb_write_phy_reg_igp; } } /* set lan id */ hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; /* Set phy->phy_addr and phy->id. */ ret_val = igb_get_phy_id_82575(hw); if (ret_val) return ret_val; /* Verify phy id and set remaining function pointers */ switch (phy->id) { case M88E1543_E_PHY_ID: case M88E1512_E_PHY_ID: case I347AT4_E_PHY_ID: case M88E1112_E_PHY_ID: case M88E1111_I_PHY_ID: phy->type = e1000_phy_m88; phy->ops.check_polarity = igb_check_polarity_m88; phy->ops.get_phy_info = igb_get_phy_info_m88; if (phy->id != M88E1111_I_PHY_ID) phy->ops.get_cable_length = igb_get_cable_length_m88_gen2; else phy->ops.get_cable_length = igb_get_cable_length_m88; phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88; /* Check if this PHY is configured for media swap. */ if (phy->id == M88E1112_E_PHY_ID) { u16 data; ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 2); if (ret_val) goto out; ret_val = phy->ops.read_reg(hw, E1000_M88E1112_MAC_CTRL_1, &data); if (ret_val) goto out; data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >> E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT; if (data == E1000_M88E1112_AUTO_COPPER_SGMII || data == E1000_M88E1112_AUTO_COPPER_BASEX) hw->mac.ops.check_for_link = igb_check_for_link_media_swap; } if (phy->id == M88E1512_E_PHY_ID) { ret_val = igb_initialize_M88E1512_phy(hw); if (ret_val) goto out; } if (phy->id == M88E1543_E_PHY_ID) { ret_val = igb_initialize_M88E1543_phy(hw); if (ret_val) goto out; } break; case IGP03E1000_E_PHY_ID: phy->type = e1000_phy_igp_3; phy->ops.get_phy_info = igb_get_phy_info_igp; phy->ops.get_cable_length = igb_get_cable_length_igp_2; phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp; phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575; phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state; break; case I82580_I_PHY_ID: case I350_I_PHY_ID: phy->type = e1000_phy_82580; phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580; phy->ops.get_cable_length = igb_get_cable_length_82580; phy->ops.get_phy_info = igb_get_phy_info_82580; phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580; phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580; break; case I210_I_PHY_ID: phy->type = e1000_phy_i210; phy->ops.check_polarity = igb_check_polarity_m88; phy->ops.get_cfg_done = igb_get_cfg_done_i210; phy->ops.get_phy_info = igb_get_phy_info_m88; phy->ops.get_cable_length = igb_get_cable_length_m88_gen2; phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580; phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580; phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88; break; case BCM54616_E_PHY_ID: phy->type = e1000_phy_bcm54616; break; default: ret_val = -E1000_ERR_PHY; goto out; } out: return ret_val; } /** * igb_init_nvm_params_82575 - Init NVM func ptrs. * @hw: pointer to the HW structure **/ static s32 igb_init_nvm_params_82575(struct e1000_hw *hw) { struct e1000_nvm_info *nvm = &hw->nvm; u32 eecd = rd32(E1000_EECD); u16 size; size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> E1000_EECD_SIZE_EX_SHIFT); /* Added to a constant, "size" becomes the left-shift value * for setting word_size. */ size += NVM_WORD_SIZE_BASE_SHIFT; /* Just in case size is out of range, cap it to the largest * EEPROM size supported */ if (size > 15) size = 15; nvm->word_size = BIT(size); nvm->opcode_bits = 8; nvm->delay_usec = 1; switch (nvm->override) { case e1000_nvm_override_spi_large: nvm->page_size = 32; nvm->address_bits = 16; break; case e1000_nvm_override_spi_small: nvm->page_size = 8; nvm->address_bits = 8; break; default: nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; break; } if (nvm->word_size == BIT(15)) nvm->page_size = 128; nvm->type = e1000_nvm_eeprom_spi; /* NVM Function Pointers */ nvm->ops.acquire = igb_acquire_nvm_82575; nvm->ops.release = igb_release_nvm_82575; nvm->ops.write = igb_write_nvm_spi; nvm->ops.validate = igb_validate_nvm_checksum; nvm->ops.update = igb_update_nvm_checksum; if (nvm->word_size < BIT(15)) nvm->ops.read = igb_read_nvm_eerd; else nvm->ops.read = igb_read_nvm_spi; /* override generic family function pointers for specific descendants */ switch (hw->mac.type) { case e1000_82580: nvm->ops.validate = igb_validate_nvm_checksum_82580; nvm->ops.update = igb_update_nvm_checksum_82580; break; case e1000_i354: case e1000_i350: nvm->ops.validate = igb_validate_nvm_checksum_i350; nvm->ops.update = igb_update_nvm_checksum_i350; break; default: break; } return 0; } /** * igb_init_mac_params_82575 - Init MAC func ptrs. * @hw: pointer to the HW structure **/ static s32 igb_init_mac_params_82575(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; /* Set mta register count */ mac->mta_reg_count = 128; /* Set uta register count */ mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128; /* Set rar entry count */ switch (mac->type) { case e1000_82576: mac->rar_entry_count = E1000_RAR_ENTRIES_82576; break; case e1000_82580: mac->rar_entry_count = E1000_RAR_ENTRIES_82580; break; case e1000_i350: case e1000_i354: mac->rar_entry_count = E1000_RAR_ENTRIES_I350; break; default: mac->rar_entry_count = E1000_RAR_ENTRIES_82575; break; } /* reset */ if (mac->type >= e1000_82580) mac->ops.reset_hw = igb_reset_hw_82580; else mac->ops.reset_hw = igb_reset_hw_82575; if (mac->type >= e1000_i210) { mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210; mac->ops.release_swfw_sync = igb_release_swfw_sync_i210; } else { mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575; mac->ops.release_swfw_sync = igb_release_swfw_sync_82575; } if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354)) mac->ops.write_vfta = igb_write_vfta_i350; else mac->ops.write_vfta = igb_write_vfta; /* Set if part includes ASF firmware */ mac->asf_firmware_present = true; /* Set if manageability features are enabled. */ mac->arc_subsystem_valid = (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK) ? true : false; /* enable EEE on i350 parts and later parts */ if (mac->type >= e1000_i350) dev_spec->eee_disable = false; else dev_spec->eee_disable = true; /* Allow a single clear of the SW semaphore on I210 and newer */ if (mac->type >= e1000_i210) dev_spec->clear_semaphore_once = true; /* physical interface link setup */ mac->ops.setup_physical_interface = (hw->phy.media_type == e1000_media_type_copper) ? igb_setup_copper_link_82575 : igb_setup_serdes_link_82575; if (mac->type == e1000_82580 || mac->type == e1000_i350) { switch (hw->device_id) { /* feature not supported on these id's */ case E1000_DEV_ID_DH89XXCC_SGMII: case E1000_DEV_ID_DH89XXCC_SERDES: case E1000_DEV_ID_DH89XXCC_BACKPLANE: case E1000_DEV_ID_DH89XXCC_SFP: break; default: hw->dev_spec._82575.mas_capable = true; break; } } return 0; } /** * igb_set_sfp_media_type_82575 - derives SFP module media type. * @hw: pointer to the HW structure * * The media type is chosen based on SFP module. * compatibility flags retrieved from SFP ID EEPROM. **/ static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw) { s32 ret_val = E1000_ERR_CONFIG; u32 ctrl_ext = 0; struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags; u8 tranceiver_type = 0; s32 timeout = 3; /* Turn I2C interface ON and power on sfp cage */ ctrl_ext = rd32(E1000_CTRL_EXT); ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA); wrfl(); /* Read SFP module data */ while (timeout) { ret_val = igb_read_sfp_data_byte(hw, E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET), &tranceiver_type); if (ret_val == 0) break; msleep(100); timeout--; } if (ret_val != 0) goto out; ret_val = igb_read_sfp_data_byte(hw, E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET), (u8 *)eth_flags); if (ret_val != 0) goto out; /* Check if there is some SFP module plugged and powered */ if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) || (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) { dev_spec->module_plugged = true; if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) { hw->phy.media_type = e1000_media_type_internal_serdes; } else if (eth_flags->e100_base_fx) { dev_spec->sgmii_active = true; hw->phy.media_type = e1000_media_type_internal_serdes; } else if (eth_flags->e1000_base_t) { dev_spec->sgmii_active = true; hw->phy.media_type = e1000_media_type_copper; } else { hw->phy.media_type = e1000_media_type_unknown; hw_dbg("PHY module has not been recognized\n"); goto out; } } else { hw->phy.media_type = e1000_media_type_unknown; } ret_val = 0; out: /* Restore I2C interface setting */ wr32(E1000_CTRL_EXT, ctrl_ext); return ret_val; } static s32 igb_get_invariants_82575(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; s32 ret_val; u32 ctrl_ext = 0; u32 link_mode = 0; switch (hw->device_id) { case E1000_DEV_ID_82575EB_COPPER: case E1000_DEV_ID_82575EB_FIBER_SERDES: case E1000_DEV_ID_82575GB_QUAD_COPPER: mac->type = e1000_82575; break; case E1000_DEV_ID_82576: case E1000_DEV_ID_82576_NS: case E1000_DEV_ID_82576_NS_SERDES: case E1000_DEV_ID_82576_FIBER: case E1000_DEV_ID_82576_SERDES: case E1000_DEV_ID_82576_QUAD_COPPER: case E1000_DEV_ID_82576_QUAD_COPPER_ET2: case E1000_DEV_ID_82576_SERDES_QUAD: mac->type = e1000_82576; break; case E1000_DEV_ID_82580_COPPER: case E1000_DEV_ID_82580_FIBER: case E1000_DEV_ID_82580_QUAD_FIBER: case E1000_DEV_ID_82580_SERDES: case E1000_DEV_ID_82580_SGMII: case E1000_DEV_ID_82580_COPPER_DUAL: case E1000_DEV_ID_DH89XXCC_SGMII: case E1000_DEV_ID_DH89XXCC_SERDES: case E1000_DEV_ID_DH89XXCC_BACKPLANE: case E1000_DEV_ID_DH89XXCC_SFP: mac->type = e1000_82580; break; case E1000_DEV_ID_I350_COPPER: case E1000_DEV_ID_I350_FIBER: case E1000_DEV_ID_I350_SERDES: case E1000_DEV_ID_I350_SGMII: mac->type = e1000_i350; break; case E1000_DEV_ID_I210_COPPER: case E1000_DEV_ID_I210_FIBER: case E1000_DEV_ID_I210_SERDES: case E1000_DEV_ID_I210_SGMII: case E1000_DEV_ID_I210_COPPER_FLASHLESS: case E1000_DEV_ID_I210_SERDES_FLASHLESS: mac->type = e1000_i210; break; case E1000_DEV_ID_I211_COPPER: mac->type = e1000_i211; break; case E1000_DEV_ID_I354_BACKPLANE_1GBPS: case E1000_DEV_ID_I354_SGMII: case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS: mac->type = e1000_i354; break; default: return -E1000_ERR_MAC_INIT; } /* Set media type */ /* The 82575 uses bits 22:23 for link mode. The mode can be changed * based on the EEPROM. We cannot rely upon device ID. There * is no distinguishable difference between fiber and internal * SerDes mode on the 82575. There can be an external PHY attached * on the SGMII interface. For this, we'll set sgmii_active to true. */ hw->phy.media_type = e1000_media_type_copper; dev_spec->sgmii_active = false; dev_spec->module_plugged = false; ctrl_ext = rd32(E1000_CTRL_EXT); link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK; switch (link_mode) { case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: hw->phy.media_type = e1000_media_type_internal_serdes; break; case E1000_CTRL_EXT_LINK_MODE_SGMII: /* Get phy control interface type set (MDIO vs. I2C)*/ if (igb_sgmii_uses_mdio_82575(hw)) { hw->phy.media_type = e1000_media_type_copper; dev_spec->sgmii_active = true; break; } /* fall through - for I2C based SGMII */ case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES: /* read media type from SFP EEPROM */ ret_val = igb_set_sfp_media_type_82575(hw); if ((ret_val != 0) || (hw->phy.media_type == e1000_media_type_unknown)) { /* If media type was not identified then return media * type defined by the CTRL_EXT settings. */ hw->phy.media_type = e1000_media_type_internal_serdes; if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) { hw->phy.media_type = e1000_media_type_copper; dev_spec->sgmii_active = true; } break; } /* do not change link mode for 100BaseFX */ if (dev_spec->eth_flags.e100_base_fx) break; /* change current link mode setting */ ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK; if (hw->phy.media_type == e1000_media_type_copper) ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII; else ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; wr32(E1000_CTRL_EXT, ctrl_ext); break; default: break; } /* mac initialization and operations */ ret_val = igb_init_mac_params_82575(hw); if (ret_val) goto out; /* NVM initialization */ ret_val = igb_init_nvm_params_82575(hw); switch (hw->mac.type) { case e1000_i210: case e1000_i211: ret_val = igb_init_nvm_params_i210(hw); break; default: break; } if (ret_val) goto out; /* if part supports SR-IOV then initialize mailbox parameters */ switch (mac->type) { case e1000_82576: case e1000_i350: igb_init_mbx_params_pf(hw); break; default: break; } /* setup PHY parameters */ ret_val = igb_init_phy_params_82575(hw); out: return ret_val; } /** * igb_acquire_phy_82575 - Acquire rights to access PHY * @hw: pointer to the HW structure * * Acquire access rights to the correct PHY. This is a * function pointer entry point called by the api module. **/ static s32 igb_acquire_phy_82575(struct e1000_hw *hw) { u16 mask = E1000_SWFW_PHY0_SM; if (hw->bus.func == E1000_FUNC_1) mask = E1000_SWFW_PHY1_SM; else if (hw->bus.func == E1000_FUNC_2) mask = E1000_SWFW_PHY2_SM; else if (hw->bus.func == E1000_FUNC_3) mask = E1000_SWFW_PHY3_SM; return hw->mac.ops.acquire_swfw_sync(hw, mask); } /** * igb_release_phy_82575 - Release rights to access PHY * @hw: pointer to the HW structure * * A wrapper to release access rights to the correct PHY. This is a * function pointer entry point called by the api module. **/ static void igb_release_phy_82575(struct e1000_hw *hw) { u16 mask = E1000_SWFW_PHY0_SM; if (hw->bus.func == E1000_FUNC_1) mask = E1000_SWFW_PHY1_SM; else if (hw->bus.func == E1000_FUNC_2) mask = E1000_SWFW_PHY2_SM; else if (hw->bus.func == E1000_FUNC_3) mask = E1000_SWFW_PHY3_SM; hw->mac.ops.release_swfw_sync(hw, mask); } /** * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Reads the PHY register at offset using the serial gigabit media independent * interface and stores the retrieved information in data. **/ static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, u16 *data) { s32 ret_val = -E1000_ERR_PARAM; if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { hw_dbg("PHY Address %u is out of range\n", offset); goto out; } ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; ret_val = igb_read_phy_reg_i2c(hw, offset, data); hw->phy.ops.release(hw); out: return ret_val; } /** * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Writes the data to PHY register at the offset using the serial gigabit * media independent interface. **/ static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, u16 data) { s32 ret_val = -E1000_ERR_PARAM; if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { hw_dbg("PHY Address %d is out of range\n", offset); goto out; } ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; ret_val = igb_write_phy_reg_i2c(hw, offset, data); hw->phy.ops.release(hw); out: return ret_val; } /** * igb_get_phy_id_82575 - Retrieve PHY addr and id * @hw: pointer to the HW structure * * Retrieves the PHY address and ID for both PHY's which do and do not use * sgmi interface. **/ static s32 igb_get_phy_id_82575(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = 0; u16 phy_id; u32 ctrl_ext; u32 mdic; /* Extra read required for some PHY's on i354 */ if (hw->mac.type == e1000_i354) igb_get_phy_id(hw); /* For SGMII PHYs, we try the list of possible addresses until * we find one that works. For non-SGMII PHYs * (e.g. integrated copper PHYs), an address of 1 should * work. The result of this function should mean phy->phy_addr * and phy->id are set correctly. */ if (!(igb_sgmii_active_82575(hw))) { phy->addr = 1; ret_val = igb_get_phy_id(hw); goto out; } if (igb_sgmii_uses_mdio_82575(hw)) { switch (hw->mac.type) { case e1000_82575: case e1000_82576: mdic = rd32(E1000_MDIC); mdic &= E1000_MDIC_PHY_MASK; phy->addr = mdic >> E1000_MDIC_PHY_SHIFT; break; case e1000_82580: case e1000_i350: case e1000_i354: case e1000_i210: case e1000_i211: mdic = rd32(E1000_MDICNFG); mdic &= E1000_MDICNFG_PHY_MASK; phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT; break; default: ret_val = -E1000_ERR_PHY; goto out; } ret_val = igb_get_phy_id(hw); goto out; } /* Power on sgmii phy if it is disabled */ ctrl_ext = rd32(E1000_CTRL_EXT); wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA); wrfl(); msleep(300); /* The address field in the I2CCMD register is 3 bits and 0 is invalid. * Therefore, we need to test 1-7 */ for (phy->addr = 1; phy->addr < 8; phy->addr++) { ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); if (ret_val == 0) { hw_dbg("Vendor ID 0x%08X read at address %u\n", phy_id, phy->addr); /* At the time of this writing, The M88 part is * the only supported SGMII PHY product. */ if (phy_id == M88_VENDOR) break; } else { hw_dbg("PHY address %u was unreadable\n", phy->addr); } } /* A valid PHY type couldn't be found. */ if (phy->addr == 8) { phy->addr = 0; ret_val = -E1000_ERR_PHY; goto out; } else { ret_val = igb_get_phy_id(hw); } /* restore previous sfp cage power state */ wr32(E1000_CTRL_EXT, ctrl_ext); out: return ret_val; } /** * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset * @hw: pointer to the HW structure * * Resets the PHY using the serial gigabit media independent interface. **/ static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; /* This isn't a true "hard" reset, but is the only reset * available to us at this time. */ hw_dbg("Soft resetting SGMII attached PHY...\n"); /* SFP documentation requires the following to configure the SPF module * to work on SGMII. No further documentation is given. */ ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084); if (ret_val) goto out; ret_val = igb_phy_sw_reset(hw); if (ret_val) goto out; if (phy->id == M88E1512_E_PHY_ID) ret_val = igb_initialize_M88E1512_phy(hw); if (phy->id == M88E1543_E_PHY_ID) ret_val = igb_initialize_M88E1543_phy(hw); out: return ret_val; } /** * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state * @hw: pointer to the HW structure * @active: true to enable LPLU, false to disable * * Sets the LPLU D0 state according to the active flag. When * activating LPLU this function also disables smart speed * and vice versa. LPLU will not be activated unless the * device autonegotiation advertisement meets standards of * either 10 or 10/100 or 10/100/1000 at all duplexes. * This is a function pointer entry point only called by * PHY setup routines. **/ static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); if (ret_val) goto out; if (active) { data |= IGP02E1000_PM_D0_LPLU; ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, data); if (ret_val) goto out; /* When LPLU is enabled, we should disable SmartSpeed */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) goto out; } else { data &= ~IGP02E1000_PM_D0_LPLU; ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, data); /* LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. */ if (phy->smart_speed == e1000_smart_speed_on) { ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) goto out; data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) goto out; } else if (phy->smart_speed == e1000_smart_speed_off) { ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) goto out; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) goto out; } } out: return ret_val; } /** * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state * @hw: pointer to the HW structure * @active: true to enable LPLU, false to disable * * Sets the LPLU D0 state according to the active flag. When * activating LPLU this function also disables smart speed * and vice versa. LPLU will not be activated unless the * device autonegotiation advertisement meets standards of * either 10 or 10/100 or 10/100/1000 at all duplexes. * This is a function pointer entry point only called by * PHY setup routines. **/ static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; u16 data; data = rd32(E1000_82580_PHY_POWER_MGMT); if (active) { data |= E1000_82580_PM_D0_LPLU; /* When LPLU is enabled, we should disable SmartSpeed */ data &= ~E1000_82580_PM_SPD; } else { data &= ~E1000_82580_PM_D0_LPLU; /* LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. */ if (phy->smart_speed == e1000_smart_speed_on) data |= E1000_82580_PM_SPD; else if (phy->smart_speed == e1000_smart_speed_off) data &= ~E1000_82580_PM_SPD; } wr32(E1000_82580_PHY_POWER_MGMT, data); return 0; } /** * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3 * @hw: pointer to the HW structure * @active: boolean used to enable/disable lplu * * Success returns 0, Failure returns 1 * * The low power link up (lplu) state is set to the power management level D3 * and SmartSpeed is disabled when active is true, else clear lplu for D3 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU * is used during Dx states where the power conservation is most important. * During driver activity, SmartSpeed should be enabled so performance is * maintained. **/ static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; u16 data; data = rd32(E1000_82580_PHY_POWER_MGMT); if (!active) { data &= ~E1000_82580_PM_D3_LPLU; /* LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. */ if (phy->smart_speed == e1000_smart_speed_on) data |= E1000_82580_PM_SPD; else if (phy->smart_speed == e1000_smart_speed_off) data &= ~E1000_82580_PM_SPD; } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { data |= E1000_82580_PM_D3_LPLU; /* When LPLU is enabled, we should disable SmartSpeed */ data &= ~E1000_82580_PM_SPD; } wr32(E1000_82580_PHY_POWER_MGMT, data); return 0; } /** * igb_acquire_nvm_82575 - Request for access to EEPROM * @hw: pointer to the HW structure * * Acquire the necessary semaphores for exclusive access to the EEPROM. * Set the EEPROM access request bit and wait for EEPROM access grant bit. * Return successful if access grant bit set, else clear the request for * EEPROM access and return -E1000_ERR_NVM (-1). **/ static s32 igb_acquire_nvm_82575(struct e1000_hw *hw) { s32 ret_val; ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM); if (ret_val) goto out; ret_val = igb_acquire_nvm(hw); if (ret_val) hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM); out: return ret_val; } /** * igb_release_nvm_82575 - Release exclusive access to EEPROM * @hw: pointer to the HW structure * * Stop any current commands to the EEPROM and clear the EEPROM request bit, * then release the semaphores acquired. **/ static void igb_release_nvm_82575(struct e1000_hw *hw) { igb_release_nvm(hw); hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM); } /** * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore * @hw: pointer to the HW structure * @mask: specifies which semaphore to acquire * * Acquire the SW/FW semaphore to access the PHY or NVM. The mask * will also specify which port we're acquiring the lock for. **/ static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) { u32 swfw_sync; u32 swmask = mask; u32 fwmask = mask << 16; s32 ret_val = 0; s32 i = 0, timeout = 200; while (i < timeout) { if (igb_get_hw_semaphore(hw)) { ret_val = -E1000_ERR_SWFW_SYNC; goto out; } swfw_sync = rd32(E1000_SW_FW_SYNC); if (!(swfw_sync & (fwmask | swmask))) break; /* Firmware currently using resource (fwmask) * or other software thread using resource (swmask) */ igb_put_hw_semaphore(hw); mdelay(5); i++; } if (i == timeout) { hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); ret_val = -E1000_ERR_SWFW_SYNC; goto out; } swfw_sync |= swmask; wr32(E1000_SW_FW_SYNC, swfw_sync); igb_put_hw_semaphore(hw); out: return ret_val; } /** * igb_release_swfw_sync_82575 - Release SW/FW semaphore * @hw: pointer to the HW structure * @mask: specifies which semaphore to acquire * * Release the SW/FW semaphore used to access the PHY or NVM. The mask * will also specify which port we're releasing the lock for. **/ static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) { u32 swfw_sync; while (igb_get_hw_semaphore(hw) != 0) ; /* Empty */ swfw_sync = rd32(E1000_SW_FW_SYNC); swfw_sync &= ~mask; wr32(E1000_SW_FW_SYNC, swfw_sync); igb_put_hw_semaphore(hw); } /** * igb_get_cfg_done_82575 - Read config done bit * @hw: pointer to the HW structure * * Read the management control register for the config done bit for * completion status. NOTE: silicon which is EEPROM-less will fail trying * to read the config done bit, so an error is *ONLY* logged and returns * 0. If we were to return with error, EEPROM-less silicon * would not be able to be reset or change link. **/ static s32 igb_get_cfg_done_82575(struct e1000_hw *hw) { s32 timeout = PHY_CFG_TIMEOUT; u32 mask = E1000_NVM_CFG_DONE_PORT_0; if (hw->bus.func == 1) mask = E1000_NVM_CFG_DONE_PORT_1; else if (hw->bus.func == E1000_FUNC_2) mask = E1000_NVM_CFG_DONE_PORT_2; else if (hw->bus.func == E1000_FUNC_3) mask = E1000_NVM_CFG_DONE_PORT_3; while (timeout) { if (rd32(E1000_EEMNGCTL) & mask) break; usleep_range(1000, 2000); timeout--; } if (!timeout) hw_dbg("MNG configuration cycle has not completed.\n"); /* If EEPROM is not marked present, init the PHY manually */ if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) && (hw->phy.type == e1000_phy_igp_3)) igb_phy_init_script_igp3(hw); return 0; } /** * igb_get_link_up_info_82575 - Get link speed/duplex info * @hw: pointer to the HW structure * @speed: stores the current speed * @duplex: stores the current duplex * * This is a wrapper function, if using the serial gigabit media independent * interface, use PCS to retrieve the link speed and duplex information. * Otherwise, use the generic function to get the link speed and duplex info. **/ static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed, u16 *duplex) { s32 ret_val; if (hw->phy.media_type != e1000_media_type_copper) ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed, duplex); else ret_val = igb_get_speed_and_duplex_copper(hw, speed, duplex); return ret_val; } /** * igb_check_for_link_82575 - Check for link * @hw: pointer to the HW structure * * If sgmii is enabled, then use the pcs register to determine link, otherwise * use the generic interface for determining link. **/ static s32 igb_check_for_link_82575(struct e1000_hw *hw) { s32 ret_val; u16 speed, duplex; if (hw->phy.media_type != e1000_media_type_copper) { ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed, &duplex); /* Use this flag to determine if link needs to be checked or * not. If we have link clear the flag so that we do not * continue to check for link. */ hw->mac.get_link_status = !hw->mac.serdes_has_link; /* Configure Flow Control now that Auto-Neg has completed. * First, we need to restore the desired flow control * settings because we may have had to re-autoneg with a * different link partner. */ ret_val = igb_config_fc_after_link_up(hw); if (ret_val) hw_dbg("Error configuring flow control\n"); } else { ret_val = igb_check_for_copper_link(hw); } return ret_val; } /** * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown * @hw: pointer to the HW structure **/ void igb_power_up_serdes_link_82575(struct e1000_hw *hw) { u32 reg; if ((hw->phy.media_type != e1000_media_type_internal_serdes) && !igb_sgmii_active_82575(hw)) return; /* Enable PCS to turn on link */ reg = rd32(E1000_PCS_CFG0); reg |= E1000_PCS_CFG_PCS_EN; wr32(E1000_PCS_CFG0, reg); /* Power up the laser */ reg = rd32(E1000_CTRL_EXT); reg &= ~E1000_CTRL_EXT_SDP3_DATA; wr32(E1000_CTRL_EXT, reg); /* flush the write to verify completion */ wrfl(); usleep_range(1000, 2000); } /** * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex * @hw: pointer to the HW structure * @speed: stores the current speed * @duplex: stores the current duplex * * Using the physical coding sub-layer (PCS), retrieve the current speed and * duplex, then store the values in the pointers provided. **/ static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed, u16 *duplex) { struct e1000_mac_info *mac = &hw->mac; u32 pcs, status; /* Set up defaults for the return values of this function */ mac->serdes_has_link = false; *speed = 0; *duplex = 0; /* Read the PCS Status register for link state. For non-copper mode, * the status register is not accurate. The PCS status register is * used instead. */ pcs = rd32(E1000_PCS_LSTAT); /* The link up bit determines when link is up on autoneg. The sync ok * gets set once both sides sync up and agree upon link. Stable link * can be determined by checking for both link up and link sync ok */ if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) { mac->serdes_has_link = true; /* Detect and store PCS speed */ if (pcs & E1000_PCS_LSTS_SPEED_1000) *speed = SPEED_1000; else if (pcs & E1000_PCS_LSTS_SPEED_100) *speed = SPEED_100; else *speed = SPEED_10; /* Detect and store PCS duplex */ if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) *duplex = FULL_DUPLEX; else *duplex = HALF_DUPLEX; /* Check if it is an I354 2.5Gb backplane connection. */ if (mac->type == e1000_i354) { status = rd32(E1000_STATUS); if ((status & E1000_STATUS_2P5_SKU) && !(status & E1000_STATUS_2P5_SKU_OVER)) { *speed = SPEED_2500; *duplex = FULL_DUPLEX; hw_dbg("2500 Mbs, "); hw_dbg("Full Duplex\n"); } } } return 0; } /** * igb_shutdown_serdes_link_82575 - Remove link during power down * @hw: pointer to the HW structure * * In the case of fiber serdes, shut down optics and PCS on driver unload * when management pass thru is not enabled. **/ void igb_shutdown_serdes_link_82575(struct e1000_hw *hw) { u32 reg; if (hw->phy.media_type != e1000_media_type_internal_serdes && igb_sgmii_active_82575(hw)) return; if (!igb_enable_mng_pass_thru(hw)) { /* Disable PCS to turn off link */ reg = rd32(E1000_PCS_CFG0); reg &= ~E1000_PCS_CFG_PCS_EN; wr32(E1000_PCS_CFG0, reg); /* shutdown the laser */ reg = rd32(E1000_CTRL_EXT); reg |= E1000_CTRL_EXT_SDP3_DATA; wr32(E1000_CTRL_EXT, reg); /* flush the write to verify completion */ wrfl(); usleep_range(1000, 2000); } } /** * igb_reset_hw_82575 - Reset hardware * @hw: pointer to the HW structure * * This resets the hardware into a known state. This is a * function pointer entry point called by the api module. **/ static s32 igb_reset_hw_82575(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; /* Prevent the PCI-E bus from sticking if there is no TLP connection * on the last TLP read/write transaction when MAC is reset. */ ret_val = igb_disable_pcie_master(hw); if (ret_val) hw_dbg("PCI-E Master disable polling has failed.\n"); /* set the completion timeout for interface */ ret_val = igb_set_pcie_completion_timeout(hw); if (ret_val) hw_dbg("PCI-E Set completion timeout has failed.\n"); hw_dbg("Masking off all interrupts\n"); wr32(E1000_IMC, 0xffffffff); wr32(E1000_RCTL, 0); wr32(E1000_TCTL, E1000_TCTL_PSP); wrfl(); usleep_range(10000, 20000); ctrl = rd32(E1000_CTRL); hw_dbg("Issuing a global reset to MAC\n"); wr32(E1000_CTRL, ctrl | E1000_CTRL_RST); ret_val = igb_get_auto_rd_done(hw); if (ret_val) { /* When auto config read does not complete, do not * return with an error. This can happen in situations * where there is no eeprom and prevents getting link. */ hw_dbg("Auto Read Done did not complete\n"); } /* If EEPROM is not present, run manual init scripts */ if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) igb_reset_init_script_82575(hw); /* Clear any pending interrupt events. */ wr32(E1000_IMC, 0xffffffff); rd32(E1000_ICR); /* Install any alternate MAC address into RAR0 */ ret_val = igb_check_alt_mac_addr(hw); return ret_val; } /** * igb_init_hw_82575 - Initialize hardware * @hw: pointer to the HW structure * * This inits the hardware readying it for operation. **/ static s32 igb_init_hw_82575(struct e1000_hw *hw) { struct e1000_mac_info *mac = &hw->mac; s32 ret_val; u16 i, rar_count = mac->rar_entry_count; if ((hw->mac.type >= e1000_i210) && !(igb_get_flash_presence_i210(hw))) { ret_val = igb_pll_workaround_i210(hw); if (ret_val) return ret_val; } /* Initialize identification LED */ ret_val = igb_id_led_init(hw); if (ret_val) { hw_dbg("Error initializing identification LED\n"); /* This is not fatal and we should not stop init due to this */ } /* Disabling VLAN filtering */ hw_dbg("Initializing the IEEE VLAN\n"); igb_clear_vfta(hw); /* Setup the receive address */ igb_init_rx_addrs(hw, rar_count); /* Zero out the Multicast HASH table */ hw_dbg("Zeroing the MTA\n"); for (i = 0; i < mac->mta_reg_count; i++) array_wr32(E1000_MTA, i, 0); /* Zero out the Unicast HASH table */ hw_dbg("Zeroing the UTA\n"); for (i = 0; i < mac->uta_reg_count; i++) array_wr32(E1000_UTA, i, 0); /* Setup link and flow control */ ret_val = igb_setup_link(hw); /* Clear all of the statistics registers (clear on read). It is * important that we do this after we have tried to establish link * because the symbol error count will increment wildly if there * is no link. */ igb_clear_hw_cntrs_82575(hw); return ret_val; } /** * igb_setup_copper_link_82575 - Configure copper link settings * @hw: pointer to the HW structure * * Configures the link for auto-neg or forced speed and duplex. Then we check * for link, once link is established calls to configure collision distance * and flow control are called. **/ static s32 igb_setup_copper_link_82575(struct e1000_hw *hw) { u32 ctrl; s32 ret_val; u32 phpm_reg; ctrl = rd32(E1000_CTRL); ctrl |= E1000_CTRL_SLU; ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); wr32(E1000_CTRL, ctrl); /* Clear Go Link Disconnect bit on supported devices */ switch (hw->mac.type) { case e1000_82580: case e1000_i350: case e1000_i210: case e1000_i211: phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT); phpm_reg &= ~E1000_82580_PM_GO_LINKD; wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg); break; default: break; } ret_val = igb_setup_serdes_link_82575(hw); if (ret_val) goto out; if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) { /* allow time for SFP cage time to power up phy */ msleep(300); ret_val = hw->phy.ops.reset(hw); if (ret_val) { hw_dbg("Error resetting the PHY.\n"); goto out; } } switch (hw->phy.type) { case e1000_phy_i210: case e1000_phy_m88: switch (hw->phy.id) { case I347AT4_E_PHY_ID: case M88E1112_E_PHY_ID: case M88E1543_E_PHY_ID: case M88E1512_E_PHY_ID: case I210_I_PHY_ID: ret_val = igb_copper_link_setup_m88_gen2(hw); break; default: ret_val = igb_copper_link_setup_m88(hw); break; } break; case e1000_phy_igp_3: ret_val = igb_copper_link_setup_igp(hw); break; case e1000_phy_82580: ret_val = igb_copper_link_setup_82580(hw); break; case e1000_phy_bcm54616: ret_val = 0; break; default: ret_val = -E1000_ERR_PHY; break; } if (ret_val) goto out; ret_val = igb_setup_copper_link(hw); out: return ret_val; } /** * igb_setup_serdes_link_82575 - Setup link for serdes * @hw: pointer to the HW structure * * Configure the physical coding sub-layer (PCS) link. The PCS link is * used on copper connections where the serialized gigabit media independent * interface (sgmii), or serdes fiber is being used. Configures the link * for auto-negotiation or forces speed/duplex. **/ static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw) { u32 ctrl_ext, ctrl_reg, reg, anadv_reg; bool pcs_autoneg; s32 ret_val = 0; u16 data; if ((hw->phy.media_type != e1000_media_type_internal_serdes) && !igb_sgmii_active_82575(hw)) return ret_val; /* On the 82575, SerDes loopback mode persists until it is * explicitly turned off or a power cycle is performed. A read to * the register does not indicate its status. Therefore, we ensure * loopback mode is disabled during initialization. */ wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); /* power on the sfp cage if present and turn on I2C */ ctrl_ext = rd32(E1000_CTRL_EXT); ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; ctrl_ext |= E1000_CTRL_I2C_ENA; wr32(E1000_CTRL_EXT, ctrl_ext); ctrl_reg = rd32(E1000_CTRL); ctrl_reg |= E1000_CTRL_SLU; if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) { /* set both sw defined pins */ ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1; /* Set switch control to serdes energy detect */ reg = rd32(E1000_CONNSW); reg |= E1000_CONNSW_ENRGSRC; wr32(E1000_CONNSW, reg); } reg = rd32(E1000_PCS_LCTL); /* default pcs_autoneg to the same setting as mac autoneg */ pcs_autoneg = hw->mac.autoneg; switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { case E1000_CTRL_EXT_LINK_MODE_SGMII: /* sgmii mode lets the phy handle forcing speed/duplex */ pcs_autoneg = true; /* autoneg time out should be disabled for SGMII mode */ reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); break; case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: /* disable PCS autoneg and support parallel detect only */ pcs_autoneg = false; /* fall through */ default: if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) { ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data); if (ret_val) { hw_dbg(KERN_DEBUG "NVM Read Error\n\n"); return ret_val; } if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT) pcs_autoneg = false; } /* non-SGMII modes only supports a speed of 1000/Full for the * link so it is best to just force the MAC and let the pcs * link either autoneg or be forced to 1000/Full */ ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD | E1000_CTRL_FD | E1000_CTRL_FRCDPX; /* set speed of 1000/Full if speed/duplex is forced */ reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL; break; } wr32(E1000_CTRL, ctrl_reg); /* New SerDes mode allows for forcing speed or autonegotiating speed * at 1gb. Autoneg should be default set by most drivers. This is the * mode that will be compatible with older link partners and switches. * However, both are supported by the hardware and some drivers/tools. */ reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); if (pcs_autoneg) { /* Set PCS register for autoneg */ reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ /* Disable force flow control for autoneg */ reg &= ~E1000_PCS_LCTL_FORCE_FCTRL; /* Configure flow control advertisement for autoneg */ anadv_reg = rd32(E1000_PCS_ANADV); anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE); switch (hw->fc.requested_mode) { case e1000_fc_full: case e1000_fc_rx_pause: anadv_reg |= E1000_TXCW_ASM_DIR; anadv_reg |= E1000_TXCW_PAUSE; break; case e1000_fc_tx_pause: anadv_reg |= E1000_TXCW_ASM_DIR; break; default: break; } wr32(E1000_PCS_ANADV, anadv_reg); hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg); } else { /* Set PCS register for forced link */ reg |= E1000_PCS_LCTL_FSD; /* Force Speed */ /* Force flow control for forced link */ reg |= E1000_PCS_LCTL_FORCE_FCTRL; hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg); } wr32(E1000_PCS_LCTL, reg); if (!pcs_autoneg && !igb_sgmii_active_82575(hw)) igb_force_mac_fc(hw); return ret_val; } /** * igb_sgmii_active_82575 - Return sgmii state * @hw: pointer to the HW structure * * 82575 silicon has a serialized gigabit media independent interface (sgmii) * which can be enabled for use in the embedded applications. Simply * return the current state of the sgmii interface. **/ static bool igb_sgmii_active_82575(struct e1000_hw *hw) { struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; return dev_spec->sgmii_active; } /** * igb_reset_init_script_82575 - Inits HW defaults after reset * @hw: pointer to the HW structure * * Inits recommended HW defaults after a reset when there is no EEPROM * detected. This is only for the 82575. **/ static s32 igb_reset_init_script_82575(struct e1000_hw *hw) { if (hw->mac.type == e1000_82575) { hw_dbg("Running reset init script for 82575\n"); /* SerDes configuration via SERDESCTRL */ igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C); igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78); igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23); igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15); /* CCM configuration via CCMCTL register */ igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00); igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00); /* PCIe lanes configuration */ igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC); igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF); igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05); igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81); /* PCIe PLL Configuration */ igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47); igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00); igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00); } return 0; } /** * igb_read_mac_addr_82575 - Read device MAC address * @hw: pointer to the HW structure **/ static s32 igb_read_mac_addr_82575(struct e1000_hw *hw) { s32 ret_val = 0; /* If there's an alternate MAC address place it in RAR0 * so that it will override the Si installed default perm * address. */ ret_val = igb_check_alt_mac_addr(hw); if (ret_val) goto out; ret_val = igb_read_mac_addr(hw); out: return ret_val; } /** * igb_power_down_phy_copper_82575 - Remove link during PHY power down * @hw: pointer to the HW structure * * In the case of a PHY power down to save power, or to turn off link during a * driver unload, or wake on lan is not enabled, remove the link. **/ void igb_power_down_phy_copper_82575(struct e1000_hw *hw) { /* If the management interface is not enabled, then power down */ if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw))) igb_power_down_phy_copper(hw); } /** * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters * @hw: pointer to the HW structure * * Clears the hardware counters by reading the counter registers. **/ static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw) { igb_clear_hw_cntrs_base(hw); rd32(E1000_PRC64); rd32(E1000_PRC127); rd32(E1000_PRC255); rd32(E1000_PRC511); rd32(E1000_PRC1023); rd32(E1000_PRC1522); rd32(E1000_PTC64); rd32(E1000_PTC127); rd32(E1000_PTC255); rd32(E1000_PTC511); rd32(E1000_PTC1023); rd32(E1000_PTC1522); rd32(E1000_ALGNERRC); rd32(E1000_RXERRC); rd32(E1000_TNCRS); rd32(E1000_CEXTERR); rd32(E1000_TSCTC); rd32(E1000_TSCTFC); rd32(E1000_MGTPRC); rd32(E1000_MGTPDC); rd32(E1000_MGTPTC); rd32(E1000_IAC); rd32(E1000_ICRXOC); rd32(E1000_ICRXPTC); rd32(E1000_ICRXATC); rd32(E1000_ICTXPTC); rd32(E1000_ICTXATC); rd32(E1000_ICTXQEC); rd32(E1000_ICTXQMTC); rd32(E1000_ICRXDMTC); rd32(E1000_CBTMPC); rd32(E1000_HTDPMC); rd32(E1000_CBRMPC); rd32(E1000_RPTHC); rd32(E1000_HGPTC); rd32(E1000_HTCBDPC); rd32(E1000_HGORCL); rd32(E1000_HGORCH); rd32(E1000_HGOTCL); rd32(E1000_HGOTCH); rd32(E1000_LENERRS); /* This register should not be read in copper configurations */ if (hw->phy.media_type == e1000_media_type_internal_serdes || igb_sgmii_active_82575(hw)) rd32(E1000_SCVPC); } /** * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable * @hw: pointer to the HW structure * * After rx enable if manageability is enabled then there is likely some * bad data at the start of the fifo and possibly in the DMA fifo. This * function clears the fifos and flushes any packets that came in as rx was * being enabled. **/ void igb_rx_fifo_flush_82575(struct e1000_hw *hw) { u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled; int i, ms_wait; /* disable IPv6 options as per hardware errata */ rfctl = rd32(E1000_RFCTL); rfctl |= E1000_RFCTL_IPV6_EX_DIS; wr32(E1000_RFCTL, rfctl); if (hw->mac.type != e1000_82575 || !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN)) return; /* Disable all RX queues */ for (i = 0; i < 4; i++) { rxdctl[i] = rd32(E1000_RXDCTL(i)); wr32(E1000_RXDCTL(i), rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE); } /* Poll all queues to verify they have shut down */ for (ms_wait = 0; ms_wait < 10; ms_wait++) { usleep_range(1000, 2000); rx_enabled = 0; for (i = 0; i < 4; i++) rx_enabled |= rd32(E1000_RXDCTL(i)); if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE)) break; } if (ms_wait == 10) hw_dbg("Queue disable timed out after 10ms\n"); /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all * incoming packets are rejected. Set enable and wait 2ms so that * any packet that was coming in as RCTL.EN was set is flushed */ wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF); rlpml = rd32(E1000_RLPML); wr32(E1000_RLPML, 0); rctl = rd32(E1000_RCTL); temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP); temp_rctl |= E1000_RCTL_LPE; wr32(E1000_RCTL, temp_rctl); wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN); wrfl(); usleep_range(2000, 3000); /* Enable RX queues that were previously enabled and restore our * previous state */ for (i = 0; i < 4; i++) wr32(E1000_RXDCTL(i), rxdctl[i]); wr32(E1000_RCTL, rctl); wrfl(); wr32(E1000_RLPML, rlpml); wr32(E1000_RFCTL, rfctl); /* Flush receive errors generated by workaround */ rd32(E1000_ROC); rd32(E1000_RNBC); rd32(E1000_MPC); } /** * igb_set_pcie_completion_timeout - set pci-e completion timeout * @hw: pointer to the HW structure * * The defaults for 82575 and 82576 should be in the range of 50us to 50ms, * however the hardware default for these parts is 500us to 1ms which is less * than the 10ms recommended by the pci-e spec. To address this we need to * increase the value to either 10ms to 200ms for capability version 1 config, * or 16ms to 55ms for version 2. **/ static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw) { u32 gcr = rd32(E1000_GCR); s32 ret_val = 0; u16 pcie_devctl2; /* only take action if timeout value is defaulted to 0 */ if (gcr & E1000_GCR_CMPL_TMOUT_MASK) goto out; /* if capabilities version is type 1 we can write the * timeout of 10ms to 200ms through the GCR register */ if (!(gcr & E1000_GCR_CAP_VER2)) { gcr |= E1000_GCR_CMPL_TMOUT_10ms; goto out; } /* for version 2 capabilities we need to write the config space * directly in order to set the completion timeout value for * 16ms to 55ms */ ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, &pcie_devctl2); if (ret_val) goto out; pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms; ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, &pcie_devctl2); out: /* disable completion timeout resend */ gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND; wr32(E1000_GCR, gcr); return ret_val; } /** * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing * @hw: pointer to the hardware struct * @enable: state to enter, either enabled or disabled * @pf: Physical Function pool - do not set anti-spoofing for the PF * * enables/disables L2 switch anti-spoofing functionality. **/ void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf) { u32 reg_val, reg_offset; switch (hw->mac.type) { case e1000_82576: reg_offset = E1000_DTXSWC; break; case e1000_i350: case e1000_i354: reg_offset = E1000_TXSWC; break; default: return; } reg_val = rd32(reg_offset); if (enable) { reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK | E1000_DTXSWC_VLAN_SPOOF_MASK); /* The PF can spoof - it has to in order to * support emulation mode NICs */ reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS)); } else { reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK | E1000_DTXSWC_VLAN_SPOOF_MASK); } wr32(reg_offset, reg_val); } /** * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback * @hw: pointer to the hardware struct * @enable: state to enter, either enabled or disabled * * enables/disables L2 switch loopback functionality. **/ void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable) { u32 dtxswc; switch (hw->mac.type) { case e1000_82576: dtxswc = rd32(E1000_DTXSWC); if (enable) dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; else dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; wr32(E1000_DTXSWC, dtxswc); break; case e1000_i354: case e1000_i350: dtxswc = rd32(E1000_TXSWC); if (enable) dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; else dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; wr32(E1000_TXSWC, dtxswc); break; default: /* Currently no other hardware supports loopback */ break; } } /** * igb_vmdq_set_replication_pf - enable or disable vmdq replication * @hw: pointer to the hardware struct * @enable: state to enter, either enabled or disabled * * enables/disables replication of packets across multiple pools. **/ void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) { u32 vt_ctl = rd32(E1000_VT_CTL); if (enable) vt_ctl |= E1000_VT_CTL_VM_REPL_EN; else vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN; wr32(E1000_VT_CTL, vt_ctl); } /** * igb_read_phy_reg_82580 - Read 82580 MDI control register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Reads the MDI control register in the PHY at offset and stores the * information read to data. **/ s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data) { s32 ret_val; ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; ret_val = igb_read_phy_reg_mdic(hw, offset, data); hw->phy.ops.release(hw); out: return ret_val; } /** * igb_write_phy_reg_82580 - Write 82580 MDI control register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write to register at offset * * Writes data to MDI control register in the PHY at offset. **/ s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data) { s32 ret_val; ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; ret_val = igb_write_phy_reg_mdic(hw, offset, data); hw->phy.ops.release(hw); out: return ret_val; } /** * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits * @hw: pointer to the HW structure * * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on * the values found in the EEPROM. This addresses an issue in which these * bits are not restored from EEPROM after reset. **/ static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw) { s32 ret_val = 0; u32 mdicnfg; u16 nvm_data = 0; if (hw->mac.type != e1000_82580) goto out; if (!igb_sgmii_active_82575(hw)) goto out; ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, &nvm_data); if (ret_val) { hw_dbg("NVM Read Error\n"); goto out; } mdicnfg = rd32(E1000_MDICNFG); if (nvm_data & NVM_WORD24_EXT_MDIO) mdicnfg |= E1000_MDICNFG_EXT_MDIO; if (nvm_data & NVM_WORD24_COM_MDIO) mdicnfg |= E1000_MDICNFG_COM_MDIO; wr32(E1000_MDICNFG, mdicnfg); out: return ret_val; } /** * igb_reset_hw_82580 - Reset hardware * @hw: pointer to the HW structure * * This resets function or entire device (all ports, etc.) * to a known state. **/ static s32 igb_reset_hw_82580(struct e1000_hw *hw) { s32 ret_val = 0; /* BH SW mailbox bit in SW_FW_SYNC */ u16 swmbsw_mask = E1000_SW_SYNCH_MB; u32 ctrl; bool global_device_reset = hw->dev_spec._82575.global_device_reset; hw->dev_spec._82575.global_device_reset = false; /* due to hw errata, global device reset doesn't always * work on 82580 */ if (hw->mac.type == e1000_82580) global_device_reset = false; /* Get current control state. */ ctrl = rd32(E1000_CTRL); /* Prevent the PCI-E bus from sticking if there is no TLP connection * on the last TLP read/write transaction when MAC is reset. */ ret_val = igb_disable_pcie_master(hw); if (ret_val) hw_dbg("PCI-E Master disable polling has failed.\n"); hw_dbg("Masking off all interrupts\n"); wr32(E1000_IMC, 0xffffffff); wr32(E1000_RCTL, 0); wr32(E1000_TCTL, E1000_TCTL_PSP); wrfl(); usleep_range(10000, 11000); /* Determine whether or not a global dev reset is requested */ if (global_device_reset && hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask)) global_device_reset = false; if (global_device_reset && !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET)) ctrl |= E1000_CTRL_DEV_RST; else ctrl |= E1000_CTRL_RST; wr32(E1000_CTRL, ctrl); wrfl(); /* Add delay to insure DEV_RST has time to complete */ if (global_device_reset) usleep_range(5000, 6000); ret_val = igb_get_auto_rd_done(hw); if (ret_val) { /* When auto config read does not complete, do not * return with an error. This can happen in situations * where there is no eeprom and prevents getting link. */ hw_dbg("Auto Read Done did not complete\n"); } /* clear global device reset status bit */ wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET); /* Clear any pending interrupt events. */ wr32(E1000_IMC, 0xffffffff); rd32(E1000_ICR); ret_val = igb_reset_mdicnfg_82580(hw); if (ret_val) hw_dbg("Could not reset MDICNFG based on EEPROM\n"); /* Install any alternate MAC address into RAR0 */ ret_val = igb_check_alt_mac_addr(hw); /* Release semaphore */ if (global_device_reset) hw->mac.ops.release_swfw_sync(hw, swmbsw_mask); return ret_val; } /** * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size * @data: data received by reading RXPBS register * * The 82580 uses a table based approach for packet buffer allocation sizes. * This function converts the retrieved value into the correct table value * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 * 0x0 36 72 144 1 2 4 8 16 * 0x8 35 70 140 rsv rsv rsv rsv rsv */ u16 igb_rxpbs_adjust_82580(u32 data) { u16 ret_val = 0; if (data < ARRAY_SIZE(e1000_82580_rxpbs_table)) ret_val = e1000_82580_rxpbs_table[data]; return ret_val; } /** * igb_validate_nvm_checksum_with_offset - Validate EEPROM * checksum * @hw: pointer to the HW structure * @offset: offset in words of the checksum protected region * * Calculates the EEPROM checksum by reading/adding each word of the EEPROM * and then verifies that the sum of the EEPROM is equal to 0xBABA. **/ static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) { s32 ret_val = 0; u16 checksum = 0; u16 i, nvm_data; for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) { ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); if (ret_val) { hw_dbg("NVM Read Error\n"); goto out; } checksum += nvm_data; } if (checksum != (u16) NVM_SUM) { hw_dbg("NVM Checksum Invalid\n"); ret_val = -E1000_ERR_NVM; goto out; } out: return ret_val; } /** * igb_update_nvm_checksum_with_offset - Update EEPROM * checksum * @hw: pointer to the HW structure * @offset: offset in words of the checksum protected region * * Updates the EEPROM checksum by reading/adding each word of the EEPROM * up to the checksum. Then calculates the EEPROM checksum and writes the * value to the EEPROM. **/ static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) { s32 ret_val; u16 checksum = 0; u16 i, nvm_data; for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) { ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); if (ret_val) { hw_dbg("NVM Read Error while updating checksum.\n"); goto out; } checksum += nvm_data; } checksum = (u16) NVM_SUM - checksum; ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1, &checksum); if (ret_val) hw_dbg("NVM Write Error while updating checksum.\n"); out: return ret_val; } /** * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum * @hw: pointer to the HW structure * * Calculates the EEPROM section checksum by reading/adding each word of * the EEPROM and then verifies that the sum of the EEPROM is * equal to 0xBABA. **/ static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw) { s32 ret_val = 0; u16 eeprom_regions_count = 1; u16 j, nvm_data; u16 nvm_offset; ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); if (ret_val) { hw_dbg("NVM Read Error\n"); goto out; } if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) { /* if checksums compatibility bit is set validate checksums * for all 4 ports. */ eeprom_regions_count = 4; } for (j = 0; j < eeprom_regions_count; j++) { nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); ret_val = igb_validate_nvm_checksum_with_offset(hw, nvm_offset); if (ret_val != 0) goto out; } out: return ret_val; } /** * igb_update_nvm_checksum_82580 - Update EEPROM checksum * @hw: pointer to the HW structure * * Updates the EEPROM section checksums for all 4 ports by reading/adding * each word of the EEPROM up to the checksum. Then calculates the EEPROM * checksum and writes the value to the EEPROM. **/ static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw) { s32 ret_val; u16 j, nvm_data; u16 nvm_offset; ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); if (ret_val) { hw_dbg("NVM Read Error while updating checksum compatibility bit.\n"); goto out; } if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) { /* set compatibility bit to validate checksums appropriately */ nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK; ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); if (ret_val) { hw_dbg("NVM Write Error while updating checksum compatibility bit.\n"); goto out; } } for (j = 0; j < 4; j++) { nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset); if (ret_val) goto out; } out: return ret_val; } /** * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum * @hw: pointer to the HW structure * * Calculates the EEPROM section checksum by reading/adding each word of * the EEPROM and then verifies that the sum of the EEPROM is * equal to 0xBABA. **/ static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw) { s32 ret_val = 0; u16 j; u16 nvm_offset; for (j = 0; j < 4; j++) { nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); ret_val = igb_validate_nvm_checksum_with_offset(hw, nvm_offset); if (ret_val != 0) goto out; } out: return ret_val; } /** * igb_update_nvm_checksum_i350 - Update EEPROM checksum * @hw: pointer to the HW structure * * Updates the EEPROM section checksums for all 4 ports by reading/adding * each word of the EEPROM up to the checksum. Then calculates the EEPROM * checksum and writes the value to the EEPROM. **/ static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw) { s32 ret_val = 0; u16 j; u16 nvm_offset; for (j = 0; j < 4; j++) { nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset); if (ret_val != 0) goto out; } out: return ret_val; } /** * __igb_access_emi_reg - Read/write EMI register * @hw: pointer to the HW structure * @addr: EMI address to program * @data: pointer to value to read/write from/to the EMI address * @read: boolean flag to indicate read or write **/ static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address, u16 *data, bool read) { s32 ret_val = 0; ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address); if (ret_val) return ret_val; if (read) ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data); else ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data); return ret_val; } /** * igb_read_emi_reg - Read Extended Management Interface register * @hw: pointer to the HW structure * @addr: EMI address to program * @data: value to be read from the EMI address **/ s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data) { return __igb_access_emi_reg(hw, addr, data, true); } /** * igb_set_eee_i350 - Enable/disable EEE support * @hw: pointer to the HW structure * @adv1G: boolean flag enabling 1G EEE advertisement * @adv100m: boolean flag enabling 100M EEE advertisement * * Enable/disable EEE based on setting in dev_spec structure. * **/ s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M) { u32 ipcnfg, eeer; if ((hw->mac.type < e1000_i350) || (hw->phy.media_type != e1000_media_type_copper)) goto out; ipcnfg = rd32(E1000_IPCNFG); eeer = rd32(E1000_EEER); /* enable or disable per user setting */ if (!(hw->dev_spec._82575.eee_disable)) { u32 eee_su = rd32(E1000_EEE_SU); if (adv100M) ipcnfg |= E1000_IPCNFG_EEE_100M_AN; else ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN; if (adv1G) ipcnfg |= E1000_IPCNFG_EEE_1G_AN; else ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN; eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | E1000_EEER_LPI_FC); /* This bit should not be set in normal operation. */ if (eee_su & E1000_EEE_SU_LPI_CLK_STP) hw_dbg("LPI Clock Stop Bit should not be set!\n"); } else { ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN); eeer &= ~(E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN | E1000_EEER_LPI_FC); } wr32(E1000_IPCNFG, ipcnfg); wr32(E1000_EEER, eeer); rd32(E1000_IPCNFG); rd32(E1000_EEER); out: return 0; } /** * igb_set_eee_i354 - Enable/disable EEE support * @hw: pointer to the HW structure * @adv1G: boolean flag enabling 1G EEE advertisement * @adv100m: boolean flag enabling 100M EEE advertisement * * Enable/disable EEE legacy mode based on setting in dev_spec structure. * **/ s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = 0; u16 phy_data; if ((hw->phy.media_type != e1000_media_type_copper) || ((phy->id != M88E1543_E_PHY_ID) && (phy->id != M88E1512_E_PHY_ID))) goto out; if (!hw->dev_spec._82575.eee_disable) { /* Switch to PHY page 18. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18); if (ret_val) goto out; ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1, &phy_data); if (ret_val) goto out; phy_data |= E1000_M88E1543_EEE_CTRL_1_MS; ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1, phy_data); if (ret_val) goto out; /* Return the PHY to page 0. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); if (ret_val) goto out; /* Turn on EEE advertisement. */ ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, E1000_EEE_ADV_DEV_I354, &phy_data); if (ret_val) goto out; if (adv100M) phy_data |= E1000_EEE_ADV_100_SUPPORTED; else phy_data &= ~E1000_EEE_ADV_100_SUPPORTED; if (adv1G) phy_data |= E1000_EEE_ADV_1000_SUPPORTED; else phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED; ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, E1000_EEE_ADV_DEV_I354, phy_data); } else { /* Turn off EEE advertisement. */ ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, E1000_EEE_ADV_DEV_I354, &phy_data); if (ret_val) goto out; phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED | E1000_EEE_ADV_1000_SUPPORTED); ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354, E1000_EEE_ADV_DEV_I354, phy_data); } out: return ret_val; } /** * igb_get_eee_status_i354 - Get EEE status * @hw: pointer to the HW structure * @status: EEE status * * Get EEE status by guessing based on whether Tx or Rx LPI indications have * been received. **/ s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = 0; u16 phy_data; /* Check if EEE is supported on this device. */ if ((hw->phy.media_type != e1000_media_type_copper) || ((phy->id != M88E1543_E_PHY_ID) && (phy->id != M88E1512_E_PHY_ID))) goto out; ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354, E1000_PCS_STATUS_DEV_I354, &phy_data); if (ret_val) goto out; *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD | E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false; out: return ret_val; } static const u8 e1000_emc_temp_data[4] = { E1000_EMC_INTERNAL_DATA, E1000_EMC_DIODE1_DATA, E1000_EMC_DIODE2_DATA, E1000_EMC_DIODE3_DATA }; static const u8 e1000_emc_therm_limit[4] = { E1000_EMC_INTERNAL_THERM_LIMIT, E1000_EMC_DIODE1_THERM_LIMIT, E1000_EMC_DIODE2_THERM_LIMIT, E1000_EMC_DIODE3_THERM_LIMIT }; #ifdef CONFIG_IGB_HWMON /** * igb_get_thermal_sensor_data_generic - Gathers thermal sensor data * @hw: pointer to hardware structure * * Updates the temperatures in mac.thermal_sensor_data **/ static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw) { u16 ets_offset; u16 ets_cfg; u16 ets_sensor; u8 num_sensors; u8 sensor_index; u8 sensor_location; u8 i; struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0)) return E1000_NOT_IMPLEMENTED; data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF); /* Return the internal sensor only if ETS is unsupported */ hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset); if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) return 0; hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg); if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT) != NVM_ETS_TYPE_EMC) return E1000_NOT_IMPLEMENTED; num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK); if (num_sensors > E1000_MAX_SENSORS) num_sensors = E1000_MAX_SENSORS; for (i = 1; i < num_sensors; i++) { hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor); sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >> NVM_ETS_DATA_INDEX_SHIFT); sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >> NVM_ETS_DATA_LOC_SHIFT); if (sensor_location != 0) hw->phy.ops.read_i2c_byte(hw, e1000_emc_temp_data[sensor_index], E1000_I2C_THERMAL_SENSOR_ADDR, &data->sensor[i].temp); } return 0; } /** * igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds * @hw: pointer to hardware structure * * Sets the thermal sensor thresholds according to the NVM map * and save off the threshold and location values into mac.thermal_sensor_data **/ static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw) { u16 ets_offset; u16 ets_cfg; u16 ets_sensor; u8 low_thresh_delta; u8 num_sensors; u8 sensor_index; u8 sensor_location; u8 therm_limit; u8 i; struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data; if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0)) return E1000_NOT_IMPLEMENTED; memset(data, 0, sizeof(struct e1000_thermal_sensor_data)); data->sensor[0].location = 0x1; data->sensor[0].caution_thresh = (rd32(E1000_THHIGHTC) & 0xFF); data->sensor[0].max_op_thresh = (rd32(E1000_THLOWTC) & 0xFF); /* Return the internal sensor only if ETS is unsupported */ hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset); if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF)) return 0; hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg); if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT) != NVM_ETS_TYPE_EMC) return E1000_NOT_IMPLEMENTED; low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >> NVM_ETS_LTHRES_DELTA_SHIFT); num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK); for (i = 1; i <= num_sensors; i++) { hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor); sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >> NVM_ETS_DATA_INDEX_SHIFT); sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >> NVM_ETS_DATA_LOC_SHIFT); therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK; hw->phy.ops.write_i2c_byte(hw, e1000_emc_therm_limit[sensor_index], E1000_I2C_THERMAL_SENSOR_ADDR, therm_limit); if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) { data->sensor[i].location = sensor_location; data->sensor[i].caution_thresh = therm_limit; data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta; } } return 0; } #endif static struct e1000_mac_operations e1000_mac_ops_82575 = { .init_hw = igb_init_hw_82575, .check_for_link = igb_check_for_link_82575, .rar_set = igb_rar_set, .read_mac_addr = igb_read_mac_addr_82575, .get_speed_and_duplex = igb_get_link_up_info_82575, #ifdef CONFIG_IGB_HWMON .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic, .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic, #endif }; static const struct e1000_phy_operations e1000_phy_ops_82575 = { .acquire = igb_acquire_phy_82575, .get_cfg_done = igb_get_cfg_done_82575, .release = igb_release_phy_82575, .write_i2c_byte = igb_write_i2c_byte, .read_i2c_byte = igb_read_i2c_byte, }; static struct e1000_nvm_operations e1000_nvm_ops_82575 = { .acquire = igb_acquire_nvm_82575, .read = igb_read_nvm_eerd, .release = igb_release_nvm_82575, .write = igb_write_nvm_spi, }; const struct e1000_info e1000_82575_info = { .get_invariants = igb_get_invariants_82575, .mac_ops = &e1000_mac_ops_82575, .phy_ops = &e1000_phy_ops_82575, .nvm_ops = &e1000_nvm_ops_82575, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1