Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Horatiu Vultur | 4407 | 98.81% | 1 | 33.33% |
Nathan Chancellor | 52 | 1.17% | 1 | 33.33% |
Yangbo Lu | 1 | 0.02% | 1 | 33.33% |
Total | 4460 | 3 |
// SPDX-License-Identifier: (GPL-2.0 OR MIT) /* Microsemi Ocelot Switch driver * Copyright (c) 2019 Microsemi Corporation */ #include <linux/iopoll.h> #include <linux/proc_fs.h> #include "ocelot_ace.h" #include "ocelot_vcap.h" #include "ocelot_s2.h" #define OCELOT_POLICER_DISCARD 0x17f static struct ocelot_acl_block *acl_block; struct vcap_props { const char *name; /* Symbolic name */ u16 tg_width; /* Type-group width (in bits) */ u16 sw_count; /* Sub word count */ u16 entry_count; /* Entry count */ u16 entry_words; /* Number of entry words */ u16 entry_width; /* Entry width (in bits) */ u16 action_count; /* Action count */ u16 action_words; /* Number of action words */ u16 action_width; /* Action width (in bits) */ u16 action_type_width; /* Action type width (in bits) */ struct { u16 width; /* Action type width (in bits) */ u16 count; /* Action type sub word count */ } action_table[2]; u16 counter_words; /* Number of counter words */ u16 counter_width; /* Counter width (in bits) */ }; #define ENTRY_WIDTH 32 #define BITS_TO_32BIT(x) (1 + (((x) - 1) / ENTRY_WIDTH)) static const struct vcap_props vcap_is2 = { .name = "IS2", .tg_width = 2, .sw_count = 4, .entry_count = VCAP_IS2_CNT, .entry_words = BITS_TO_32BIT(VCAP_IS2_ENTRY_WIDTH), .entry_width = VCAP_IS2_ENTRY_WIDTH, .action_count = (VCAP_IS2_CNT + VCAP_PORT_CNT + 2), .action_words = BITS_TO_32BIT(VCAP_IS2_ACTION_WIDTH), .action_width = (VCAP_IS2_ACTION_WIDTH), .action_type_width = 1, .action_table = { { .width = (IS2_AO_ACL_ID + IS2_AL_ACL_ID), .count = 2 }, { .width = 6, .count = 4 }, }, .counter_words = BITS_TO_32BIT(4 * ENTRY_WIDTH), .counter_width = ENTRY_WIDTH, }; enum vcap_sel { VCAP_SEL_ENTRY = 0x1, VCAP_SEL_ACTION = 0x2, VCAP_SEL_COUNTER = 0x4, VCAP_SEL_ALL = 0x7, }; enum vcap_cmd { VCAP_CMD_WRITE = 0, /* Copy from Cache to TCAM */ VCAP_CMD_READ = 1, /* Copy from TCAM to Cache */ VCAP_CMD_MOVE_UP = 2, /* Move <count> up */ VCAP_CMD_MOVE_DOWN = 3, /* Move <count> down */ VCAP_CMD_INITIALIZE = 4, /* Write all (from cache) */ }; #define VCAP_ENTRY_WIDTH 12 /* Max entry width (32bit words) */ #define VCAP_COUNTER_WIDTH 4 /* Max counter width (32bit words) */ struct vcap_data { u32 entry[VCAP_ENTRY_WIDTH]; /* ENTRY_DAT */ u32 mask[VCAP_ENTRY_WIDTH]; /* MASK_DAT */ u32 action[VCAP_ENTRY_WIDTH]; /* ACTION_DAT */ u32 counter[VCAP_COUNTER_WIDTH]; /* CNT_DAT */ u32 tg; /* TG_DAT */ u32 type; /* Action type */ u32 tg_sw; /* Current type-group */ u32 cnt; /* Current counter */ u32 key_offset; /* Current entry offset */ u32 action_offset; /* Current action offset */ u32 counter_offset; /* Current counter offset */ u32 tg_value; /* Current type-group value */ u32 tg_mask; /* Current type-group mask */ }; static u32 vcap_s2_read_update_ctrl(struct ocelot *oc) { return ocelot_read(oc, S2_CORE_UPDATE_CTRL); } static void vcap_cmd(struct ocelot *oc, u16 ix, int cmd, int sel) { u32 value = (S2_CORE_UPDATE_CTRL_UPDATE_CMD(cmd) | S2_CORE_UPDATE_CTRL_UPDATE_ADDR(ix) | S2_CORE_UPDATE_CTRL_UPDATE_SHOT); if ((sel & VCAP_SEL_ENTRY) && ix >= vcap_is2.entry_count) return; if (!(sel & VCAP_SEL_ENTRY)) value |= S2_CORE_UPDATE_CTRL_UPDATE_ENTRY_DIS; if (!(sel & VCAP_SEL_ACTION)) value |= S2_CORE_UPDATE_CTRL_UPDATE_ACTION_DIS; if (!(sel & VCAP_SEL_COUNTER)) value |= S2_CORE_UPDATE_CTRL_UPDATE_CNT_DIS; ocelot_write(oc, value, S2_CORE_UPDATE_CTRL); readx_poll_timeout(vcap_s2_read_update_ctrl, oc, value, (value & S2_CORE_UPDATE_CTRL_UPDATE_SHOT) == 0, 10, 100000); } /* Convert from 0-based row to VCAP entry row and run command */ static void vcap_row_cmd(struct ocelot *oc, u32 row, int cmd, int sel) { vcap_cmd(oc, vcap_is2.entry_count - row - 1, cmd, sel); } static void vcap_entry2cache(struct ocelot *oc, struct vcap_data *data) { u32 i; for (i = 0; i < vcap_is2.entry_words; i++) { ocelot_write_rix(oc, data->entry[i], S2_CACHE_ENTRY_DAT, i); ocelot_write_rix(oc, ~data->mask[i], S2_CACHE_MASK_DAT, i); } ocelot_write(oc, data->tg, S2_CACHE_TG_DAT); } static void vcap_cache2entry(struct ocelot *oc, struct vcap_data *data) { u32 i; for (i = 0; i < vcap_is2.entry_words; i++) { data->entry[i] = ocelot_read_rix(oc, S2_CACHE_ENTRY_DAT, i); // Invert mask data->mask[i] = ~ocelot_read_rix(oc, S2_CACHE_MASK_DAT, i); } data->tg = ocelot_read(oc, S2_CACHE_TG_DAT); } static void vcap_action2cache(struct ocelot *oc, struct vcap_data *data) { u32 i, width, mask; /* Encode action type */ width = vcap_is2.action_type_width; if (width) { mask = GENMASK(width, 0); data->action[0] = ((data->action[0] & ~mask) | data->type); } for (i = 0; i < vcap_is2.action_words; i++) ocelot_write_rix(oc, data->action[i], S2_CACHE_ACTION_DAT, i); for (i = 0; i < vcap_is2.counter_words; i++) ocelot_write_rix(oc, data->counter[i], S2_CACHE_CNT_DAT, i); } static void vcap_cache2action(struct ocelot *oc, struct vcap_data *data) { u32 i, width; for (i = 0; i < vcap_is2.action_words; i++) data->action[i] = ocelot_read_rix(oc, S2_CACHE_ACTION_DAT, i); for (i = 0; i < vcap_is2.counter_words; i++) data->counter[i] = ocelot_read_rix(oc, S2_CACHE_CNT_DAT, i); /* Extract action type */ width = vcap_is2.action_type_width; data->type = (width ? (data->action[0] & GENMASK(width, 0)) : 0); } /* Calculate offsets for entry */ static void is2_data_get(struct vcap_data *data, int ix) { u32 i, col, offset, count, cnt, base, width = vcap_is2.tg_width; count = (data->tg_sw == VCAP_TG_HALF ? 2 : 4); col = (ix % 2); cnt = (vcap_is2.sw_count / count); base = (vcap_is2.sw_count - col * cnt - cnt); data->tg_value = 0; data->tg_mask = 0; for (i = 0; i < cnt; i++) { offset = ((base + i) * width); data->tg_value |= (data->tg_sw << offset); data->tg_mask |= GENMASK(offset + width - 1, offset); } /* Calculate key/action/counter offsets */ col = (count - col - 1); data->key_offset = (base * vcap_is2.entry_width) / vcap_is2.sw_count; data->counter_offset = (cnt * col * vcap_is2.counter_width); i = data->type; width = vcap_is2.action_table[i].width; cnt = vcap_is2.action_table[i].count; data->action_offset = (((cnt * col * width) / count) + vcap_is2.action_type_width); } static void vcap_data_set(u32 *data, u32 offset, u32 len, u32 value) { u32 i, v, m; for (i = 0; i < len; i++, offset++) { v = data[offset / ENTRY_WIDTH]; m = (1 << (offset % ENTRY_WIDTH)); if (value & (1 << i)) v |= m; else v &= ~m; data[offset / ENTRY_WIDTH] = v; } } static u32 vcap_data_get(u32 *data, u32 offset, u32 len) { u32 i, v, m, value = 0; for (i = 0; i < len; i++, offset++) { v = data[offset / ENTRY_WIDTH]; m = (1 << (offset % ENTRY_WIDTH)); if (v & m) value |= (1 << i); } return value; } static void vcap_key_set(struct vcap_data *data, u32 offset, u32 width, u32 value, u32 mask) { vcap_data_set(data->entry, offset + data->key_offset, width, value); vcap_data_set(data->mask, offset + data->key_offset, width, mask); } static void vcap_key_bytes_set(struct vcap_data *data, u32 offset, u8 *val, u8 *msk, u32 count) { u32 i, j, n = 0, value = 0, mask = 0; /* Data wider than 32 bits are split up in chunks of maximum 32 bits. * The 32 LSB of the data are written to the 32 MSB of the TCAM. */ offset += (count * 8); for (i = 0; i < count; i++) { j = (count - i - 1); value += (val[j] << n); mask += (msk[j] << n); n += 8; if (n == ENTRY_WIDTH || (i + 1) == count) { offset -= n; vcap_key_set(data, offset, n, value, mask); n = 0; value = 0; mask = 0; } } } static void vcap_key_l4_port_set(struct vcap_data *data, u32 offset, struct ocelot_vcap_udp_tcp *port) { vcap_key_set(data, offset, 16, port->value, port->mask); } static void vcap_key_bit_set(struct vcap_data *data, u32 offset, enum ocelot_vcap_bit val) { vcap_key_set(data, offset, 1, val == OCELOT_VCAP_BIT_1 ? 1 : 0, val == OCELOT_VCAP_BIT_ANY ? 0 : 1); } #define VCAP_KEY_SET(fld, val, msk) \ vcap_key_set(&data, IS2_HKO_##fld, IS2_HKL_##fld, val, msk) #define VCAP_KEY_ANY_SET(fld) \ vcap_key_set(&data, IS2_HKO_##fld, IS2_HKL_##fld, 0, 0) #define VCAP_KEY_BIT_SET(fld, val) vcap_key_bit_set(&data, IS2_HKO_##fld, val) #define VCAP_KEY_BYTES_SET(fld, val, msk) \ vcap_key_bytes_set(&data, IS2_HKO_##fld, val, msk, IS2_HKL_##fld / 8) static void vcap_action_set(struct vcap_data *data, u32 offset, u32 width, u32 value) { vcap_data_set(data->action, offset + data->action_offset, width, value); } #define VCAP_ACT_SET(fld, val) \ vcap_action_set(data, IS2_AO_##fld, IS2_AL_##fld, val) static void is2_action_set(struct vcap_data *data, enum ocelot_ace_action action) { switch (action) { case OCELOT_ACL_ACTION_DROP: VCAP_ACT_SET(PORT_MASK, 0x0); VCAP_ACT_SET(MASK_MODE, 0x1); VCAP_ACT_SET(POLICE_ENA, 0x1); VCAP_ACT_SET(POLICE_IDX, OCELOT_POLICER_DISCARD); VCAP_ACT_SET(CPU_QU_NUM, 0x0); VCAP_ACT_SET(CPU_COPY_ENA, 0x0); break; case OCELOT_ACL_ACTION_TRAP: VCAP_ACT_SET(PORT_MASK, 0x0); VCAP_ACT_SET(MASK_MODE, 0x1); VCAP_ACT_SET(POLICE_ENA, 0x0); VCAP_ACT_SET(POLICE_IDX, 0x0); VCAP_ACT_SET(CPU_QU_NUM, 0x0); VCAP_ACT_SET(CPU_COPY_ENA, 0x1); break; } } static void is2_entry_set(struct ocelot *ocelot, int ix, struct ocelot_ace_rule *ace) { u32 val, msk, type, type_mask = 0xf, i, count; struct ocelot_ace_vlan *tag = &ace->vlan; struct ocelot_vcap_u64 payload; struct vcap_data data; int row = (ix / 2); memset(&payload, 0, sizeof(payload)); memset(&data, 0, sizeof(data)); /* Read row */ vcap_row_cmd(ocelot, row, VCAP_CMD_READ, VCAP_SEL_ALL); vcap_cache2entry(ocelot, &data); vcap_cache2action(ocelot, &data); data.tg_sw = VCAP_TG_HALF; is2_data_get(&data, ix); data.tg = (data.tg & ~data.tg_mask); if (ace->prio != 0) data.tg |= data.tg_value; data.type = IS2_ACTION_TYPE_NORMAL; VCAP_KEY_ANY_SET(PAG); VCAP_KEY_SET(IGR_PORT_MASK, 0, ~BIT(ace->chip_port)); VCAP_KEY_BIT_SET(FIRST, OCELOT_VCAP_BIT_1); VCAP_KEY_BIT_SET(HOST_MATCH, OCELOT_VCAP_BIT_ANY); VCAP_KEY_BIT_SET(L2_MC, ace->dmac_mc); VCAP_KEY_BIT_SET(L2_BC, ace->dmac_bc); VCAP_KEY_BIT_SET(VLAN_TAGGED, tag->tagged); VCAP_KEY_SET(VID, tag->vid.value, tag->vid.mask); VCAP_KEY_SET(PCP, tag->pcp.value[0], tag->pcp.mask[0]); VCAP_KEY_BIT_SET(DEI, tag->dei); switch (ace->type) { case OCELOT_ACE_TYPE_ETYPE: { struct ocelot_ace_frame_etype *etype = &ace->frame.etype; type = IS2_TYPE_ETYPE; VCAP_KEY_BYTES_SET(L2_DMAC, etype->dmac.value, etype->dmac.mask); VCAP_KEY_BYTES_SET(L2_SMAC, etype->smac.value, etype->smac.mask); VCAP_KEY_BYTES_SET(MAC_ETYPE_ETYPE, etype->etype.value, etype->etype.mask); VCAP_KEY_ANY_SET(MAC_ETYPE_L2_PAYLOAD); // Clear unused bits vcap_key_bytes_set(&data, IS2_HKO_MAC_ETYPE_L2_PAYLOAD, etype->data.value, etype->data.mask, 2); break; } case OCELOT_ACE_TYPE_LLC: { struct ocelot_ace_frame_llc *llc = &ace->frame.llc; type = IS2_TYPE_LLC; VCAP_KEY_BYTES_SET(L2_DMAC, llc->dmac.value, llc->dmac.mask); VCAP_KEY_BYTES_SET(L2_SMAC, llc->smac.value, llc->smac.mask); for (i = 0; i < 4; i++) { payload.value[i] = llc->llc.value[i]; payload.mask[i] = llc->llc.mask[i]; } VCAP_KEY_BYTES_SET(MAC_LLC_L2_LLC, payload.value, payload.mask); break; } case OCELOT_ACE_TYPE_SNAP: { struct ocelot_ace_frame_snap *snap = &ace->frame.snap; type = IS2_TYPE_SNAP; VCAP_KEY_BYTES_SET(L2_DMAC, snap->dmac.value, snap->dmac.mask); VCAP_KEY_BYTES_SET(L2_SMAC, snap->smac.value, snap->smac.mask); VCAP_KEY_BYTES_SET(MAC_SNAP_L2_SNAP, ace->frame.snap.snap.value, ace->frame.snap.snap.mask); break; } case OCELOT_ACE_TYPE_ARP: { struct ocelot_ace_frame_arp *arp = &ace->frame.arp; type = IS2_TYPE_ARP; VCAP_KEY_BYTES_SET(MAC_ARP_L2_SMAC, arp->smac.value, arp->smac.mask); VCAP_KEY_BIT_SET(MAC_ARP_ARP_ADDR_SPACE_OK, arp->ethernet); VCAP_KEY_BIT_SET(MAC_ARP_ARP_PROTO_SPACE_OK, arp->ip); VCAP_KEY_BIT_SET(MAC_ARP_ARP_LEN_OK, arp->length); VCAP_KEY_BIT_SET(MAC_ARP_ARP_TGT_MATCH, arp->dmac_match); VCAP_KEY_BIT_SET(MAC_ARP_ARP_SENDER_MATCH, arp->smac_match); VCAP_KEY_BIT_SET(MAC_ARP_ARP_OPCODE_UNKNOWN, arp->unknown); /* OPCODE is inverse, bit 0 is reply flag, bit 1 is RARP flag */ val = ((arp->req == OCELOT_VCAP_BIT_0 ? 1 : 0) | (arp->arp == OCELOT_VCAP_BIT_0 ? 2 : 0)); msk = ((arp->req == OCELOT_VCAP_BIT_ANY ? 0 : 1) | (arp->arp == OCELOT_VCAP_BIT_ANY ? 0 : 2)); VCAP_KEY_SET(MAC_ARP_ARP_OPCODE, val, msk); vcap_key_bytes_set(&data, IS2_HKO_MAC_ARP_L3_IP4_DIP, arp->dip.value.addr, arp->dip.mask.addr, 4); vcap_key_bytes_set(&data, IS2_HKO_MAC_ARP_L3_IP4_SIP, arp->sip.value.addr, arp->sip.mask.addr, 4); VCAP_KEY_ANY_SET(MAC_ARP_DIP_EQ_SIP); break; } case OCELOT_ACE_TYPE_IPV4: case OCELOT_ACE_TYPE_IPV6: { enum ocelot_vcap_bit sip_eq_dip, sport_eq_dport, seq_zero, tcp; enum ocelot_vcap_bit ttl, fragment, options, tcp_ack, tcp_urg; enum ocelot_vcap_bit tcp_fin, tcp_syn, tcp_rst, tcp_psh; struct ocelot_ace_frame_ipv4 *ipv4 = NULL; struct ocelot_ace_frame_ipv6 *ipv6 = NULL; struct ocelot_vcap_udp_tcp *sport, *dport; struct ocelot_vcap_ipv4 sip, dip; struct ocelot_vcap_u8 proto, ds; struct ocelot_vcap_u48 *ip_data; if (ace->type == OCELOT_ACE_TYPE_IPV4) { ipv4 = &ace->frame.ipv4; ttl = ipv4->ttl; fragment = ipv4->fragment; options = ipv4->options; proto = ipv4->proto; ds = ipv4->ds; ip_data = &ipv4->data; sip = ipv4->sip; dip = ipv4->dip; sport = &ipv4->sport; dport = &ipv4->dport; tcp_fin = ipv4->tcp_fin; tcp_syn = ipv4->tcp_syn; tcp_rst = ipv4->tcp_rst; tcp_psh = ipv4->tcp_psh; tcp_ack = ipv4->tcp_ack; tcp_urg = ipv4->tcp_urg; sip_eq_dip = ipv4->sip_eq_dip; sport_eq_dport = ipv4->sport_eq_dport; seq_zero = ipv4->seq_zero; } else { ipv6 = &ace->frame.ipv6; ttl = ipv6->ttl; fragment = OCELOT_VCAP_BIT_ANY; options = OCELOT_VCAP_BIT_ANY; proto = ipv6->proto; ds = ipv6->ds; ip_data = &ipv6->data; for (i = 0; i < 8; i++) { val = ipv6->sip.value[i + 8]; msk = ipv6->sip.mask[i + 8]; if (i < 4) { dip.value.addr[i] = val; dip.mask.addr[i] = msk; } else { sip.value.addr[i - 4] = val; sip.mask.addr[i - 4] = msk; } } sport = &ipv6->sport; dport = &ipv6->dport; tcp_fin = ipv6->tcp_fin; tcp_syn = ipv6->tcp_syn; tcp_rst = ipv6->tcp_rst; tcp_psh = ipv6->tcp_psh; tcp_ack = ipv6->tcp_ack; tcp_urg = ipv6->tcp_urg; sip_eq_dip = ipv6->sip_eq_dip; sport_eq_dport = ipv6->sport_eq_dport; seq_zero = ipv6->seq_zero; } VCAP_KEY_BIT_SET(IP4, ipv4 ? OCELOT_VCAP_BIT_1 : OCELOT_VCAP_BIT_0); VCAP_KEY_BIT_SET(L3_FRAGMENT, fragment); VCAP_KEY_ANY_SET(L3_FRAG_OFS_GT0); VCAP_KEY_BIT_SET(L3_OPTIONS, options); VCAP_KEY_BIT_SET(L3_TTL_GT0, ttl); VCAP_KEY_BYTES_SET(L3_TOS, ds.value, ds.mask); vcap_key_bytes_set(&data, IS2_HKO_L3_IP4_DIP, dip.value.addr, dip.mask.addr, 4); vcap_key_bytes_set(&data, IS2_HKO_L3_IP4_SIP, sip.value.addr, sip.mask.addr, 4); VCAP_KEY_BIT_SET(DIP_EQ_SIP, sip_eq_dip); val = proto.value[0]; msk = proto.mask[0]; type = IS2_TYPE_IP_UDP_TCP; if (msk == 0xff && (val == 6 || val == 17)) { /* UDP/TCP protocol match */ tcp = (val == 6 ? OCELOT_VCAP_BIT_1 : OCELOT_VCAP_BIT_0); VCAP_KEY_BIT_SET(IP4_TCP_UDP_TCP, tcp); vcap_key_l4_port_set(&data, IS2_HKO_IP4_TCP_UDP_L4_DPORT, dport); vcap_key_l4_port_set(&data, IS2_HKO_IP4_TCP_UDP_L4_SPORT, sport); VCAP_KEY_ANY_SET(IP4_TCP_UDP_L4_RNG); VCAP_KEY_BIT_SET(IP4_TCP_UDP_SPORT_EQ_DPORT, sport_eq_dport); VCAP_KEY_BIT_SET(IP4_TCP_UDP_SEQUENCE_EQ0, seq_zero); VCAP_KEY_BIT_SET(IP4_TCP_UDP_L4_FIN, tcp_fin); VCAP_KEY_BIT_SET(IP4_TCP_UDP_L4_SYN, tcp_syn); VCAP_KEY_BIT_SET(IP4_TCP_UDP_L4_RST, tcp_rst); VCAP_KEY_BIT_SET(IP4_TCP_UDP_L4_PSH, tcp_psh); VCAP_KEY_BIT_SET(IP4_TCP_UDP_L4_ACK, tcp_ack); VCAP_KEY_BIT_SET(IP4_TCP_UDP_L4_URG, tcp_urg); VCAP_KEY_ANY_SET(IP4_TCP_UDP_L4_1588_DOM); VCAP_KEY_ANY_SET(IP4_TCP_UDP_L4_1588_VER); } else { if (msk == 0) { /* Any IP protocol match */ type_mask = IS2_TYPE_MASK_IP_ANY; } else { /* Non-UDP/TCP protocol match */ type = IS2_TYPE_IP_OTHER; for (i = 0; i < 6; i++) { payload.value[i] = ip_data->value[i]; payload.mask[i] = ip_data->mask[i]; } } VCAP_KEY_BYTES_SET(IP4_OTHER_L3_PROTO, proto.value, proto.mask); VCAP_KEY_BYTES_SET(IP4_OTHER_L3_PAYLOAD, payload.value, payload.mask); } break; } case OCELOT_ACE_TYPE_ANY: default: type = 0; type_mask = 0; count = (vcap_is2.entry_width / 2); for (i = (IS2_HKO_PCP + IS2_HKL_PCP); i < count; i += ENTRY_WIDTH) { /* Clear entry data */ vcap_key_set(&data, i, min(32u, count - i), 0, 0); } break; } VCAP_KEY_SET(TYPE, type, type_mask); is2_action_set(&data, ace->action); vcap_data_set(data.counter, data.counter_offset, vcap_is2.counter_width, ace->stats.pkts); /* Write row */ vcap_entry2cache(ocelot, &data); vcap_action2cache(ocelot, &data); vcap_row_cmd(ocelot, row, VCAP_CMD_WRITE, VCAP_SEL_ALL); } static void is2_entry_get(struct ocelot_ace_rule *rule, int ix) { struct ocelot *op = rule->port->ocelot; struct vcap_data data; int row = (ix / 2); u32 cnt; vcap_row_cmd(op, row, VCAP_CMD_READ, VCAP_SEL_COUNTER); vcap_cache2action(op, &data); data.tg_sw = VCAP_TG_HALF; is2_data_get(&data, ix); cnt = vcap_data_get(data.counter, data.counter_offset, vcap_is2.counter_width); rule->stats.pkts = cnt; } static void ocelot_ace_rule_add(struct ocelot_acl_block *block, struct ocelot_ace_rule *rule) { struct ocelot_ace_rule *tmp; struct list_head *pos, *n; block->count++; if (list_empty(&block->rules)) { list_add(&rule->list, &block->rules); return; } list_for_each_safe(pos, n, &block->rules) { tmp = list_entry(pos, struct ocelot_ace_rule, list); if (rule->prio < tmp->prio) break; } list_add(&rule->list, pos->prev); } static int ocelot_ace_rule_get_index_id(struct ocelot_acl_block *block, struct ocelot_ace_rule *rule) { struct ocelot_ace_rule *tmp; int index = -1; list_for_each_entry(tmp, &block->rules, list) { ++index; if (rule->id == tmp->id) break; } return index; } static struct ocelot_ace_rule* ocelot_ace_rule_get_rule_index(struct ocelot_acl_block *block, int index) { struct ocelot_ace_rule *tmp; int i = 0; list_for_each_entry(tmp, &block->rules, list) { if (i == index) return tmp; ++i; } return NULL; } int ocelot_ace_rule_offload_add(struct ocelot_ace_rule *rule) { struct ocelot_ace_rule *ace; int i, index; /* Add rule to the linked list */ ocelot_ace_rule_add(acl_block, rule); /* Get the index of the inserted rule */ index = ocelot_ace_rule_get_index_id(acl_block, rule); /* Move down the rules to make place for the new rule */ for (i = acl_block->count - 1; i > index; i--) { ace = ocelot_ace_rule_get_rule_index(acl_block, i); is2_entry_set(rule->port->ocelot, i, ace); } /* Now insert the new rule */ is2_entry_set(rule->port->ocelot, index, rule); return 0; } static void ocelot_ace_rule_del(struct ocelot_acl_block *block, struct ocelot_ace_rule *rule) { struct ocelot_ace_rule *tmp; struct list_head *pos, *q; list_for_each_safe(pos, q, &block->rules) { tmp = list_entry(pos, struct ocelot_ace_rule, list); if (tmp->id == rule->id) { list_del(pos); kfree(tmp); } } block->count--; } int ocelot_ace_rule_offload_del(struct ocelot_ace_rule *rule) { struct ocelot_ace_rule del_ace; struct ocelot_ace_rule *ace; int i, index; memset(&del_ace, 0, sizeof(del_ace)); /* Gets index of the rule */ index = ocelot_ace_rule_get_index_id(acl_block, rule); /* Delete rule */ ocelot_ace_rule_del(acl_block, rule); /* Move up all the blocks over the deleted rule */ for (i = index; i < acl_block->count; i++) { ace = ocelot_ace_rule_get_rule_index(acl_block, i); is2_entry_set(rule->port->ocelot, i, ace); } /* Now delete the last rule, because it is duplicated */ is2_entry_set(rule->port->ocelot, acl_block->count, &del_ace); return 0; } int ocelot_ace_rule_stats_update(struct ocelot_ace_rule *rule) { struct ocelot_ace_rule *tmp; int index; index = ocelot_ace_rule_get_index_id(acl_block, rule); is2_entry_get(rule, index); /* After we get the result we need to clear the counters */ tmp = ocelot_ace_rule_get_rule_index(acl_block, index); tmp->stats.pkts = 0; is2_entry_set(rule->port->ocelot, index, tmp); return 0; } static struct ocelot_acl_block *ocelot_acl_block_create(struct ocelot *ocelot) { struct ocelot_acl_block *block; block = kzalloc(sizeof(*block), GFP_KERNEL); if (!block) return NULL; INIT_LIST_HEAD(&block->rules); block->count = 0; block->ocelot = ocelot; return block; } static void ocelot_acl_block_destroy(struct ocelot_acl_block *block) { kfree(block); } int ocelot_ace_init(struct ocelot *ocelot) { struct vcap_data data; memset(&data, 0, sizeof(data)); vcap_entry2cache(ocelot, &data); ocelot_write(ocelot, vcap_is2.entry_count, S2_CORE_MV_CFG); vcap_cmd(ocelot, 0, VCAP_CMD_INITIALIZE, VCAP_SEL_ENTRY); vcap_action2cache(ocelot, &data); ocelot_write(ocelot, vcap_is2.action_count, S2_CORE_MV_CFG); vcap_cmd(ocelot, 0, VCAP_CMD_INITIALIZE, VCAP_SEL_ACTION | VCAP_SEL_COUNTER); /* Create a policer that will drop the frames for the cpu. * This policer will be used as action in the acl rules to drop * frames. */ ocelot_write_gix(ocelot, 0x299, ANA_POL_MODE_CFG, OCELOT_POLICER_DISCARD); ocelot_write_gix(ocelot, 0x1, ANA_POL_PIR_CFG, OCELOT_POLICER_DISCARD); ocelot_write_gix(ocelot, 0x3fffff, ANA_POL_PIR_STATE, OCELOT_POLICER_DISCARD); ocelot_write_gix(ocelot, 0x0, ANA_POL_CIR_CFG, OCELOT_POLICER_DISCARD); ocelot_write_gix(ocelot, 0x3fffff, ANA_POL_CIR_STATE, OCELOT_POLICER_DISCARD); acl_block = ocelot_acl_block_create(ocelot); return 0; } void ocelot_ace_deinit(void) { ocelot_acl_block_destroy(acl_block); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1