Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sujith Manoharan | 4925 | 31.33% | 77 | 19.95% |
Luis R. Rodriguez | 3678 | 23.40% | 57 | 14.77% |
Felix Fietkau | 2054 | 13.07% | 76 | 19.69% |
Vasanthakumar Thiagarajan | 1405 | 8.94% | 30 | 7.77% |
Miaoqing Pan | 1103 | 7.02% | 9 | 2.33% |
Senthil Balasubramanian | 419 | 2.67% | 15 | 3.89% |
Gabor Juhos | 367 | 2.33% | 18 | 4.66% |
Rajkumar Manoharan | 320 | 2.04% | 23 | 5.96% |
Vivek Natarajan | 252 | 1.60% | 9 | 2.33% |
Mohammed Shafi Shajakhan | 244 | 1.55% | 10 | 2.59% |
Oleksij Rempel | 189 | 1.20% | 2 | 0.52% |
Russell Hu | 108 | 0.69% | 1 | 0.26% |
Lorenzo Bianconi | 93 | 0.59% | 7 | 1.81% |
Benoit Papillault | 69 | 0.44% | 1 | 0.26% |
Tim Schumacher | 66 | 0.42% | 1 | 0.26% |
Zefir Kurtisi | 56 | 0.36% | 4 | 1.04% |
Wojciech Dubowik | 54 | 0.34% | 2 | 0.52% |
Joe Perches | 52 | 0.33% | 6 | 1.55% |
Chun-Yeow Yeoh | 40 | 0.25% | 2 | 0.52% |
Alina Friedrichsen | 38 | 0.24% | 2 | 0.52% |
Benjamin Berg | 31 | 0.20% | 2 | 0.52% |
Colin McCabe | 18 | 0.11% | 1 | 0.26% |
Bob Copeland | 17 | 0.11% | 1 | 0.26% |
Pavel Roskin | 14 | 0.09% | 2 | 0.52% |
Martin Blumenstingl | 14 | 0.09% | 2 | 0.52% |
Mathias Kretschmer | 7 | 0.04% | 1 | 0.26% |
Rafael J. Wysocki | 7 | 0.04% | 1 | 0.26% |
Thomas Pedersen | 6 | 0.04% | 1 | 0.26% |
Arnd Bergmann | 6 | 0.04% | 1 | 0.26% |
Florian Fainelli | 6 | 0.04% | 1 | 0.26% |
Bruno Randolf | 6 | 0.04% | 1 | 0.26% |
Michal Nazarewicz | 5 | 0.03% | 1 | 0.26% |
Thomas Gleixner | 4 | 0.03% | 1 | 0.26% |
Kees Cook | 4 | 0.03% | 1 | 0.26% |
Simon Wunderlich | 4 | 0.03% | 1 | 0.26% |
Alex Hacker | 4 | 0.03% | 1 | 0.26% |
Sven Eckelmann | 4 | 0.03% | 1 | 0.26% |
Janusz Dziedzic | 4 | 0.03% | 1 | 0.26% |
Tejun Heo | 3 | 0.02% | 1 | 0.26% |
Ben Greear | 3 | 0.02% | 1 | 0.26% |
Johannes Berg | 3 | 0.02% | 1 | 0.26% |
Jan Kaisrlik | 3 | 0.02% | 1 | 0.26% |
Paul Gortmaker | 3 | 0.02% | 1 | 0.26% |
Karl Beldan | 2 | 0.01% | 1 | 0.26% |
Matthias Schiffer | 2 | 0.01% | 1 | 0.26% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 0.26% |
Stanislaw Gruszka | 1 | 0.01% | 1 | 0.26% |
David S. Miller | 1 | 0.01% | 1 | 0.26% |
Viresh Kumar | 1 | 0.01% | 1 | 0.26% |
Dan Carpenter | 1 | 0.01% | 1 | 0.26% |
Colin Ian King | 1 | 0.01% | 1 | 0.26% |
Total | 15718 | 386 |
/* * Copyright (c) 2008-2011 Atheros Communications Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <linux/io.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/time.h> #include <linux/bitops.h> #include <linux/etherdevice.h> #include <linux/gpio.h> #include <asm/unaligned.h> #include "hw.h" #include "hw-ops.h" #include "ar9003_mac.h" #include "ar9003_mci.h" #include "ar9003_phy.h" #include "ath9k.h" static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type); MODULE_AUTHOR("Atheros Communications"); MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards"); MODULE_LICENSE("Dual BSD/GPL"); static void ath9k_hw_set_clockrate(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_channel *chan = ah->curchan; unsigned int clockrate; /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */ if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) clockrate = 117; else if (!chan) /* should really check for CCK instead */ clockrate = ATH9K_CLOCK_RATE_CCK; else if (IS_CHAN_2GHZ(chan)) clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM; else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK) clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM; else clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM; if (chan) { if (IS_CHAN_HT40(chan)) clockrate *= 2; if (IS_CHAN_HALF_RATE(chan)) clockrate /= 2; if (IS_CHAN_QUARTER_RATE(chan)) clockrate /= 4; } common->clockrate = clockrate; } static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs) { struct ath_common *common = ath9k_hw_common(ah); return usecs * common->clockrate; } bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout) { int i; BUG_ON(timeout < AH_TIME_QUANTUM); for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) { if ((REG_READ(ah, reg) & mask) == val) return true; udelay(AH_TIME_QUANTUM); } ath_dbg(ath9k_hw_common(ah), ANY, "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n", timeout, reg, REG_READ(ah, reg), mask, val); return false; } EXPORT_SYMBOL(ath9k_hw_wait); void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan, int hw_delay) { hw_delay /= 10; if (IS_CHAN_HALF_RATE(chan)) hw_delay *= 2; else if (IS_CHAN_QUARTER_RATE(chan)) hw_delay *= 4; udelay(hw_delay + BASE_ACTIVATE_DELAY); } void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array, int column, unsigned int *writecnt) { int r; ENABLE_REGWRITE_BUFFER(ah); for (r = 0; r < array->ia_rows; r++) { REG_WRITE(ah, INI_RA(array, r, 0), INI_RA(array, r, column)); DO_DELAY(*writecnt); } REGWRITE_BUFFER_FLUSH(ah); } void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size) { u32 *tmp_reg_list, *tmp_data; int i; tmp_reg_list = kmalloc_array(size, sizeof(u32), GFP_KERNEL); if (!tmp_reg_list) { dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__); return; } tmp_data = kmalloc_array(size, sizeof(u32), GFP_KERNEL); if (!tmp_data) { dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__); goto error_tmp_data; } for (i = 0; i < size; i++) tmp_reg_list[i] = array[i][0]; REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size); for (i = 0; i < size; i++) array[i][1] = tmp_data[i]; kfree(tmp_data); error_tmp_data: kfree(tmp_reg_list); } u32 ath9k_hw_reverse_bits(u32 val, u32 n) { u32 retval; int i; for (i = 0, retval = 0; i < n; i++) { retval = (retval << 1) | (val & 1); val >>= 1; } return retval; } u16 ath9k_hw_computetxtime(struct ath_hw *ah, u8 phy, int kbps, u32 frameLen, u16 rateix, bool shortPreamble) { u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime; if (kbps == 0) return 0; switch (phy) { case WLAN_RC_PHY_CCK: phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; if (shortPreamble) phyTime >>= 1; numBits = frameLen << 3; txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps); break; case WLAN_RC_PHY_OFDM: if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) { bitsPerSymbol = ((kbps >> 2) * OFDM_SYMBOL_TIME_QUARTER) / 1000; numBits = OFDM_PLCP_BITS + (frameLen << 3); numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); txTime = OFDM_SIFS_TIME_QUARTER + OFDM_PREAMBLE_TIME_QUARTER + (numSymbols * OFDM_SYMBOL_TIME_QUARTER); } else if (ah->curchan && IS_CHAN_HALF_RATE(ah->curchan)) { bitsPerSymbol = ((kbps >> 1) * OFDM_SYMBOL_TIME_HALF) / 1000; numBits = OFDM_PLCP_BITS + (frameLen << 3); numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); txTime = OFDM_SIFS_TIME_HALF + OFDM_PREAMBLE_TIME_HALF + (numSymbols * OFDM_SYMBOL_TIME_HALF); } else { bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; numBits = OFDM_PLCP_BITS + (frameLen << 3); numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME + (numSymbols * OFDM_SYMBOL_TIME); } break; default: ath_err(ath9k_hw_common(ah), "Unknown phy %u (rate ix %u)\n", phy, rateix); txTime = 0; break; } return txTime; } EXPORT_SYMBOL(ath9k_hw_computetxtime); void ath9k_hw_get_channel_centers(struct ath_hw *ah, struct ath9k_channel *chan, struct chan_centers *centers) { int8_t extoff; if (!IS_CHAN_HT40(chan)) { centers->ctl_center = centers->ext_center = centers->synth_center = chan->channel; return; } if (IS_CHAN_HT40PLUS(chan)) { centers->synth_center = chan->channel + HT40_CHANNEL_CENTER_SHIFT; extoff = 1; } else { centers->synth_center = chan->channel - HT40_CHANNEL_CENTER_SHIFT; extoff = -1; } centers->ctl_center = centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT); /* 25 MHz spacing is supported by hw but not on upper layers */ centers->ext_center = centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT); } /******************/ /* Chip Revisions */ /******************/ static bool ath9k_hw_read_revisions(struct ath_hw *ah) { u32 srev; u32 val; if (ah->get_mac_revision) ah->hw_version.macRev = ah->get_mac_revision(); switch (ah->hw_version.devid) { case AR5416_AR9100_DEVID: ah->hw_version.macVersion = AR_SREV_VERSION_9100; break; case AR9300_DEVID_AR9330: ah->hw_version.macVersion = AR_SREV_VERSION_9330; if (!ah->get_mac_revision) { val = REG_READ(ah, AR_SREV); ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); } return true; case AR9300_DEVID_AR9340: ah->hw_version.macVersion = AR_SREV_VERSION_9340; return true; case AR9300_DEVID_QCA955X: ah->hw_version.macVersion = AR_SREV_VERSION_9550; return true; case AR9300_DEVID_AR953X: ah->hw_version.macVersion = AR_SREV_VERSION_9531; return true; case AR9300_DEVID_QCA956X: ah->hw_version.macVersion = AR_SREV_VERSION_9561; return true; } srev = REG_READ(ah, AR_SREV); if (srev == -EIO) { ath_err(ath9k_hw_common(ah), "Failed to read SREV register"); return false; } val = srev & AR_SREV_ID; if (val == 0xFF) { val = srev; ah->hw_version.macVersion = (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S; ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) ah->is_pciexpress = true; else ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1; } else { if (!AR_SREV_9100(ah)) ah->hw_version.macVersion = MS(val, AR_SREV_VERSION); ah->hw_version.macRev = val & AR_SREV_REVISION; if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) ah->is_pciexpress = true; } return true; } /************************************/ /* HW Attach, Detach, Init Routines */ /************************************/ static void ath9k_hw_disablepcie(struct ath_hw *ah) { if (!AR_SREV_5416(ah)) return; REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029); REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824); REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579); REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000); REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007); REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); } /* This should work for all families including legacy */ static bool ath9k_hw_chip_test(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); u32 regAddr[2] = { AR_STA_ID0 }; u32 regHold[2]; static const u32 patternData[4] = { 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999 }; int i, j, loop_max; if (!AR_SREV_9300_20_OR_LATER(ah)) { loop_max = 2; regAddr[1] = AR_PHY_BASE + (8 << 2); } else loop_max = 1; for (i = 0; i < loop_max; i++) { u32 addr = regAddr[i]; u32 wrData, rdData; regHold[i] = REG_READ(ah, addr); for (j = 0; j < 0x100; j++) { wrData = (j << 16) | j; REG_WRITE(ah, addr, wrData); rdData = REG_READ(ah, addr); if (rdData != wrData) { ath_err(common, "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", addr, wrData, rdData); return false; } } for (j = 0; j < 4; j++) { wrData = patternData[j]; REG_WRITE(ah, addr, wrData); rdData = REG_READ(ah, addr); if (wrData != rdData) { ath_err(common, "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", addr, wrData, rdData); return false; } } REG_WRITE(ah, regAddr[i], regHold[i]); } udelay(100); return true; } static void ath9k_hw_init_config(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); ah->config.dma_beacon_response_time = 1; ah->config.sw_beacon_response_time = 6; ah->config.cwm_ignore_extcca = false; ah->config.analog_shiftreg = 1; ah->config.rx_intr_mitigation = true; if (AR_SREV_9300_20_OR_LATER(ah)) { ah->config.rimt_last = 500; ah->config.rimt_first = 2000; } else { ah->config.rimt_last = 250; ah->config.rimt_first = 700; } if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) ah->config.pll_pwrsave = 7; /* * We need this for PCI devices only (Cardbus, PCI, miniPCI) * _and_ if on non-uniprocessor systems (Multiprocessor/HT). * This means we use it for all AR5416 devices, and the few * minor PCI AR9280 devices out there. * * Serialization is required because these devices do not handle * well the case of two concurrent reads/writes due to the latency * involved. During one read/write another read/write can be issued * on another CPU while the previous read/write may still be working * on our hardware, if we hit this case the hardware poops in a loop. * We prevent this by serializing reads and writes. * * This issue is not present on PCI-Express devices or pre-AR5416 * devices (legacy, 802.11abg). */ if (num_possible_cpus() > 1) ah->config.serialize_regmode = SER_REG_MODE_AUTO; if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) { if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI || ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) && !ah->is_pciexpress)) { ah->config.serialize_regmode = SER_REG_MODE_ON; } else { ah->config.serialize_regmode = SER_REG_MODE_OFF; } } ath_dbg(common, RESET, "serialize_regmode is %d\n", ah->config.serialize_regmode); if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1; else ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD; } static void ath9k_hw_init_defaults(struct ath_hw *ah) { struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); regulatory->country_code = CTRY_DEFAULT; regulatory->power_limit = MAX_COMBINED_POWER; ah->hw_version.magic = AR5416_MAGIC; ah->hw_version.subvendorid = 0; ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE | AR_STA_ID1_MCAST_KSRCH; if (AR_SREV_9100(ah)) ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX; ah->slottime = 9; ah->globaltxtimeout = (u32) -1; ah->power_mode = ATH9K_PM_UNDEFINED; ah->htc_reset_init = true; ah->tpc_enabled = false; ah->ani_function = ATH9K_ANI_ALL; if (!AR_SREV_9300_20_OR_LATER(ah)) ah->ani_function &= ~ATH9K_ANI_MRC_CCK; if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S); else ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S); } static void ath9k_hw_init_macaddr(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); int i; u16 eeval; static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW }; /* MAC address may already be loaded via ath9k_platform_data */ if (is_valid_ether_addr(common->macaddr)) return; for (i = 0; i < 3; i++) { eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]); common->macaddr[2 * i] = eeval >> 8; common->macaddr[2 * i + 1] = eeval & 0xff; } if (is_valid_ether_addr(common->macaddr)) return; ath_err(common, "eeprom contains invalid mac address: %pM\n", common->macaddr); eth_random_addr(common->macaddr); ath_err(common, "random mac address will be used: %pM\n", common->macaddr); return; } static int ath9k_hw_post_init(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); int ecode; if (common->bus_ops->ath_bus_type != ATH_USB) { if (!ath9k_hw_chip_test(ah)) return -ENODEV; } if (!AR_SREV_9300_20_OR_LATER(ah)) { ecode = ar9002_hw_rf_claim(ah); if (ecode != 0) return ecode; } ecode = ath9k_hw_eeprom_init(ah); if (ecode != 0) return ecode; ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n", ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah)); ath9k_hw_ani_init(ah); /* * EEPROM needs to be initialized before we do this. * This is required for regulatory compliance. */ if (AR_SREV_9300_20_OR_LATER(ah)) { u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0); if ((regdmn & 0xF0) == CTL_FCC) { ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ; ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ; } } return 0; } static int ath9k_hw_attach_ops(struct ath_hw *ah) { if (!AR_SREV_9300_20_OR_LATER(ah)) return ar9002_hw_attach_ops(ah); ar9003_hw_attach_ops(ah); return 0; } /* Called for all hardware families */ static int __ath9k_hw_init(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); int r = 0; if (!ath9k_hw_read_revisions(ah)) { ath_err(common, "Could not read hardware revisions"); return -EOPNOTSUPP; } switch (ah->hw_version.macVersion) { case AR_SREV_VERSION_5416_PCI: case AR_SREV_VERSION_5416_PCIE: case AR_SREV_VERSION_9160: case AR_SREV_VERSION_9100: case AR_SREV_VERSION_9280: case AR_SREV_VERSION_9285: case AR_SREV_VERSION_9287: case AR_SREV_VERSION_9271: case AR_SREV_VERSION_9300: case AR_SREV_VERSION_9330: case AR_SREV_VERSION_9485: case AR_SREV_VERSION_9340: case AR_SREV_VERSION_9462: case AR_SREV_VERSION_9550: case AR_SREV_VERSION_9565: case AR_SREV_VERSION_9531: case AR_SREV_VERSION_9561: break; default: ath_err(common, "Mac Chip Rev 0x%02x.%x is not supported by this driver\n", ah->hw_version.macVersion, ah->hw_version.macRev); return -EOPNOTSUPP; } /* * Read back AR_WA into a permanent copy and set bits 14 and 17. * We need to do this to avoid RMW of this register. We cannot * read the reg when chip is asleep. */ if (AR_SREV_9300_20_OR_LATER(ah)) { ah->WARegVal = REG_READ(ah, AR_WA); ah->WARegVal |= (AR_WA_D3_L1_DISABLE | AR_WA_ASPM_TIMER_BASED_DISABLE); } if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { ath_err(common, "Couldn't reset chip\n"); return -EIO; } if (AR_SREV_9565(ah)) { ah->WARegVal |= AR_WA_BIT22; REG_WRITE(ah, AR_WA, ah->WARegVal); } ath9k_hw_init_defaults(ah); ath9k_hw_init_config(ah); r = ath9k_hw_attach_ops(ah); if (r) return r; if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) { ath_err(common, "Couldn't wakeup chip\n"); return -EIO; } if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) || AR_SREV_9550(ah)) ah->is_pciexpress = false; ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID); ath9k_hw_init_cal_settings(ah); if (!ah->is_pciexpress) ath9k_hw_disablepcie(ah); r = ath9k_hw_post_init(ah); if (r) return r; ath9k_hw_init_mode_gain_regs(ah); r = ath9k_hw_fill_cap_info(ah); if (r) return r; ath9k_hw_init_macaddr(ah); ath9k_hw_init_hang_checks(ah); common->state = ATH_HW_INITIALIZED; return 0; } int ath9k_hw_init(struct ath_hw *ah) { int ret; struct ath_common *common = ath9k_hw_common(ah); /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */ switch (ah->hw_version.devid) { case AR5416_DEVID_PCI: case AR5416_DEVID_PCIE: case AR5416_AR9100_DEVID: case AR9160_DEVID_PCI: case AR9280_DEVID_PCI: case AR9280_DEVID_PCIE: case AR9285_DEVID_PCIE: case AR9287_DEVID_PCI: case AR9287_DEVID_PCIE: case AR2427_DEVID_PCIE: case AR9300_DEVID_PCIE: case AR9300_DEVID_AR9485_PCIE: case AR9300_DEVID_AR9330: case AR9300_DEVID_AR9340: case AR9300_DEVID_QCA955X: case AR9300_DEVID_AR9580: case AR9300_DEVID_AR9462: case AR9485_DEVID_AR1111: case AR9300_DEVID_AR9565: case AR9300_DEVID_AR953X: case AR9300_DEVID_QCA956X: break; default: if (common->bus_ops->ath_bus_type == ATH_USB) break; ath_err(common, "Hardware device ID 0x%04x not supported\n", ah->hw_version.devid); return -EOPNOTSUPP; } ret = __ath9k_hw_init(ah); if (ret) { ath_err(common, "Unable to initialize hardware; initialization status: %d\n", ret); return ret; } ath_dynack_init(ah); return 0; } EXPORT_SYMBOL(ath9k_hw_init); static void ath9k_hw_init_qos(struct ath_hw *ah) { ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa); REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210); REG_WRITE(ah, AR_QOS_NO_ACK, SM(2, AR_QOS_NO_ACK_TWO_BIT) | SM(5, AR_QOS_NO_ACK_BIT_OFF) | SM(0, AR_QOS_NO_ACK_BYTE_OFF)); REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); REGWRITE_BUFFER_FLUSH(ah); } u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); int i = 0; REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK); udelay(100); REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK); while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) { udelay(100); if (WARN_ON_ONCE(i >= 100)) { ath_err(common, "PLL4 measurement not done\n"); break; } i++; } return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3; } EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc); static void ath9k_hw_init_pll(struct ath_hw *ah, struct ath9k_channel *chan) { u32 pll; pll = ath9k_hw_compute_pll_control(ah, chan); if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) { /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */ REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_BB_DPLL2_PLL_PWD, 0x1); REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, 0x40); REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x4); REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, AR_CH0_BB_DPLL1_REFDIV, 0x5); REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, AR_CH0_BB_DPLL1_NINI, 0x58); REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, AR_CH0_BB_DPLL1_NFRAC, 0x0); REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_BB_DPLL2_OUTDIV, 0x1); REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1); REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1); /* program BB PLL phase_shift to 0x6 */ REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6); REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_BB_DPLL2_PLL_PWD, 0x0); udelay(1000); } else if (AR_SREV_9330(ah)) { u32 ddr_dpll2, pll_control2, kd; if (ah->is_clk_25mhz) { ddr_dpll2 = 0x18e82f01; pll_control2 = 0xe04a3d; kd = 0x1d; } else { ddr_dpll2 = 0x19e82f01; pll_control2 = 0x886666; kd = 0x3d; } /* program DDR PLL ki and kd value */ REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2); /* program DDR PLL phase_shift */ REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3, AR_CH0_DPLL3_PHASE_SHIFT, 0x1); REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll | AR_RTC_9300_PLL_BYPASS); udelay(1000); /* program refdiv, nint, frac to RTC register */ REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2); /* program BB PLL kd and ki value */ REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd); REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06); /* program BB PLL phase_shift */ REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1); } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) { u32 regval, pll2_divint, pll2_divfrac, refdiv; REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll | AR_RTC_9300_SOC_PLL_BYPASS); udelay(1000); REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16); udelay(100); if (ah->is_clk_25mhz) { if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) { pll2_divint = 0x1c; pll2_divfrac = 0xa3d2; refdiv = 1; } else { pll2_divint = 0x54; pll2_divfrac = 0x1eb85; refdiv = 3; } } else { if (AR_SREV_9340(ah)) { pll2_divint = 88; pll2_divfrac = 0; refdiv = 5; } else { pll2_divint = 0x11; pll2_divfrac = (AR_SREV_9531(ah) || AR_SREV_9561(ah)) ? 0x26665 : 0x26666; refdiv = 1; } } regval = REG_READ(ah, AR_PHY_PLL_MODE); if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) regval |= (0x1 << 22); else regval |= (0x1 << 16); REG_WRITE(ah, AR_PHY_PLL_MODE, regval); udelay(100); REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) | (pll2_divint << 18) | pll2_divfrac); udelay(100); regval = REG_READ(ah, AR_PHY_PLL_MODE); if (AR_SREV_9340(ah)) regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) | (0x4 << 26) | (0x18 << 19); else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) { regval = (regval & 0x01c00fff) | (0x1 << 31) | (0x2 << 29) | (0xa << 25) | (0x1 << 19); if (AR_SREV_9531(ah)) regval |= (0x6 << 12); } else regval = (regval & 0x80071fff) | (0x3 << 30) | (0x1 << 13) | (0x4 << 26) | (0x60 << 19); REG_WRITE(ah, AR_PHY_PLL_MODE, regval); if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) REG_WRITE(ah, AR_PHY_PLL_MODE, REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff); else REG_WRITE(ah, AR_PHY_PLL_MODE, REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff); udelay(1000); } if (AR_SREV_9565(ah)) pll |= 0x40000; REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) || AR_SREV_9550(ah)) udelay(1000); /* Switch the core clock for ar9271 to 117Mhz */ if (AR_SREV_9271(ah)) { udelay(500); REG_WRITE(ah, 0x50040, 0x304); } udelay(RTC_PLL_SETTLE_DELAY); REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK); } static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah, enum nl80211_iftype opmode) { u32 sync_default = AR_INTR_SYNC_DEFAULT; u32 imr_reg = AR_IMR_TXERR | AR_IMR_TXURN | AR_IMR_RXERR | AR_IMR_RXORN | AR_IMR_BCNMISC; u32 msi_cfg = 0; if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) sync_default &= ~AR_INTR_SYNC_HOST1_FATAL; if (AR_SREV_9300_20_OR_LATER(ah)) { imr_reg |= AR_IMR_RXOK_HP; if (ah->config.rx_intr_mitigation) { imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR; } else { imr_reg |= AR_IMR_RXOK_LP; msi_cfg |= AR_INTCFG_MSI_RXOK; } } else { if (ah->config.rx_intr_mitigation) { imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR; } else { imr_reg |= AR_IMR_RXOK; msi_cfg |= AR_INTCFG_MSI_RXOK; } } if (ah->config.tx_intr_mitigation) { imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR; msi_cfg |= AR_INTCFG_MSI_TXINTM | AR_INTCFG_MSI_TXMINTR; } else { imr_reg |= AR_IMR_TXOK; msi_cfg |= AR_INTCFG_MSI_TXOK; } ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_IMR, imr_reg); ah->imrs2_reg |= AR_IMR_S2_GTT; REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg); if (ah->msi_enabled) { ah->msi_reg = REG_READ(ah, AR_PCIE_MSI); ah->msi_reg |= AR_PCIE_MSI_HW_DBI_WR_EN; ah->msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64; REG_WRITE(ah, AR_INTCFG, msi_cfg); ath_dbg(ath9k_hw_common(ah), ANY, "value of AR_INTCFG=0x%X, msi_cfg=0x%X\n", REG_READ(ah, AR_INTCFG), msi_cfg); } if (!AR_SREV_9100(ah)) { REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default); REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); } REGWRITE_BUFFER_FLUSH(ah); if (AR_SREV_9300_20_OR_LATER(ah)) { REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0); REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0); REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0); REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0); } } static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us) { u32 val = ath9k_hw_mac_to_clks(ah, us - 2); val = min(val, (u32) 0xFFFF); REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val); } void ath9k_hw_setslottime(struct ath_hw *ah, u32 us) { u32 val = ath9k_hw_mac_to_clks(ah, us); val = min(val, (u32) 0xFFFF); REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val); } void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us) { u32 val = ath9k_hw_mac_to_clks(ah, us); val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK)); REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val); } void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us) { u32 val = ath9k_hw_mac_to_clks(ah, us); val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS)); REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val); } static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu) { if (tu > 0xFFFF) { ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n", tu); ah->globaltxtimeout = (u32) -1; return false; } else { REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); ah->globaltxtimeout = tu; return true; } } void ath9k_hw_init_global_settings(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); const struct ath9k_channel *chan = ah->curchan; int acktimeout, ctstimeout, ack_offset = 0; int slottime; int sifstime; int rx_lat = 0, tx_lat = 0, eifs = 0, ack_shift = 0; u32 reg; ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n", ah->misc_mode); if (!chan) return; if (ah->misc_mode != 0) REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode); if (IS_CHAN_A_FAST_CLOCK(ah, chan)) rx_lat = 41; else rx_lat = 37; tx_lat = 54; if (IS_CHAN_5GHZ(chan)) sifstime = 16; else sifstime = 10; if (IS_CHAN_HALF_RATE(chan)) { eifs = 175; rx_lat *= 2; tx_lat *= 2; if (IS_CHAN_A_FAST_CLOCK(ah, chan)) tx_lat += 11; sifstime = 32; ack_offset = 16; ack_shift = 3; slottime = 13; } else if (IS_CHAN_QUARTER_RATE(chan)) { eifs = 340; rx_lat = (rx_lat * 4) - 1; tx_lat *= 4; if (IS_CHAN_A_FAST_CLOCK(ah, chan)) tx_lat += 22; sifstime = 64; ack_offset = 32; ack_shift = 1; slottime = 21; } else { if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) { eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO; reg = AR_USEC_ASYNC_FIFO; } else { eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/ common->clockrate; reg = REG_READ(ah, AR_USEC); } rx_lat = MS(reg, AR_USEC_RX_LAT); tx_lat = MS(reg, AR_USEC_TX_LAT); slottime = ah->slottime; } /* As defined by IEEE 802.11-2007 17.3.8.6 */ slottime += 3 * ah->coverage_class; acktimeout = slottime + sifstime + ack_offset; ctstimeout = acktimeout; /* * Workaround for early ACK timeouts, add an offset to match the * initval's 64us ack timeout value. Use 48us for the CTS timeout. * This was initially only meant to work around an issue with delayed * BA frames in some implementations, but it has been found to fix ACK * timeout issues in other cases as well. */ if (IS_CHAN_2GHZ(chan) && !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) { acktimeout += 64 - sifstime - ah->slottime; ctstimeout += 48 - sifstime - ah->slottime; } if (ah->dynack.enabled) { acktimeout = ah->dynack.ackto; ctstimeout = acktimeout; slottime = (acktimeout - 3) / 2; } else { ah->dynack.ackto = acktimeout; } ath9k_hw_set_sifs_time(ah, sifstime); ath9k_hw_setslottime(ah, slottime); ath9k_hw_set_ack_timeout(ah, acktimeout); ath9k_hw_set_cts_timeout(ah, ctstimeout); if (ah->globaltxtimeout != (u32) -1) ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout); REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs)); REG_RMW(ah, AR_USEC, (common->clockrate - 1) | SM(rx_lat, AR_USEC_RX_LAT) | SM(tx_lat, AR_USEC_TX_LAT), AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC); if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan)) REG_RMW(ah, AR_TXSIFS, sifstime | SM(ack_shift, AR_TXSIFS_ACK_SHIFT), (AR_TXSIFS_TIME | AR_TXSIFS_ACK_SHIFT)); } EXPORT_SYMBOL(ath9k_hw_init_global_settings); void ath9k_hw_deinit(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); if (common->state < ATH_HW_INITIALIZED) return; ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); } EXPORT_SYMBOL(ath9k_hw_deinit); /*******/ /* INI */ /*******/ u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan) { u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band); if (IS_CHAN_2GHZ(chan)) ctl |= CTL_11G; else ctl |= CTL_11A; return ctl; } /****************************************/ /* Reset and Channel Switching Routines */ /****************************************/ static inline void ath9k_hw_set_dma(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); int txbuf_size; ENABLE_REGWRITE_BUFFER(ah); /* * set AHB_MODE not to do cacheline prefetches */ if (!AR_SREV_9300_20_OR_LATER(ah)) REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN); /* * let mac dma reads be in 128 byte chunks */ REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK); REGWRITE_BUFFER_FLUSH(ah); /* * Restore TX Trigger Level to its pre-reset value. * The initial value depends on whether aggregation is enabled, and is * adjusted whenever underruns are detected. */ if (!AR_SREV_9300_20_OR_LATER(ah)) REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level); ENABLE_REGWRITE_BUFFER(ah); /* * let mac dma writes be in 128 byte chunks */ REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK); /* * Setup receive FIFO threshold to hold off TX activities */ REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); if (AR_SREV_9300_20_OR_LATER(ah)) { REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1); REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1); ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - ah->caps.rx_status_len); } /* * reduce the number of usable entries in PCU TXBUF to avoid * wrap around issues. */ if (AR_SREV_9285(ah)) { /* For AR9285 the number of Fifos are reduced to half. * So set the usable tx buf size also to half to * avoid data/delimiter underruns */ txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE; } else if (AR_SREV_9340_13_OR_LATER(ah)) { /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */ txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE; } else { txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE; } if (!AR_SREV_9271(ah)) REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size); REGWRITE_BUFFER_FLUSH(ah); if (AR_SREV_9300_20_OR_LATER(ah)) ath9k_hw_reset_txstatus_ring(ah); } static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode) { u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC; u32 set = AR_STA_ID1_KSRCH_MODE; ENABLE_REG_RMW_BUFFER(ah); switch (opmode) { case NL80211_IFTYPE_ADHOC: if (!AR_SREV_9340_13(ah)) { set |= AR_STA_ID1_ADHOC; REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); break; } /* fall through */ case NL80211_IFTYPE_OCB: case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_AP: set |= AR_STA_ID1_STA_AP; /* fall through */ case NL80211_IFTYPE_STATION: REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); break; default: if (!ah->is_monitoring) set = 0; break; } REG_RMW(ah, AR_STA_ID1, set, mask); REG_RMW_BUFFER_FLUSH(ah); } void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled, u32 *coef_mantissa, u32 *coef_exponent) { u32 coef_exp, coef_man; for (coef_exp = 31; coef_exp > 0; coef_exp--) if ((coef_scaled >> coef_exp) & 0x1) break; coef_exp = 14 - (coef_exp - COEF_SCALE_S); coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); *coef_exponent = coef_exp - 16; } /* AR9330 WAR: * call external reset function to reset WMAC if: * - doing a cold reset * - we have pending frames in the TX queues. */ static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type) { int i, npend = 0; for (i = 0; i < AR_NUM_QCU; i++) { npend = ath9k_hw_numtxpending(ah, i); if (npend) break; } if (ah->external_reset && (npend || type == ATH9K_RESET_COLD)) { int reset_err = 0; ath_dbg(ath9k_hw_common(ah), RESET, "reset MAC via external reset\n"); reset_err = ah->external_reset(); if (reset_err) { ath_err(ath9k_hw_common(ah), "External reset failed, err=%d\n", reset_err); return false; } REG_WRITE(ah, AR_RTC_RESET, 1); } return true; } static bool ath9k_hw_set_reset(struct ath_hw *ah, int type) { u32 rst_flags; u32 tmpReg; if (AR_SREV_9100(ah)) { REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK, AR_RTC_DERIVED_CLK_PERIOD, 1); (void)REG_READ(ah, AR_RTC_DERIVED_CLK); } ENABLE_REGWRITE_BUFFER(ah); if (AR_SREV_9300_20_OR_LATER(ah)) { REG_WRITE(ah, AR_WA, ah->WARegVal); udelay(10); } REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); if (AR_SREV_9100(ah)) { rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; } else { tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE); if (AR_SREV_9340(ah)) tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT; else tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT | AR_INTR_SYNC_RADM_CPL_TIMEOUT; if (tmpReg) { u32 val; REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); val = AR_RC_HOSTIF; if (!AR_SREV_9300_20_OR_LATER(ah)) val |= AR_RC_AHB; REG_WRITE(ah, AR_RC, val); } else if (!AR_SREV_9300_20_OR_LATER(ah)) REG_WRITE(ah, AR_RC, AR_RC_AHB); rst_flags = AR_RTC_RC_MAC_WARM; if (type == ATH9K_RESET_COLD) rst_flags |= AR_RTC_RC_MAC_COLD; } if (AR_SREV_9330(ah)) { if (!ath9k_hw_ar9330_reset_war(ah, type)) return false; } if (ath9k_hw_mci_is_enabled(ah)) ar9003_mci_check_gpm_offset(ah); /* DMA HALT added to resolve ar9300 and ar9580 bus error during * RTC_RC reg read */ if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) { REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ); ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK, 20 * AH_WAIT_TIMEOUT); REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ); } REG_WRITE(ah, AR_RTC_RC, rst_flags); REGWRITE_BUFFER_FLUSH(ah); if (AR_SREV_9300_20_OR_LATER(ah)) udelay(50); else if (AR_SREV_9100(ah)) mdelay(10); else udelay(100); REG_WRITE(ah, AR_RTC_RC, 0); if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) { ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n"); return false; } if (!AR_SREV_9100(ah)) REG_WRITE(ah, AR_RC, 0); if (AR_SREV_9100(ah)) udelay(50); return true; } static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah) { ENABLE_REGWRITE_BUFFER(ah); if (AR_SREV_9300_20_OR_LATER(ah)) { REG_WRITE(ah, AR_WA, ah->WARegVal); udelay(10); } REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) REG_WRITE(ah, AR_RC, AR_RC_AHB); REG_WRITE(ah, AR_RTC_RESET, 0); REGWRITE_BUFFER_FLUSH(ah); udelay(2); if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) REG_WRITE(ah, AR_RC, 0); REG_WRITE(ah, AR_RTC_RESET, 1); if (!ath9k_hw_wait(ah, AR_RTC_STATUS, AR_RTC_STATUS_M, AR_RTC_STATUS_ON, AH_WAIT_TIMEOUT)) { ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n"); return false; } return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM); } static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type) { bool ret = false; if (AR_SREV_9300_20_OR_LATER(ah)) { REG_WRITE(ah, AR_WA, ah->WARegVal); udelay(10); } REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); if (!ah->reset_power_on) type = ATH9K_RESET_POWER_ON; switch (type) { case ATH9K_RESET_POWER_ON: ret = ath9k_hw_set_reset_power_on(ah); if (ret) ah->reset_power_on = true; break; case ATH9K_RESET_WARM: case ATH9K_RESET_COLD: ret = ath9k_hw_set_reset(ah, type); break; default: break; } return ret; } static bool ath9k_hw_chip_reset(struct ath_hw *ah, struct ath9k_channel *chan) { int reset_type = ATH9K_RESET_WARM; if (AR_SREV_9280(ah)) { if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) reset_type = ATH9K_RESET_POWER_ON; else reset_type = ATH9K_RESET_COLD; } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) || (REG_READ(ah, AR_CR) & AR_CR_RXE)) reset_type = ATH9K_RESET_COLD; if (!ath9k_hw_set_reset_reg(ah, reset_type)) return false; if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) return false; ah->chip_fullsleep = false; if (AR_SREV_9330(ah)) ar9003_hw_internal_regulator_apply(ah); ath9k_hw_init_pll(ah, chan); return true; } static bool ath9k_hw_channel_change(struct ath_hw *ah, struct ath9k_channel *chan) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_capabilities *pCap = &ah->caps; bool band_switch = false, mode_diff = false; u8 ini_reloaded = 0; u32 qnum; int r; if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) { u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags; band_switch = !!(flags_diff & CHANNEL_5GHZ); mode_diff = !!(flags_diff & ~CHANNEL_HT); } for (qnum = 0; qnum < AR_NUM_QCU; qnum++) { if (ath9k_hw_numtxpending(ah, qnum)) { ath_dbg(common, QUEUE, "Transmit frames pending on queue %d\n", qnum); return false; } } if (!ath9k_hw_rfbus_req(ah)) { ath_err(common, "Could not kill baseband RX\n"); return false; } if (band_switch || mode_diff) { ath9k_hw_mark_phy_inactive(ah); udelay(5); if (band_switch) ath9k_hw_init_pll(ah, chan); if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) { ath_err(common, "Failed to do fast channel change\n"); return false; } } ath9k_hw_set_channel_regs(ah, chan); r = ath9k_hw_rf_set_freq(ah, chan); if (r) { ath_err(common, "Failed to set channel\n"); return false; } ath9k_hw_set_clockrate(ah); ath9k_hw_apply_txpower(ah, chan, false); ath9k_hw_set_delta_slope(ah, chan); ath9k_hw_spur_mitigate_freq(ah, chan); if (band_switch || ini_reloaded) ah->eep_ops->set_board_values(ah, chan); ath9k_hw_init_bb(ah, chan); ath9k_hw_rfbus_done(ah); if (band_switch || ini_reloaded) { ah->ah_flags |= AH_FASTCC; ath9k_hw_init_cal(ah, chan); ah->ah_flags &= ~AH_FASTCC; } return true; } static void ath9k_hw_apply_gpio_override(struct ath_hw *ah) { u32 gpio_mask = ah->gpio_mask; int i; for (i = 0; gpio_mask; i++, gpio_mask >>= 1) { if (!(gpio_mask & 1)) continue; ath9k_hw_gpio_request_out(ah, i, NULL, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i))); ath9k_hw_gpio_free(ah, i); } } void ath9k_hw_check_nav(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); u32 val; val = REG_READ(ah, AR_NAV); if (val != 0xdeadbeef && val > 0x7fff) { ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val); REG_WRITE(ah, AR_NAV, 0); } } EXPORT_SYMBOL(ath9k_hw_check_nav); bool ath9k_hw_check_alive(struct ath_hw *ah) { int count = 50; u32 reg, last_val; /* Check if chip failed to wake up */ if (REG_READ(ah, AR_CFG) == 0xdeadbeef) return false; if (AR_SREV_9300(ah)) return !ath9k_hw_detect_mac_hang(ah); if (AR_SREV_9285_12_OR_LATER(ah)) return true; last_val = REG_READ(ah, AR_OBS_BUS_1); do { reg = REG_READ(ah, AR_OBS_BUS_1); if (reg != last_val) return true; udelay(1); last_val = reg; if ((reg & 0x7E7FFFEF) == 0x00702400) continue; switch (reg & 0x7E000B00) { case 0x1E000000: case 0x52000B00: case 0x18000B00: continue; default: return true; } } while (count-- > 0); return false; } EXPORT_SYMBOL(ath9k_hw_check_alive); static void ath9k_hw_init_mfp(struct ath_hw *ah) { /* Setup MFP options for CCMP */ if (AR_SREV_9280_20_OR_LATER(ah)) { /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt * frames when constructing CCMP AAD. */ REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT, 0xc7ff); if (AR_SREV_9271(ah) || AR_DEVID_7010(ah)) ah->sw_mgmt_crypto_tx = true; else ah->sw_mgmt_crypto_tx = false; ah->sw_mgmt_crypto_rx = false; } else if (AR_SREV_9160_10_OR_LATER(ah)) { /* Disable hardware crypto for management frames */ REG_CLR_BIT(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE); REG_SET_BIT(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT); ah->sw_mgmt_crypto_tx = true; ah->sw_mgmt_crypto_rx = true; } else { ah->sw_mgmt_crypto_tx = true; ah->sw_mgmt_crypto_rx = true; } } static void ath9k_hw_reset_opmode(struct ath_hw *ah, u32 macStaId1, u32 saveDefAntenna) { struct ath_common *common = ath9k_hw_common(ah); ENABLE_REGWRITE_BUFFER(ah); REG_RMW(ah, AR_STA_ID1, macStaId1 | AR_STA_ID1_RTS_USE_DEF | ah->sta_id1_defaults, ~AR_STA_ID1_SADH_MASK); ath_hw_setbssidmask(common); REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); ath9k_hw_write_associd(ah); REG_WRITE(ah, AR_ISR, ~0); REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR); REGWRITE_BUFFER_FLUSH(ah); ath9k_hw_set_operating_mode(ah, ah->opmode); } static void ath9k_hw_init_queues(struct ath_hw *ah) { int i; ENABLE_REGWRITE_BUFFER(ah); for (i = 0; i < AR_NUM_DCU; i++) REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); REGWRITE_BUFFER_FLUSH(ah); ah->intr_txqs = 0; for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) ath9k_hw_resettxqueue(ah, i); } /* * For big endian systems turn on swapping for descriptors */ static void ath9k_hw_init_desc(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); if (AR_SREV_9100(ah)) { u32 mask; mask = REG_READ(ah, AR_CFG); if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n", mask); } else { mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; REG_WRITE(ah, AR_CFG, mask); ath_dbg(common, RESET, "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG)); } } else { if (common->bus_ops->ath_bus_type == ATH_USB) { /* Configure AR9271 target WLAN */ if (AR_SREV_9271(ah)) REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB); else REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); } #ifdef __BIG_ENDIAN else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) || AR_SREV_9561(ah)) REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0); else REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); #endif } } /* * Fast channel change: * (Change synthesizer based on channel freq without resetting chip) */ static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan) { struct ath_common *common = ath9k_hw_common(ah); struct ath9k_hw_capabilities *pCap = &ah->caps; int ret; if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI) goto fail; if (ah->chip_fullsleep) goto fail; if (!ah->curchan) goto fail; if (chan->channel == ah->curchan->channel) goto fail; if ((ah->curchan->channelFlags | chan->channelFlags) & (CHANNEL_HALF | CHANNEL_QUARTER)) goto fail; /* * If cross-band fcc is not supoprted, bail out if channelFlags differ. */ if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) && ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT)) goto fail; if (!ath9k_hw_check_alive(ah)) goto fail; /* * For AR9462, make sure that calibration data for * re-using are present. */ if (AR_SREV_9462(ah) && (ah->caldata && (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) || !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) || !test_bit(RTT_DONE, &ah->caldata->cal_flags)))) goto fail; ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n", ah->curchan->channel, chan->channel); ret = ath9k_hw_channel_change(ah, chan); if (!ret) goto fail; if (ath9k_hw_mci_is_enabled(ah)) ar9003_mci_2g5g_switch(ah, false); ath9k_hw_loadnf(ah, ah->curchan); ath9k_hw_start_nfcal(ah, true); if (AR_SREV_9271(ah)) ar9002_hw_load_ani_reg(ah, chan); return 0; fail: return -EINVAL; } u32 ath9k_hw_get_tsf_offset(struct timespec64 *last, struct timespec64 *cur) { struct timespec64 ts; s64 usec; if (!cur) { ktime_get_raw_ts64(&ts); cur = &ts; } usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000; usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000; return (u32) usec; } EXPORT_SYMBOL(ath9k_hw_get_tsf_offset); int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan, struct ath9k_hw_cal_data *caldata, bool fastcc) { struct ath_common *common = ath9k_hw_common(ah); u32 saveLedState; u32 saveDefAntenna; u32 macStaId1; struct timespec64 tsf_ts; u32 tsf_offset; u64 tsf = 0; int r; bool start_mci_reset = false; bool save_fullsleep = ah->chip_fullsleep; if (ath9k_hw_mci_is_enabled(ah)) { start_mci_reset = ar9003_mci_start_reset(ah, chan); if (start_mci_reset) return 0; } if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) return -EIO; if (ah->curchan && !ah->chip_fullsleep) ath9k_hw_getnf(ah, ah->curchan); ah->caldata = caldata; if (caldata && (chan->channel != caldata->channel || chan->channelFlags != caldata->channelFlags)) { /* Operating channel changed, reset channel calibration data */ memset(caldata, 0, sizeof(*caldata)); ath9k_init_nfcal_hist_buffer(ah, chan); } else if (caldata) { clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags); } ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor); if (fastcc) { r = ath9k_hw_do_fastcc(ah, chan); if (!r) return r; } if (ath9k_hw_mci_is_enabled(ah)) ar9003_mci_stop_bt(ah, save_fullsleep); saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA); if (saveDefAntenna == 0) saveDefAntenna = 1; macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; /* Save TSF before chip reset, a cold reset clears it */ ktime_get_raw_ts64(&tsf_ts); tsf = ath9k_hw_gettsf64(ah); saveLedState = REG_READ(ah, AR_CFG_LED) & (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL | AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW); ath9k_hw_mark_phy_inactive(ah); ah->paprd_table_write_done = false; /* Only required on the first reset */ if (AR_SREV_9271(ah) && ah->htc_reset_init) { REG_WRITE(ah, AR9271_RESET_POWER_DOWN_CONTROL, AR9271_RADIO_RF_RST); udelay(50); } if (!ath9k_hw_chip_reset(ah, chan)) { ath_err(common, "Chip reset failed\n"); return -EINVAL; } /* Only required on the first reset */ if (AR_SREV_9271(ah) && ah->htc_reset_init) { ah->htc_reset_init = false; REG_WRITE(ah, AR9271_RESET_POWER_DOWN_CONTROL, AR9271_GATE_MAC_CTL); udelay(50); } /* Restore TSF */ tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL); ath9k_hw_settsf64(ah, tsf + tsf_offset); if (AR_SREV_9280_20_OR_LATER(ah)) REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); if (!AR_SREV_9300_20_OR_LATER(ah)) ar9002_hw_enable_async_fifo(ah); r = ath9k_hw_process_ini(ah, chan); if (r) return r; ath9k_hw_set_rfmode(ah, chan); if (ath9k_hw_mci_is_enabled(ah)) ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep); /* * Some AR91xx SoC devices frequently fail to accept TSF writes * right after the chip reset. When that happens, write a new * value after the initvals have been applied. */ if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) { tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL); ath9k_hw_settsf64(ah, tsf + tsf_offset); } ath9k_hw_init_mfp(ah); ath9k_hw_set_delta_slope(ah, chan); ath9k_hw_spur_mitigate_freq(ah, chan); ah->eep_ops->set_board_values(ah, chan); ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna); r = ath9k_hw_rf_set_freq(ah, chan); if (r) return r; ath9k_hw_set_clockrate(ah); ath9k_hw_init_queues(ah); ath9k_hw_init_interrupt_masks(ah, ah->opmode); ath9k_hw_ani_cache_ini_regs(ah); ath9k_hw_init_qos(ah); if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill"); ath9k_hw_init_global_settings(ah); if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) { REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER, AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768); REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN, AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL); REG_SET_BIT(ah, AR_PCU_MISC_MODE2, AR_PCU_MISC_MODE2_ENABLE_AGGWEP); } REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM); ath9k_hw_set_dma(ah); if (!ath9k_hw_mci_is_enabled(ah)) REG_WRITE(ah, AR_OBS, 8); ENABLE_REG_RMW_BUFFER(ah); if (ah->config.rx_intr_mitigation) { REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last); REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first); } if (ah->config.tx_intr_mitigation) { REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300); REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750); } REG_RMW_BUFFER_FLUSH(ah); ath9k_hw_init_bb(ah, chan); if (caldata) { clear_bit(TXIQCAL_DONE, &caldata->cal_flags); clear_bit(TXCLCAL_DONE, &caldata->cal_flags); } if (!ath9k_hw_init_cal(ah, chan)) return -EIO; if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata)) return -EIO; ENABLE_REGWRITE_BUFFER(ah); ath9k_hw_restore_chainmask(ah); REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ); REGWRITE_BUFFER_FLUSH(ah); ath9k_hw_gen_timer_start_tsf2(ah); ath9k_hw_init_desc(ah); if (ath9k_hw_btcoex_is_enabled(ah)) ath9k_hw_btcoex_enable(ah); if (ath9k_hw_mci_is_enabled(ah)) ar9003_mci_check_bt(ah); if (AR_SREV_9300_20_OR_LATER(ah)) { ath9k_hw_loadnf(ah, chan); ath9k_hw_start_nfcal(ah, true); } if (AR_SREV_9300_20_OR_LATER(ah)) ar9003_hw_bb_watchdog_config(ah); if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR) ar9003_hw_disable_phy_restart(ah); ath9k_hw_apply_gpio_override(ah); if (AR_SREV_9565(ah) && common->bt_ant_diversity) REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON); if (ah->hw->conf.radar_enabled) { /* set HW specific DFS configuration */ ah->radar_conf.ext_channel = IS_CHAN_HT40(chan); ath9k_hw_set_radar_params(ah); } return 0; } EXPORT_SYMBOL(ath9k_hw_reset); /******************************/ /* Power Management (Chipset) */ /******************************/ /* * Notify Power Mgt is disabled in self-generated frames. * If requested, force chip to sleep. */ static void ath9k_set_power_sleep(struct ath_hw *ah) { REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff); REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff); REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff); /* xxx Required for WLAN only case ? */ REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0); udelay(100); } /* * Clear the RTC force wake bit to allow the * mac to go to sleep. */ REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); if (ath9k_hw_mci_is_enabled(ah)) udelay(100); if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); /* Shutdown chip. Active low */ if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) { REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN); udelay(2); } /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */ if (AR_SREV_9300_20_OR_LATER(ah)) REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); } /* * Notify Power Management is enabled in self-generating * frames. If request, set power mode of chip to * auto/normal. Duration in units of 128us (1/8 TU). */ static void ath9k_set_power_network_sleep(struct ath_hw *ah) { struct ath9k_hw_capabilities *pCap = &ah->caps; REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { /* Set WakeOnInterrupt bit; clear ForceWake bit */ REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_ON_INT); } else { /* When chip goes into network sleep, it could be waken * up by MCI_INT interrupt caused by BT's HW messages * (LNA_xxx, CONT_xxx) which chould be in a very fast * rate (~100us). This will cause chip to leave and * re-enter network sleep mode frequently, which in * consequence will have WLAN MCI HW to generate lots of * SYS_WAKING and SYS_SLEEPING messages which will make * BT CPU to busy to process. */ if (ath9k_hw_mci_is_enabled(ah)) REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN, AR_MCI_INTERRUPT_RX_HW_MSG_MASK); /* * Clear the RTC force wake bit to allow the * mac to go to sleep. */ REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); if (ath9k_hw_mci_is_enabled(ah)) udelay(30); } /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */ if (AR_SREV_9300_20_OR_LATER(ah)) REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); } static bool ath9k_hw_set_power_awake(struct ath_hw *ah) { u32 val; int i; /* Set Bits 14 and 17 of AR_WA before powering on the chip. */ if (AR_SREV_9300_20_OR_LATER(ah)) { REG_WRITE(ah, AR_WA, ah->WARegVal); udelay(10); } if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) { if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { return false; } if (!AR_SREV_9300_20_OR_LATER(ah)) ath9k_hw_init_pll(ah, NULL); } if (AR_SREV_9100(ah)) REG_SET_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN); REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); if (AR_SREV_9100(ah)) mdelay(10); else udelay(50); for (i = POWER_UP_TIME / 50; i > 0; i--) { val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M; if (val == AR_RTC_STATUS_ON) break; udelay(50); REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); } if (i == 0) { ath_err(ath9k_hw_common(ah), "Failed to wakeup in %uus\n", POWER_UP_TIME / 20); return false; } if (ath9k_hw_mci_is_enabled(ah)) ar9003_mci_set_power_awake(ah); REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); return true; } bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode) { struct ath_common *common = ath9k_hw_common(ah); int status = true; static const char *modes[] = { "AWAKE", "FULL-SLEEP", "NETWORK SLEEP", "UNDEFINED" }; if (ah->power_mode == mode) return status; ath_dbg(common, RESET, "%s -> %s\n", modes[ah->power_mode], modes[mode]); switch (mode) { case ATH9K_PM_AWAKE: status = ath9k_hw_set_power_awake(ah); break; case ATH9K_PM_FULL_SLEEP: if (ath9k_hw_mci_is_enabled(ah)) ar9003_mci_set_full_sleep(ah); ath9k_set_power_sleep(ah); ah->chip_fullsleep = true; break; case ATH9K_PM_NETWORK_SLEEP: ath9k_set_power_network_sleep(ah); break; default: ath_err(common, "Unknown power mode %u\n", mode); return false; } ah->power_mode = mode; /* * XXX: If this warning never comes up after a while then * simply keep the ATH_DBG_WARN_ON_ONCE() but make * ath9k_hw_setpower() return type void. */ if (!(ah->ah_flags & AH_UNPLUGGED)) ATH_DBG_WARN_ON_ONCE(!status); return status; } EXPORT_SYMBOL(ath9k_hw_setpower); /*******************/ /* Beacon Handling */ /*******************/ void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period) { int flags = 0; ENABLE_REGWRITE_BUFFER(ah); switch (ah->opmode) { case NL80211_IFTYPE_ADHOC: REG_SET_BIT(ah, AR_TXCFG, AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY); /* fall through */ case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_AP: REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon); REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon - TU_TO_USEC(ah->config.dma_beacon_response_time)); REG_WRITE(ah, AR_NEXT_SWBA, next_beacon - TU_TO_USEC(ah->config.sw_beacon_response_time)); flags |= AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN; break; default: ath_dbg(ath9k_hw_common(ah), BEACON, "%s: unsupported opmode: %d\n", __func__, ah->opmode); return; break; } REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period); REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period); REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period); REGWRITE_BUFFER_FLUSH(ah); REG_SET_BIT(ah, AR_TIMER_MODE, flags); } EXPORT_SYMBOL(ath9k_hw_beaconinit); void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah, const struct ath9k_beacon_state *bs) { u32 nextTbtt, beaconintval, dtimperiod, beacontimeout; struct ath9k_hw_capabilities *pCap = &ah->caps; struct ath_common *common = ath9k_hw_common(ah); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt); REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval); REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval); REGWRITE_BUFFER_FLUSH(ah); REG_RMW_FIELD(ah, AR_RSSI_THR, AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold); beaconintval = bs->bs_intval; if (bs->bs_sleepduration > beaconintval) beaconintval = bs->bs_sleepduration; dtimperiod = bs->bs_dtimperiod; if (bs->bs_sleepduration > dtimperiod) dtimperiod = bs->bs_sleepduration; if (beaconintval == dtimperiod) nextTbtt = bs->bs_nextdtim; else nextTbtt = bs->bs_nexttbtt; ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim); ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt); ath_dbg(common, BEACON, "beacon period %u\n", beaconintval); ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod); ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP); REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP); REG_WRITE(ah, AR_SLEEP1, SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT) | AR_SLEEP1_ASSUME_DTIM); if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP) beacontimeout = (BEACON_TIMEOUT_VAL << 3); else beacontimeout = MIN_BEACON_TIMEOUT_VAL; REG_WRITE(ah, AR_SLEEP2, SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT)); REG_WRITE(ah, AR_TIM_PERIOD, beaconintval); REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod); REGWRITE_BUFFER_FLUSH(ah); REG_SET_BIT(ah, AR_TIMER_MODE, AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | AR_DTIM_TIMER_EN); /* TSF Out of Range Threshold */ REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold); } EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers); /*******************/ /* HW Capabilities */ /*******************/ static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask) { eeprom_chainmask &= chip_chainmask; if (eeprom_chainmask) return eeprom_chainmask; else return chip_chainmask; } /** * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset * @ah: the atheros hardware data structure * * We enable DFS support upstream on chipsets which have passed a series * of tests. The testing requirements are going to be documented. Desired * test requirements are documented at: * * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs * * Once a new chipset gets properly tested an individual commit can be used * to document the testing for DFS for that chipset. */ static bool ath9k_hw_dfs_tested(struct ath_hw *ah) { switch (ah->hw_version.macVersion) { /* for temporary testing DFS with 9280 */ case AR_SREV_VERSION_9280: /* AR9580 will likely be our first target to get testing on */ case AR_SREV_VERSION_9580: return true; default: return false; } } static void ath9k_gpio_cap_init(struct ath_hw *ah) { struct ath9k_hw_capabilities *pCap = &ah->caps; if (AR_SREV_9271(ah)) { pCap->num_gpio_pins = AR9271_NUM_GPIO; pCap->gpio_mask = AR9271_GPIO_MASK; } else if (AR_DEVID_7010(ah)) { pCap->num_gpio_pins = AR7010_NUM_GPIO; pCap->gpio_mask = AR7010_GPIO_MASK; } else if (AR_SREV_9287(ah)) { pCap->num_gpio_pins = AR9287_NUM_GPIO; pCap->gpio_mask = AR9287_GPIO_MASK; } else if (AR_SREV_9285(ah)) { pCap->num_gpio_pins = AR9285_NUM_GPIO; pCap->gpio_mask = AR9285_GPIO_MASK; } else if (AR_SREV_9280(ah)) { pCap->num_gpio_pins = AR9280_NUM_GPIO; pCap->gpio_mask = AR9280_GPIO_MASK; } else if (AR_SREV_9300(ah)) { pCap->num_gpio_pins = AR9300_NUM_GPIO; pCap->gpio_mask = AR9300_GPIO_MASK; } else if (AR_SREV_9330(ah)) { pCap->num_gpio_pins = AR9330_NUM_GPIO; pCap->gpio_mask = AR9330_GPIO_MASK; } else if (AR_SREV_9340(ah)) { pCap->num_gpio_pins = AR9340_NUM_GPIO; pCap->gpio_mask = AR9340_GPIO_MASK; } else if (AR_SREV_9462(ah)) { pCap->num_gpio_pins = AR9462_NUM_GPIO; pCap->gpio_mask = AR9462_GPIO_MASK; } else if (AR_SREV_9485(ah)) { pCap->num_gpio_pins = AR9485_NUM_GPIO; pCap->gpio_mask = AR9485_GPIO_MASK; } else if (AR_SREV_9531(ah)) { pCap->num_gpio_pins = AR9531_NUM_GPIO; pCap->gpio_mask = AR9531_GPIO_MASK; } else if (AR_SREV_9550(ah)) { pCap->num_gpio_pins = AR9550_NUM_GPIO; pCap->gpio_mask = AR9550_GPIO_MASK; } else if (AR_SREV_9561(ah)) { pCap->num_gpio_pins = AR9561_NUM_GPIO; pCap->gpio_mask = AR9561_GPIO_MASK; } else if (AR_SREV_9565(ah)) { pCap->num_gpio_pins = AR9565_NUM_GPIO; pCap->gpio_mask = AR9565_GPIO_MASK; } else if (AR_SREV_9580(ah)) { pCap->num_gpio_pins = AR9580_NUM_GPIO; pCap->gpio_mask = AR9580_GPIO_MASK; } else { pCap->num_gpio_pins = AR_NUM_GPIO; pCap->gpio_mask = AR_GPIO_MASK; } } int ath9k_hw_fill_cap_info(struct ath_hw *ah) { struct ath9k_hw_capabilities *pCap = &ah->caps; struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); struct ath_common *common = ath9k_hw_common(ah); u16 eeval; u8 ant_div_ctl1, tx_chainmask, rx_chainmask; eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0); regulatory->current_rd = eeval; if (ah->opmode != NL80211_IFTYPE_AP && ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) { if (regulatory->current_rd == 0x64 || regulatory->current_rd == 0x65) regulatory->current_rd += 5; else if (regulatory->current_rd == 0x41) regulatory->current_rd = 0x43; ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n", regulatory->current_rd); } eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE); if (eeval & AR5416_OPFLAGS_11A) { if (ah->disable_5ghz) ath_warn(common, "disabling 5GHz band\n"); else pCap->hw_caps |= ATH9K_HW_CAP_5GHZ; } if (eeval & AR5416_OPFLAGS_11G) { if (ah->disable_2ghz) ath_warn(common, "disabling 2GHz band\n"); else pCap->hw_caps |= ATH9K_HW_CAP_2GHZ; } if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) { ath_err(common, "both bands are disabled\n"); return -EINVAL; } ath9k_gpio_cap_init(ah); if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah) || AR_SREV_9565(ah)) pCap->chip_chainmask = 1; else if (!AR_SREV_9280_20_OR_LATER(ah)) pCap->chip_chainmask = 7; else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah) || AR_SREV_9462(ah) || AR_SREV_9531(ah)) pCap->chip_chainmask = 3; else pCap->chip_chainmask = 7; pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK); /* * For AR9271 we will temporarilly uses the rx chainmax as read from * the EEPROM. */ if ((ah->hw_version.devid == AR5416_DEVID_PCI) && !(eeval & AR5416_OPFLAGS_11A) && !(AR_SREV_9271(ah))) /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */ pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7; else if (AR_SREV_9100(ah)) pCap->rx_chainmask = 0x7; else /* Use rx_chainmask from EEPROM. */ pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK); pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask); pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask); ah->txchainmask = pCap->tx_chainmask; ah->rxchainmask = pCap->rx_chainmask; ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA; /* enable key search for every frame in an aggregate */ if (AR_SREV_9300_20_OR_LATER(ah)) ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH; common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM; if (ah->hw_version.devid != AR2427_DEVID_PCIE) pCap->hw_caps |= ATH9K_HW_CAP_HT; else pCap->hw_caps &= ~ATH9K_HW_CAP_HT; if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX; else pCap->rts_aggr_limit = (8 * 1024); #ifdef CONFIG_ATH9K_RFKILL ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT); if (ah->rfsilent & EEP_RFSILENT_ENABLED) { ah->rfkill_gpio = MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL); ah->rfkill_polarity = MS(ah->rfsilent, EEP_RFSILENT_POLARITY); pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT; } #endif if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah)) pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP; else pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP; if (AR_SREV_9280(ah) || AR_SREV_9285(ah)) pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS; else pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS; if (AR_SREV_9300_20_OR_LATER(ah)) { pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK; if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9561(ah) && !AR_SREV_9565(ah)) pCap->hw_caps |= ATH9K_HW_CAP_LDPC; pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH; pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH; pCap->rx_status_len = sizeof(struct ar9003_rxs); pCap->tx_desc_len = sizeof(struct ar9003_txc); pCap->txs_len = sizeof(struct ar9003_txs); } else { pCap->tx_desc_len = sizeof(struct ath_desc); if (AR_SREV_9280_20(ah)) pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK; } if (AR_SREV_9300_20_OR_LATER(ah)) pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED; if (AR_SREV_9561(ah)) ah->ent_mode = 0x3BDA000; else if (AR_SREV_9300_20_OR_LATER(ah)) ah->ent_mode = REG_READ(ah, AR_ENT_OTP); if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah)) pCap->hw_caps |= ATH9K_HW_CAP_SGI_20; if (AR_SREV_9285(ah)) { if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) { ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) { pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; ath_info(common, "Enable LNA combining\n"); } } } if (AR_SREV_9300_20_OR_LATER(ah)) { if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE)) pCap->hw_caps |= ATH9K_HW_CAP_APM; } if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) { ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); if ((ant_div_ctl1 >> 0x6) == 0x3) { pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; ath_info(common, "Enable LNA combining\n"); } } if (ath9k_hw_dfs_tested(ah)) pCap->hw_caps |= ATH9K_HW_CAP_DFS; tx_chainmask = pCap->tx_chainmask; rx_chainmask = pCap->rx_chainmask; while (tx_chainmask || rx_chainmask) { if (tx_chainmask & BIT(0)) pCap->max_txchains++; if (rx_chainmask & BIT(0)) pCap->max_rxchains++; tx_chainmask >>= 1; rx_chainmask >>= 1; } if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE)) pCap->hw_caps |= ATH9K_HW_CAP_MCI; if (AR_SREV_9462_20_OR_LATER(ah)) pCap->hw_caps |= ATH9K_HW_CAP_RTT; } if (AR_SREV_9300_20_OR_LATER(ah) && ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) pCap->hw_caps |= ATH9K_HW_CAP_PAPRD; #ifdef CONFIG_ATH9K_WOW if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah)) ah->wow.max_patterns = MAX_NUM_PATTERN; else ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY; #endif return 0; } /****************************/ /* GPIO / RFKILL / Antennae */ /****************************/ static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type) { int addr; u32 gpio_shift, tmp; if (gpio > 11) addr = AR_GPIO_OUTPUT_MUX3; else if (gpio > 5) addr = AR_GPIO_OUTPUT_MUX2; else addr = AR_GPIO_OUTPUT_MUX1; gpio_shift = (gpio % 6) * 5; if (AR_SREV_9280_20_OR_LATER(ah) || (addr != AR_GPIO_OUTPUT_MUX1)) { REG_RMW(ah, addr, (type << gpio_shift), (0x1f << gpio_shift)); } else { tmp = REG_READ(ah, addr); tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0); tmp &= ~(0x1f << gpio_shift); tmp |= (type << gpio_shift); REG_WRITE(ah, addr, tmp); } } /* BSP should set the corresponding MUX register correctly. */ static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out, const char *label) { if (ah->caps.gpio_requested & BIT(gpio)) return; /* may be requested by BSP, free anyway */ gpio_free(gpio); if (gpio_request_one(gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label)) return; ah->caps.gpio_requested |= BIT(gpio); } static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out, u32 ah_signal_type) { u32 gpio_set, gpio_shift = gpio; if (AR_DEVID_7010(ah)) { gpio_set = out ? AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT; REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift, AR7010_GPIO_OE_MASK << gpio_shift); } else if (AR_SREV_SOC(ah)) { gpio_set = out ? 1 : 0; REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift, gpio_set << gpio_shift); } else { gpio_shift = gpio << 1; gpio_set = out ? AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO; REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift, AR_GPIO_OE_OUT_DRV << gpio_shift); if (out) ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type); } } static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out, const char *label, u32 ah_signal_type) { WARN_ON(gpio >= ah->caps.num_gpio_pins); if (BIT(gpio) & ah->caps.gpio_mask) ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type); else if (AR_SREV_SOC(ah)) ath9k_hw_gpio_cfg_soc(ah, gpio, out, label); else WARN_ON(1); } void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label) { ath9k_hw_gpio_request(ah, gpio, false, label, 0); } EXPORT_SYMBOL(ath9k_hw_gpio_request_in); void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label, u32 ah_signal_type) { ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type); } EXPORT_SYMBOL(ath9k_hw_gpio_request_out); void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio) { if (!AR_SREV_SOC(ah)) return; WARN_ON(gpio >= ah->caps.num_gpio_pins); if (ah->caps.gpio_requested & BIT(gpio)) { gpio_free(gpio); ah->caps.gpio_requested &= ~BIT(gpio); } } EXPORT_SYMBOL(ath9k_hw_gpio_free); u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio) { u32 val = 0xffffffff; #define MS_REG_READ(x, y) \ (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y)) WARN_ON(gpio >= ah->caps.num_gpio_pins); if (BIT(gpio) & ah->caps.gpio_mask) { if (AR_SREV_9271(ah)) val = MS_REG_READ(AR9271, gpio); else if (AR_SREV_9287(ah)) val = MS_REG_READ(AR9287, gpio); else if (AR_SREV_9285(ah)) val = MS_REG_READ(AR9285, gpio); else if (AR_SREV_9280(ah)) val = MS_REG_READ(AR928X, gpio); else if (AR_DEVID_7010(ah)) val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio); else if (AR_SREV_9300_20_OR_LATER(ah)) val = REG_READ(ah, AR_GPIO_IN) & BIT(gpio); else val = MS_REG_READ(AR, gpio); } else if (BIT(gpio) & ah->caps.gpio_requested) { val = gpio_get_value(gpio) & BIT(gpio); } else { WARN_ON(1); } return !!val; } EXPORT_SYMBOL(ath9k_hw_gpio_get); void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val) { WARN_ON(gpio >= ah->caps.num_gpio_pins); if (AR_DEVID_7010(ah) || AR_SREV_9271(ah)) val = !val; else val = !!val; if (BIT(gpio) & ah->caps.gpio_mask) { u32 out_addr = AR_DEVID_7010(ah) ? AR7010_GPIO_OUT : AR_GPIO_IN_OUT; REG_RMW(ah, out_addr, val << gpio, BIT(gpio)); } else if (BIT(gpio) & ah->caps.gpio_requested) { gpio_set_value(gpio, val); } else { WARN_ON(1); } } EXPORT_SYMBOL(ath9k_hw_set_gpio); void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna) { REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); } EXPORT_SYMBOL(ath9k_hw_setantenna); /*********************/ /* General Operation */ /*********************/ u32 ath9k_hw_getrxfilter(struct ath_hw *ah) { u32 bits = REG_READ(ah, AR_RX_FILTER); u32 phybits = REG_READ(ah, AR_PHY_ERR); if (phybits & AR_PHY_ERR_RADAR) bits |= ATH9K_RX_FILTER_PHYRADAR; if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING)) bits |= ATH9K_RX_FILTER_PHYERR; return bits; } EXPORT_SYMBOL(ath9k_hw_getrxfilter); void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits) { u32 phybits; ENABLE_REGWRITE_BUFFER(ah); REG_WRITE(ah, AR_RX_FILTER, bits); phybits = 0; if (bits & ATH9K_RX_FILTER_PHYRADAR) phybits |= AR_PHY_ERR_RADAR; if (bits & ATH9K_RX_FILTER_PHYERR) phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING; REG_WRITE(ah, AR_PHY_ERR, phybits); if (phybits) REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA); else REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA); REGWRITE_BUFFER_FLUSH(ah); } EXPORT_SYMBOL(ath9k_hw_setrxfilter); bool ath9k_hw_phy_disable(struct ath_hw *ah) { if (ath9k_hw_mci_is_enabled(ah)) ar9003_mci_bt_gain_ctrl(ah); if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) return false; ath9k_hw_init_pll(ah, NULL); ah->htc_reset_init = true; return true; } EXPORT_SYMBOL(ath9k_hw_phy_disable); bool ath9k_hw_disable(struct ath_hw *ah) { if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) return false; if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD)) return false; ath9k_hw_init_pll(ah, NULL); return true; } EXPORT_SYMBOL(ath9k_hw_disable); static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan) { enum eeprom_param gain_param; if (IS_CHAN_2GHZ(chan)) gain_param = EEP_ANTENNA_GAIN_2G; else gain_param = EEP_ANTENNA_GAIN_5G; return ah->eep_ops->get_eeprom(ah, gain_param); } void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan, bool test) { struct ath_regulatory *reg = ath9k_hw_regulatory(ah); struct ieee80211_channel *channel; int chan_pwr, new_pwr; u16 ctl = NO_CTL; if (!chan) return; if (!test) ctl = ath9k_regd_get_ctl(reg, chan); channel = chan->chan; chan_pwr = min_t(int, channel->max_power * 2, MAX_COMBINED_POWER); new_pwr = min_t(int, chan_pwr, reg->power_limit); ah->eep_ops->set_txpower(ah, chan, ctl, get_antenna_gain(ah, chan), new_pwr, test); } void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test) { struct ath_regulatory *reg = ath9k_hw_regulatory(ah); struct ath9k_channel *chan = ah->curchan; struct ieee80211_channel *channel = chan->chan; reg->power_limit = min_t(u32, limit, MAX_COMBINED_POWER); if (test) channel->max_power = MAX_COMBINED_POWER / 2; ath9k_hw_apply_txpower(ah, chan, test); if (test) channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2); } EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit); void ath9k_hw_setopmode(struct ath_hw *ah) { ath9k_hw_set_operating_mode(ah, ah->opmode); } EXPORT_SYMBOL(ath9k_hw_setopmode); void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1) { REG_WRITE(ah, AR_MCAST_FIL0, filter0); REG_WRITE(ah, AR_MCAST_FIL1, filter1); } EXPORT_SYMBOL(ath9k_hw_setmcastfilter); void ath9k_hw_write_associd(struct ath_hw *ah) { struct ath_common *common = ath9k_hw_common(ah); REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid)); REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) | ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S)); } EXPORT_SYMBOL(ath9k_hw_write_associd); #define ATH9K_MAX_TSF_READ 10 u64 ath9k_hw_gettsf64(struct ath_hw *ah) { u32 tsf_lower, tsf_upper1, tsf_upper2; int i; tsf_upper1 = REG_READ(ah, AR_TSF_U32); for (i = 0; i < ATH9K_MAX_TSF_READ; i++) { tsf_lower = REG_READ(ah, AR_TSF_L32); tsf_upper2 = REG_READ(ah, AR_TSF_U32); if (tsf_upper2 == tsf_upper1) break; tsf_upper1 = tsf_upper2; } WARN_ON( i == ATH9K_MAX_TSF_READ ); return (((u64)tsf_upper1 << 32) | tsf_lower); } EXPORT_SYMBOL(ath9k_hw_gettsf64); void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64) { REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff); REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff); } EXPORT_SYMBOL(ath9k_hw_settsf64); void ath9k_hw_reset_tsf(struct ath_hw *ah) { if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0, AH_TSF_WRITE_TIMEOUT)) ath_dbg(ath9k_hw_common(ah), RESET, "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n"); REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); } EXPORT_SYMBOL(ath9k_hw_reset_tsf); void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set) { if (set) ah->misc_mode |= AR_PCU_TX_ADD_TSF; else ah->misc_mode &= ~AR_PCU_TX_ADD_TSF; } EXPORT_SYMBOL(ath9k_hw_set_tsfadjust); void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan) { u32 macmode; if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca) macmode = AR_2040_JOINED_RX_CLEAR; else macmode = 0; REG_WRITE(ah, AR_2040_MODE, macmode); } /* HW Generic timers configuration */ static const struct ath_gen_timer_configuration gen_tmr_configuration[] = { {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001}, {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4, AR_NDP2_TIMER_MODE, 0x0002}, {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4, AR_NDP2_TIMER_MODE, 0x0004}, {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4, AR_NDP2_TIMER_MODE, 0x0008}, {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4, AR_NDP2_TIMER_MODE, 0x0010}, {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4, AR_NDP2_TIMER_MODE, 0x0020}, {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4, AR_NDP2_TIMER_MODE, 0x0040}, {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4, AR_NDP2_TIMER_MODE, 0x0080} }; /* HW generic timer primitives */ u32 ath9k_hw_gettsf32(struct ath_hw *ah) { return REG_READ(ah, AR_TSF_L32); } EXPORT_SYMBOL(ath9k_hw_gettsf32); void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah) { struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; if (timer_table->tsf2_enabled) { REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN); REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE); } } struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah, void (*trigger)(void *), void (*overflow)(void *), void *arg, u8 timer_index) { struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; struct ath_gen_timer *timer; if ((timer_index < AR_FIRST_NDP_TIMER) || (timer_index >= ATH_MAX_GEN_TIMER)) return NULL; if ((timer_index > AR_FIRST_NDP_TIMER) && !AR_SREV_9300_20_OR_LATER(ah)) return NULL; timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL); if (timer == NULL) return NULL; /* allocate a hardware generic timer slot */ timer_table->timers[timer_index] = timer; timer->index = timer_index; timer->trigger = trigger; timer->overflow = overflow; timer->arg = arg; if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) { timer_table->tsf2_enabled = true; ath9k_hw_gen_timer_start_tsf2(ah); } return timer; } EXPORT_SYMBOL(ath_gen_timer_alloc); void ath9k_hw_gen_timer_start(struct ath_hw *ah, struct ath_gen_timer *timer, u32 timer_next, u32 timer_period) { struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; u32 mask = 0; timer_table->timer_mask |= BIT(timer->index); /* * Program generic timer registers */ REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr, timer_next); REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr, timer_period); REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, gen_tmr_configuration[timer->index].mode_mask); if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { /* * Starting from AR9462, each generic timer can select which tsf * to use. But we still follow the old rule, 0 - 7 use tsf and * 8 - 15 use tsf2. */ if ((timer->index < AR_GEN_TIMER_BANK_1_LEN)) REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, (1 << timer->index)); else REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, (1 << timer->index)); } if (timer->trigger) mask |= SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG); if (timer->overflow) mask |= SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH); REG_SET_BIT(ah, AR_IMR_S5, mask); if ((ah->imask & ATH9K_INT_GENTIMER) == 0) { ah->imask |= ATH9K_INT_GENTIMER; ath9k_hw_set_interrupts(ah); } } EXPORT_SYMBOL(ath9k_hw_gen_timer_start); void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer) { struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; /* Clear generic timer enable bits. */ REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, gen_tmr_configuration[timer->index].mode_mask); if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { /* * Need to switch back to TSF if it was using TSF2. */ if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) { REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, (1 << timer->index)); } } /* Disable both trigger and thresh interrupt masks */ REG_CLR_BIT(ah, AR_IMR_S5, (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); timer_table->timer_mask &= ~BIT(timer->index); if (timer_table->timer_mask == 0) { ah->imask &= ~ATH9K_INT_GENTIMER; ath9k_hw_set_interrupts(ah); } } EXPORT_SYMBOL(ath9k_hw_gen_timer_stop); void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer) { struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; /* free the hardware generic timer slot */ timer_table->timers[timer->index] = NULL; kfree(timer); } EXPORT_SYMBOL(ath_gen_timer_free); /* * Generic Timer Interrupts handling */ void ath_gen_timer_isr(struct ath_hw *ah) { struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; struct ath_gen_timer *timer; unsigned long trigger_mask, thresh_mask; unsigned int index; /* get hardware generic timer interrupt status */ trigger_mask = ah->intr_gen_timer_trigger; thresh_mask = ah->intr_gen_timer_thresh; trigger_mask &= timer_table->timer_mask; thresh_mask &= timer_table->timer_mask; for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) { timer = timer_table->timers[index]; if (!timer) continue; if (!timer->overflow) continue; trigger_mask &= ~BIT(index); timer->overflow(timer->arg); } for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) { timer = timer_table->timers[index]; if (!timer) continue; if (!timer->trigger) continue; timer->trigger(timer->arg); } } EXPORT_SYMBOL(ath_gen_timer_isr); /********/ /* HTC */ /********/ static struct { u32 version; const char * name; } ath_mac_bb_names[] = { /* Devices with external radios */ { AR_SREV_VERSION_5416_PCI, "5416" }, { AR_SREV_VERSION_5416_PCIE, "5418" }, { AR_SREV_VERSION_9100, "9100" }, { AR_SREV_VERSION_9160, "9160" }, /* Single-chip solutions */ { AR_SREV_VERSION_9280, "9280" }, { AR_SREV_VERSION_9285, "9285" }, { AR_SREV_VERSION_9287, "9287" }, { AR_SREV_VERSION_9271, "9271" }, { AR_SREV_VERSION_9300, "9300" }, { AR_SREV_VERSION_9330, "9330" }, { AR_SREV_VERSION_9340, "9340" }, { AR_SREV_VERSION_9485, "9485" }, { AR_SREV_VERSION_9462, "9462" }, { AR_SREV_VERSION_9550, "9550" }, { AR_SREV_VERSION_9565, "9565" }, { AR_SREV_VERSION_9531, "9531" }, { AR_SREV_VERSION_9561, "9561" }, }; /* For devices with external radios */ static struct { u16 version; const char * name; } ath_rf_names[] = { { 0, "5133" }, { AR_RAD5133_SREV_MAJOR, "5133" }, { AR_RAD5122_SREV_MAJOR, "5122" }, { AR_RAD2133_SREV_MAJOR, "2133" }, { AR_RAD2122_SREV_MAJOR, "2122" } }; /* * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown. */ static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version) { int i; for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) { if (ath_mac_bb_names[i].version == mac_bb_version) { return ath_mac_bb_names[i].name; } } return "????"; } /* * Return the RF name. "????" is returned if the RF is unknown. * Used for devices with external radios. */ static const char *ath9k_hw_rf_name(u16 rf_version) { int i; for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) { if (ath_rf_names[i].version == rf_version) { return ath_rf_names[i].name; } } return "????"; } void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len) { int used; /* chipsets >= AR9280 are single-chip */ if (AR_SREV_9280_20_OR_LATER(ah)) { used = scnprintf(hw_name, len, "Atheros AR%s Rev:%x", ath9k_hw_mac_bb_name(ah->hw_version.macVersion), ah->hw_version.macRev); } else { used = scnprintf(hw_name, len, "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x", ath9k_hw_mac_bb_name(ah->hw_version.macVersion), ah->hw_version.macRev, ath9k_hw_rf_name((ah->hw_version.analog5GhzRev & AR_RADIO_SREV_MAJOR)), ah->hw_version.phyRev); } hw_name[used] = '\0'; } EXPORT_SYMBOL(ath9k_hw_name);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1