Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vladimir Kondratiev | 7521 | 59.60% | 76 | 57.58% |
Ahmad Masri | 1790 | 14.18% | 6 | 4.55% |
Maya Erez | 1013 | 8.03% | 15 | 11.36% |
Dedy Lansky | 896 | 7.10% | 9 | 6.82% |
Gidon Studinski | 540 | 4.28% | 4 | 3.03% |
Lior David | 494 | 3.91% | 7 | 5.30% |
Kirshenbaum Erez | 151 | 1.20% | 3 | 2.27% |
Hamad Kadmany | 70 | 0.55% | 2 | 1.52% |
Vladimir Shulman | 65 | 0.52% | 1 | 0.76% |
Alexei Avshalom Lazar | 32 | 0.25% | 2 | 1.52% |
Lazar Alexei | 21 | 0.17% | 2 | 1.52% |
Dan Carpenter | 11 | 0.09% | 1 | 0.76% |
Matthew Wilcox | 7 | 0.06% | 1 | 0.76% |
Gustavo A. R. Silva | 6 | 0.05% | 1 | 0.76% |
Wei Yongjun | 1 | 0.01% | 1 | 0.76% |
Masanari Iida | 1 | 0.01% | 1 | 0.76% |
Total | 12619 | 132 |
/* * Copyright (c) 2012-2017 Qualcomm Atheros, Inc. * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include <linux/etherdevice.h> #include <net/ieee80211_radiotap.h> #include <linux/if_arp.h> #include <linux/moduleparam.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <net/ipv6.h> #include <linux/prefetch.h> #include "wil6210.h" #include "wmi.h" #include "txrx.h" #include "trace.h" #include "txrx_edma.h" bool rx_align_2; module_param(rx_align_2, bool, 0444); MODULE_PARM_DESC(rx_align_2, " align Rx buffers on 4*n+2, default - no"); bool rx_large_buf; module_param(rx_large_buf, bool, 0444); MODULE_PARM_DESC(rx_large_buf, " allocate 8KB RX buffers, default - no"); /* Drop Tx packets in case Tx ring is full */ bool drop_if_ring_full; static inline uint wil_rx_snaplen(void) { return rx_align_2 ? 6 : 0; } /* wil_ring_wmark_low - low watermark for available descriptor space */ static inline int wil_ring_wmark_low(struct wil_ring *ring) { return ring->size / 8; } /* wil_ring_wmark_high - high watermark for available descriptor space */ static inline int wil_ring_wmark_high(struct wil_ring *ring) { return ring->size / 4; } /* returns true if num avail descriptors is lower than wmark_low */ static inline int wil_ring_avail_low(struct wil_ring *ring) { return wil_ring_avail_tx(ring) < wil_ring_wmark_low(ring); } /* returns true if num avail descriptors is higher than wmark_high */ static inline int wil_ring_avail_high(struct wil_ring *ring) { return wil_ring_avail_tx(ring) > wil_ring_wmark_high(ring); } /* returns true when all tx vrings are empty */ bool wil_is_tx_idle(struct wil6210_priv *wil) { int i; unsigned long data_comp_to; int min_ring_id = wil_get_min_tx_ring_id(wil); for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { struct wil_ring *vring = &wil->ring_tx[i]; int vring_index = vring - wil->ring_tx; struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index]; spin_lock(&txdata->lock); if (!vring->va || !txdata->enabled) { spin_unlock(&txdata->lock); continue; } data_comp_to = jiffies + msecs_to_jiffies( WIL_DATA_COMPLETION_TO_MS); if (test_bit(wil_status_napi_en, wil->status)) { while (!wil_ring_is_empty(vring)) { if (time_after(jiffies, data_comp_to)) { wil_dbg_pm(wil, "TO waiting for idle tx\n"); spin_unlock(&txdata->lock); return false; } wil_dbg_ratelimited(wil, "tx vring is not empty -> NAPI\n"); spin_unlock(&txdata->lock); napi_synchronize(&wil->napi_tx); msleep(20); spin_lock(&txdata->lock); if (!vring->va || !txdata->enabled) break; } } spin_unlock(&txdata->lock); } return true; } static int wil_vring_alloc(struct wil6210_priv *wil, struct wil_ring *vring) { struct device *dev = wil_to_dev(wil); size_t sz = vring->size * sizeof(vring->va[0]); uint i; wil_dbg_misc(wil, "vring_alloc:\n"); BUILD_BUG_ON(sizeof(vring->va[0]) != 32); vring->swhead = 0; vring->swtail = 0; vring->ctx = kcalloc(vring->size, sizeof(vring->ctx[0]), GFP_KERNEL); if (!vring->ctx) { vring->va = NULL; return -ENOMEM; } /* vring->va should be aligned on its size rounded up to power of 2 * This is granted by the dma_alloc_coherent. * * HW has limitation that all vrings addresses must share the same * upper 16 msb bits part of 48 bits address. To workaround that, * if we are using more than 32 bit addresses switch to 32 bit * allocation before allocating vring memory. * * There's no check for the return value of dma_set_mask_and_coherent, * since we assume if we were able to set the mask during * initialization in this system it will not fail if we set it again */ if (wil->dma_addr_size > 32) dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); vring->va = dma_alloc_coherent(dev, sz, &vring->pa, GFP_KERNEL); if (!vring->va) { kfree(vring->ctx); vring->ctx = NULL; return -ENOMEM; } if (wil->dma_addr_size > 32) dma_set_mask_and_coherent(dev, DMA_BIT_MASK(wil->dma_addr_size)); /* initially, all descriptors are SW owned * For Tx and Rx, ownership bit is at the same location, thus * we can use any */ for (i = 0; i < vring->size; i++) { volatile struct vring_tx_desc *_d = &vring->va[i].tx.legacy; _d->dma.status = TX_DMA_STATUS_DU; } wil_dbg_misc(wil, "vring[%d] 0x%p:%pad 0x%p\n", vring->size, vring->va, &vring->pa, vring->ctx); return 0; } static void wil_txdesc_unmap(struct device *dev, union wil_tx_desc *desc, struct wil_ctx *ctx) { struct vring_tx_desc *d = &desc->legacy; dma_addr_t pa = wil_desc_addr(&d->dma.addr); u16 dmalen = le16_to_cpu(d->dma.length); switch (ctx->mapped_as) { case wil_mapped_as_single: dma_unmap_single(dev, pa, dmalen, DMA_TO_DEVICE); break; case wil_mapped_as_page: dma_unmap_page(dev, pa, dmalen, DMA_TO_DEVICE); break; default: break; } } static void wil_vring_free(struct wil6210_priv *wil, struct wil_ring *vring) { struct device *dev = wil_to_dev(wil); size_t sz = vring->size * sizeof(vring->va[0]); lockdep_assert_held(&wil->mutex); if (!vring->is_rx) { int vring_index = vring - wil->ring_tx; wil_dbg_misc(wil, "free Tx vring %d [%d] 0x%p:%pad 0x%p\n", vring_index, vring->size, vring->va, &vring->pa, vring->ctx); } else { wil_dbg_misc(wil, "free Rx vring [%d] 0x%p:%pad 0x%p\n", vring->size, vring->va, &vring->pa, vring->ctx); } while (!wil_ring_is_empty(vring)) { dma_addr_t pa; u16 dmalen; struct wil_ctx *ctx; if (!vring->is_rx) { struct vring_tx_desc dd, *d = ⅆ volatile struct vring_tx_desc *_d = &vring->va[vring->swtail].tx.legacy; ctx = &vring->ctx[vring->swtail]; if (!ctx) { wil_dbg_txrx(wil, "ctx(%d) was already completed\n", vring->swtail); vring->swtail = wil_ring_next_tail(vring); continue; } *d = *_d; wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx); if (ctx->skb) dev_kfree_skb_any(ctx->skb); vring->swtail = wil_ring_next_tail(vring); } else { /* rx */ struct vring_rx_desc dd, *d = ⅆ volatile struct vring_rx_desc *_d = &vring->va[vring->swhead].rx.legacy; ctx = &vring->ctx[vring->swhead]; *d = *_d; pa = wil_desc_addr(&d->dma.addr); dmalen = le16_to_cpu(d->dma.length); dma_unmap_single(dev, pa, dmalen, DMA_FROM_DEVICE); kfree_skb(ctx->skb); wil_ring_advance_head(vring, 1); } } dma_free_coherent(dev, sz, (void *)vring->va, vring->pa); kfree(vring->ctx); vring->pa = 0; vring->va = NULL; vring->ctx = NULL; } /** * Allocate one skb for Rx VRING * * Safe to call from IRQ */ static int wil_vring_alloc_skb(struct wil6210_priv *wil, struct wil_ring *vring, u32 i, int headroom) { struct device *dev = wil_to_dev(wil); unsigned int sz = wil->rx_buf_len + ETH_HLEN + wil_rx_snaplen(); struct vring_rx_desc dd, *d = ⅆ volatile struct vring_rx_desc *_d = &vring->va[i].rx.legacy; dma_addr_t pa; struct sk_buff *skb = dev_alloc_skb(sz + headroom); if (unlikely(!skb)) return -ENOMEM; skb_reserve(skb, headroom); skb_put(skb, sz); /** * Make sure that the network stack calculates checksum for packets * which failed the HW checksum calculation */ skb->ip_summed = CHECKSUM_NONE; pa = dma_map_single(dev, skb->data, skb->len, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(dev, pa))) { kfree_skb(skb); return -ENOMEM; } d->dma.d0 = RX_DMA_D0_CMD_DMA_RT | RX_DMA_D0_CMD_DMA_IT; wil_desc_addr_set(&d->dma.addr, pa); /* ip_length don't care */ /* b11 don't care */ /* error don't care */ d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */ d->dma.length = cpu_to_le16(sz); *_d = *d; vring->ctx[i].skb = skb; return 0; } /** * Adds radiotap header * * Any error indicated as "Bad FCS" * * Vendor data for 04:ce:14-1 (Wilocity-1) consists of: * - Rx descriptor: 32 bytes * - Phy info */ static void wil_rx_add_radiotap_header(struct wil6210_priv *wil, struct sk_buff *skb) { struct wil6210_rtap { struct ieee80211_radiotap_header rthdr; /* fields should be in the order of bits in rthdr.it_present */ /* flags */ u8 flags; /* channel */ __le16 chnl_freq __aligned(2); __le16 chnl_flags; /* MCS */ u8 mcs_present; u8 mcs_flags; u8 mcs_index; } __packed; struct vring_rx_desc *d = wil_skb_rxdesc(skb); struct wil6210_rtap *rtap; int rtap_len = sizeof(struct wil6210_rtap); struct ieee80211_channel *ch = wil->monitor_chandef.chan; if (skb_headroom(skb) < rtap_len && pskb_expand_head(skb, rtap_len, 0, GFP_ATOMIC)) { wil_err(wil, "Unable to expand headroom to %d\n", rtap_len); return; } rtap = skb_push(skb, rtap_len); memset(rtap, 0, rtap_len); rtap->rthdr.it_version = PKTHDR_RADIOTAP_VERSION; rtap->rthdr.it_len = cpu_to_le16(rtap_len); rtap->rthdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) | (1 << IEEE80211_RADIOTAP_CHANNEL) | (1 << IEEE80211_RADIOTAP_MCS)); if (d->dma.status & RX_DMA_STATUS_ERROR) rtap->flags |= IEEE80211_RADIOTAP_F_BADFCS; rtap->chnl_freq = cpu_to_le16(ch ? ch->center_freq : 58320); rtap->chnl_flags = cpu_to_le16(0); rtap->mcs_present = IEEE80211_RADIOTAP_MCS_HAVE_MCS; rtap->mcs_flags = 0; rtap->mcs_index = wil_rxdesc_mcs(d); } static bool wil_is_rx_idle(struct wil6210_priv *wil) { struct vring_rx_desc *_d; struct wil_ring *ring = &wil->ring_rx; _d = (struct vring_rx_desc *)&ring->va[ring->swhead].rx.legacy; if (_d->dma.status & RX_DMA_STATUS_DU) return false; return true; } static int wil_rx_get_cid_by_skb(struct wil6210_priv *wil, struct sk_buff *skb) { struct vring_rx_desc *d = wil_skb_rxdesc(skb); int mid = wil_rxdesc_mid(d); struct wil6210_vif *vif = wil->vifs[mid]; /* cid from DMA descriptor is limited to 3 bits. * In case of cid>=8, the value would be cid modulo 8 and we need to * find real cid by locating the transmitter (ta) inside sta array */ int cid = wil_rxdesc_cid(d); unsigned int snaplen = wil_rx_snaplen(); struct ieee80211_hdr_3addr *hdr; int i; unsigned char *ta; u8 ftype; /* in monitor mode there are no connections */ if (vif->wdev.iftype == NL80211_IFTYPE_MONITOR) return cid; ftype = wil_rxdesc_ftype(d) << 2; if (likely(ftype == IEEE80211_FTYPE_DATA)) { if (unlikely(skb->len < ETH_HLEN + snaplen)) { wil_err_ratelimited(wil, "Short data frame, len = %d\n", skb->len); return -ENOENT; } ta = wil_skb_get_sa(skb); } else { if (unlikely(skb->len < sizeof(struct ieee80211_hdr_3addr))) { wil_err_ratelimited(wil, "Short frame, len = %d\n", skb->len); return -ENOENT; } hdr = (void *)skb->data; ta = hdr->addr2; } if (wil->max_assoc_sta <= WIL6210_RX_DESC_MAX_CID) return cid; /* assuming no concurrency between AP interfaces and STA interfaces. * multista is used only in P2P_GO or AP mode. In other modes return * cid from the rx descriptor */ if (vif->wdev.iftype != NL80211_IFTYPE_P2P_GO && vif->wdev.iftype != NL80211_IFTYPE_AP) return cid; /* For Rx packets cid from rx descriptor is limited to 3 bits (0..7), * to find the real cid, compare transmitter address with the stored * stations mac address in the driver sta array */ for (i = cid; i < wil->max_assoc_sta; i += WIL6210_RX_DESC_MAX_CID) { if (wil->sta[i].status != wil_sta_unused && ether_addr_equal(wil->sta[i].addr, ta)) { cid = i; break; } } if (i >= wil->max_assoc_sta) { wil_err_ratelimited(wil, "Could not find cid for frame with transmit addr = %pM, iftype = %d, frametype = %d, len = %d\n", ta, vif->wdev.iftype, ftype, skb->len); cid = -ENOENT; } return cid; } /** * reap 1 frame from @swhead * * Rx descriptor copied to skb->cb * * Safe to call from IRQ */ static struct sk_buff *wil_vring_reap_rx(struct wil6210_priv *wil, struct wil_ring *vring) { struct device *dev = wil_to_dev(wil); struct wil6210_vif *vif; struct net_device *ndev; volatile struct vring_rx_desc *_d; struct vring_rx_desc *d; struct sk_buff *skb; dma_addr_t pa; unsigned int snaplen = wil_rx_snaplen(); unsigned int sz = wil->rx_buf_len + ETH_HLEN + snaplen; u16 dmalen; u8 ftype; int cid, mid; int i; struct wil_net_stats *stats; BUILD_BUG_ON(sizeof(struct skb_rx_info) > sizeof(skb->cb)); again: if (unlikely(wil_ring_is_empty(vring))) return NULL; i = (int)vring->swhead; _d = &vring->va[i].rx.legacy; if (unlikely(!(_d->dma.status & RX_DMA_STATUS_DU))) { /* it is not error, we just reached end of Rx done area */ return NULL; } skb = vring->ctx[i].skb; vring->ctx[i].skb = NULL; wil_ring_advance_head(vring, 1); if (!skb) { wil_err(wil, "No Rx skb at [%d]\n", i); goto again; } d = wil_skb_rxdesc(skb); *d = *_d; pa = wil_desc_addr(&d->dma.addr); dma_unmap_single(dev, pa, sz, DMA_FROM_DEVICE); dmalen = le16_to_cpu(d->dma.length); trace_wil6210_rx(i, d); wil_dbg_txrx(wil, "Rx[%3d] : %d bytes\n", i, dmalen); wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4, (const void *)d, sizeof(*d), false); mid = wil_rxdesc_mid(d); vif = wil->vifs[mid]; if (unlikely(!vif)) { wil_dbg_txrx(wil, "skipped RX descriptor with invalid mid %d", mid); kfree_skb(skb); goto again; } ndev = vif_to_ndev(vif); if (unlikely(dmalen > sz)) { wil_err_ratelimited(wil, "Rx size too large: %d bytes!\n", dmalen); kfree_skb(skb); goto again; } skb_trim(skb, dmalen); prefetch(skb->data); wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1, skb->data, skb_headlen(skb), false); cid = wil_rx_get_cid_by_skb(wil, skb); if (cid == -ENOENT) { kfree_skb(skb); goto again; } wil_skb_set_cid(skb, (u8)cid); stats = &wil->sta[cid].stats; stats->last_mcs_rx = wil_rxdesc_mcs(d); if (stats->last_mcs_rx < ARRAY_SIZE(stats->rx_per_mcs)) stats->rx_per_mcs[stats->last_mcs_rx]++; /* use radiotap header only if required */ if (ndev->type == ARPHRD_IEEE80211_RADIOTAP) wil_rx_add_radiotap_header(wil, skb); /* no extra checks if in sniffer mode */ if (ndev->type != ARPHRD_ETHER) return skb; /* Non-data frames may be delivered through Rx DMA channel (ex: BAR) * Driver should recognize it by frame type, that is found * in Rx descriptor. If type is not data, it is 802.11 frame as is */ ftype = wil_rxdesc_ftype(d) << 2; if (unlikely(ftype != IEEE80211_FTYPE_DATA)) { u8 fc1 = wil_rxdesc_fc1(d); int tid = wil_rxdesc_tid(d); u16 seq = wil_rxdesc_seq(d); wil_dbg_txrx(wil, "Non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n", fc1, mid, cid, tid, seq); stats->rx_non_data_frame++; if (wil_is_back_req(fc1)) { wil_dbg_txrx(wil, "BAR: MID %d CID %d TID %d Seq 0x%03x\n", mid, cid, tid, seq); wil_rx_bar(wil, vif, cid, tid, seq); } else { /* print again all info. One can enable only this * without overhead for printing every Rx frame */ wil_dbg_txrx(wil, "Unhandled non-data frame FC[7:0] 0x%02x MID %d CID %d TID %d Seq 0x%03x\n", fc1, mid, cid, tid, seq); wil_hex_dump_txrx("RxD ", DUMP_PREFIX_NONE, 32, 4, (const void *)d, sizeof(*d), false); wil_hex_dump_txrx("Rx ", DUMP_PREFIX_OFFSET, 16, 1, skb->data, skb_headlen(skb), false); } kfree_skb(skb); goto again; } /* L4 IDENT is on when HW calculated checksum, check status * and in case of error drop the packet * higher stack layers will handle retransmission (if required) */ if (likely(d->dma.status & RX_DMA_STATUS_L4I)) { /* L4 protocol identified, csum calculated */ if (likely((d->dma.error & RX_DMA_ERROR_L4_ERR) == 0)) skb->ip_summed = CHECKSUM_UNNECESSARY; /* If HW reports bad checksum, let IP stack re-check it * For example, HW don't understand Microsoft IP stack that * mis-calculates TCP checksum - if it should be 0x0, * it writes 0xffff in violation of RFC 1624 */ else stats->rx_csum_err++; } if (snaplen) { /* Packet layout * +-------+-------+---------+------------+------+ * | SA(6) | DA(6) | SNAP(6) | ETHTYPE(2) | DATA | * +-------+-------+---------+------------+------+ * Need to remove SNAP, shifting SA and DA forward */ memmove(skb->data + snaplen, skb->data, 2 * ETH_ALEN); skb_pull(skb, snaplen); } return skb; } /** * allocate and fill up to @count buffers in rx ring * buffers posted at @swtail * Note: we have a single RX queue for servicing all VIFs, but we * allocate skbs with headroom according to main interface only. This * means it will not work with monitor interface together with other VIFs. * Currently we only support monitor interface on its own without other VIFs, * and we will need to fix this code once we add support. */ static int wil_rx_refill(struct wil6210_priv *wil, int count) { struct net_device *ndev = wil->main_ndev; struct wil_ring *v = &wil->ring_rx; u32 next_tail; int rc = 0; int headroom = ndev->type == ARPHRD_IEEE80211_RADIOTAP ? WIL6210_RTAP_SIZE : 0; for (; next_tail = wil_ring_next_tail(v), (next_tail != v->swhead) && (count-- > 0); v->swtail = next_tail) { rc = wil_vring_alloc_skb(wil, v, v->swtail, headroom); if (unlikely(rc)) { wil_err_ratelimited(wil, "Error %d in rx refill[%d]\n", rc, v->swtail); break; } } /* make sure all writes to descriptors (shared memory) are done before * committing them to HW */ wmb(); wil_w(wil, v->hwtail, v->swtail); return rc; } /** * reverse_memcmp - Compare two areas of memory, in reverse order * @cs: One area of memory * @ct: Another area of memory * @count: The size of the area. * * Cut'n'paste from original memcmp (see lib/string.c) * with minimal modifications */ int reverse_memcmp(const void *cs, const void *ct, size_t count) { const unsigned char *su1, *su2; int res = 0; for (su1 = cs + count - 1, su2 = ct + count - 1; count > 0; --su1, --su2, count--) { res = *su1 - *su2; if (res) break; } return res; } static int wil_rx_crypto_check(struct wil6210_priv *wil, struct sk_buff *skb) { struct vring_rx_desc *d = wil_skb_rxdesc(skb); int cid = wil_skb_get_cid(skb); int tid = wil_rxdesc_tid(d); int key_id = wil_rxdesc_key_id(d); int mc = wil_rxdesc_mcast(d); struct wil_sta_info *s = &wil->sta[cid]; struct wil_tid_crypto_rx *c = mc ? &s->group_crypto_rx : &s->tid_crypto_rx[tid]; struct wil_tid_crypto_rx_single *cc = &c->key_id[key_id]; const u8 *pn = (u8 *)&d->mac.pn_15_0; if (!cc->key_set) { wil_err_ratelimited(wil, "Key missing. CID %d TID %d MCast %d KEY_ID %d\n", cid, tid, mc, key_id); return -EINVAL; } if (reverse_memcmp(pn, cc->pn, IEEE80211_GCMP_PN_LEN) <= 0) { wil_err_ratelimited(wil, "Replay attack. CID %d TID %d MCast %d KEY_ID %d PN %6phN last %6phN\n", cid, tid, mc, key_id, pn, cc->pn); return -EINVAL; } memcpy(cc->pn, pn, IEEE80211_GCMP_PN_LEN); return 0; } static int wil_rx_error_check(struct wil6210_priv *wil, struct sk_buff *skb, struct wil_net_stats *stats) { struct vring_rx_desc *d = wil_skb_rxdesc(skb); if ((d->dma.status & RX_DMA_STATUS_ERROR) && (d->dma.error & RX_DMA_ERROR_MIC)) { stats->rx_mic_error++; wil_dbg_txrx(wil, "MIC error, dropping packet\n"); return -EFAULT; } return 0; } static void wil_get_netif_rx_params(struct sk_buff *skb, int *cid, int *security) { struct vring_rx_desc *d = wil_skb_rxdesc(skb); *cid = wil_skb_get_cid(skb); *security = wil_rxdesc_security(d); } /* * Check if skb is ptk eapol key message * * returns a pointer to the start of the eapol key structure, NULL * if frame is not PTK eapol key */ static struct wil_eapol_key *wil_is_ptk_eapol_key(struct wil6210_priv *wil, struct sk_buff *skb) { u8 *buf; const struct wil_1x_hdr *hdr; struct wil_eapol_key *key; u16 key_info; int len = skb->len; if (!skb_mac_header_was_set(skb)) { wil_err(wil, "mac header was not set\n"); return NULL; } len -= skb_mac_offset(skb); if (len < sizeof(struct ethhdr) + sizeof(struct wil_1x_hdr) + sizeof(struct wil_eapol_key)) return NULL; buf = skb_mac_header(skb) + sizeof(struct ethhdr); hdr = (const struct wil_1x_hdr *)buf; if (hdr->type != WIL_1X_TYPE_EAPOL_KEY) return NULL; key = (struct wil_eapol_key *)(buf + sizeof(struct wil_1x_hdr)); if (key->type != WIL_EAPOL_KEY_TYPE_WPA && key->type != WIL_EAPOL_KEY_TYPE_RSN) return NULL; key_info = be16_to_cpu(key->key_info); if (!(key_info & WIL_KEY_INFO_KEY_TYPE)) /* check if pairwise */ return NULL; return key; } static bool wil_skb_is_eap_3(struct wil6210_priv *wil, struct sk_buff *skb) { struct wil_eapol_key *key; u16 key_info; key = wil_is_ptk_eapol_key(wil, skb); if (!key) return false; key_info = be16_to_cpu(key->key_info); if (key_info & (WIL_KEY_INFO_MIC | WIL_KEY_INFO_ENCR_KEY_DATA)) { /* 3/4 of 4-Way Handshake */ wil_dbg_misc(wil, "EAPOL key message 3\n"); return true; } /* 1/4 of 4-Way Handshake */ wil_dbg_misc(wil, "EAPOL key message 1\n"); return false; } static bool wil_skb_is_eap_4(struct wil6210_priv *wil, struct sk_buff *skb) { struct wil_eapol_key *key; u32 *nonce, i; key = wil_is_ptk_eapol_key(wil, skb); if (!key) return false; nonce = (u32 *)key->key_nonce; for (i = 0; i < WIL_EAP_NONCE_LEN / sizeof(u32); i++, nonce++) { if (*nonce != 0) { /* message 2/4 */ wil_dbg_misc(wil, "EAPOL key message 2\n"); return false; } } wil_dbg_misc(wil, "EAPOL key message 4\n"); return true; } void wil_enable_tx_key_worker(struct work_struct *work) { struct wil6210_vif *vif = container_of(work, struct wil6210_vif, enable_tx_key_worker); struct wil6210_priv *wil = vif_to_wil(vif); int rc, cid; rtnl_lock(); if (vif->ptk_rekey_state != WIL_REKEY_WAIT_M4_SENT) { wil_dbg_misc(wil, "Invalid rekey state = %d\n", vif->ptk_rekey_state); rtnl_unlock(); return; } cid = wil_find_cid_by_idx(wil, vif->mid, 0); if (!wil_cid_valid(wil, cid)) { wil_err(wil, "Invalid cid = %d\n", cid); rtnl_unlock(); return; } wil_dbg_misc(wil, "Apply PTK key after eapol was sent out\n"); rc = wmi_add_cipher_key(vif, 0, wil->sta[cid].addr, 0, NULL, WMI_KEY_USE_APPLY_PTK); vif->ptk_rekey_state = WIL_REKEY_IDLE; rtnl_unlock(); if (rc) wil_err(wil, "Apply PTK key failed %d\n", rc); } void wil_tx_complete_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb) { struct wil6210_priv *wil = vif_to_wil(vif); struct wireless_dev *wdev = vif_to_wdev(vif); bool q = false; if (wdev->iftype != NL80211_IFTYPE_STATION || !test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities)) return; /* check if skb is an EAP message 4/4 */ if (!wil_skb_is_eap_4(wil, skb)) return; spin_lock_bh(&wil->eap_lock); switch (vif->ptk_rekey_state) { case WIL_REKEY_IDLE: /* ignore idle state, can happen due to M4 retransmission */ break; case WIL_REKEY_M3_RECEIVED: vif->ptk_rekey_state = WIL_REKEY_IDLE; break; case WIL_REKEY_WAIT_M4_SENT: q = true; break; default: wil_err(wil, "Unknown rekey state = %d", vif->ptk_rekey_state); } spin_unlock_bh(&wil->eap_lock); if (q) { q = queue_work(wil->wmi_wq, &vif->enable_tx_key_worker); wil_dbg_misc(wil, "queue_work of enable_tx_key_worker -> %d\n", q); } } static void wil_rx_handle_eapol(struct wil6210_vif *vif, struct sk_buff *skb) { struct wil6210_priv *wil = vif_to_wil(vif); struct wireless_dev *wdev = vif_to_wdev(vif); if (wdev->iftype != NL80211_IFTYPE_STATION || !test_bit(WMI_FW_CAPABILITY_SPLIT_REKEY, wil->fw_capabilities)) return; /* check if skb is a EAP message 3/4 */ if (!wil_skb_is_eap_3(wil, skb)) return; if (vif->ptk_rekey_state == WIL_REKEY_IDLE) vif->ptk_rekey_state = WIL_REKEY_M3_RECEIVED; } /* * Pass Rx packet to the netif. Update statistics. * Called in softirq context (NAPI poll). */ void wil_netif_rx(struct sk_buff *skb, struct net_device *ndev, int cid, struct wil_net_stats *stats, bool gro) { gro_result_t rc = GRO_NORMAL; struct wil6210_vif *vif = ndev_to_vif(ndev); struct wil6210_priv *wil = ndev_to_wil(ndev); struct wireless_dev *wdev = vif_to_wdev(vif); unsigned int len = skb->len; u8 *sa, *da = wil_skb_get_da(skb); /* here looking for DA, not A1, thus Rxdesc's 'mcast' indication * is not suitable, need to look at data */ int mcast = is_multicast_ether_addr(da); struct sk_buff *xmit_skb = NULL; static const char * const gro_res_str[] = { [GRO_MERGED] = "GRO_MERGED", [GRO_MERGED_FREE] = "GRO_MERGED_FREE", [GRO_HELD] = "GRO_HELD", [GRO_NORMAL] = "GRO_NORMAL", [GRO_DROP] = "GRO_DROP", [GRO_CONSUMED] = "GRO_CONSUMED", }; if (wdev->iftype == NL80211_IFTYPE_STATION) { sa = wil_skb_get_sa(skb); if (mcast && ether_addr_equal(sa, ndev->dev_addr)) { /* mcast packet looped back to us */ rc = GRO_DROP; dev_kfree_skb(skb); goto stats; } } else if (wdev->iftype == NL80211_IFTYPE_AP && !vif->ap_isolate) { if (mcast) { /* send multicast frames both to higher layers in * local net stack and back to the wireless medium */ xmit_skb = skb_copy(skb, GFP_ATOMIC); } else { int xmit_cid = wil_find_cid(wil, vif->mid, da); if (xmit_cid >= 0) { /* The destination station is associated to * this AP (in this VLAN), so send the frame * directly to it and do not pass it to local * net stack. */ xmit_skb = skb; skb = NULL; } } } if (xmit_skb) { /* Send to wireless media and increase priority by 256 to * keep the received priority instead of reclassifying * the frame (see cfg80211_classify8021d). */ xmit_skb->dev = ndev; xmit_skb->priority += 256; xmit_skb->protocol = htons(ETH_P_802_3); skb_reset_network_header(xmit_skb); skb_reset_mac_header(xmit_skb); wil_dbg_txrx(wil, "Rx -> Tx %d bytes\n", len); dev_queue_xmit(xmit_skb); } if (skb) { /* deliver to local stack */ skb->protocol = eth_type_trans(skb, ndev); skb->dev = ndev; if (skb->protocol == cpu_to_be16(ETH_P_PAE)) wil_rx_handle_eapol(vif, skb); if (gro) rc = napi_gro_receive(&wil->napi_rx, skb); else netif_rx_ni(skb); wil_dbg_txrx(wil, "Rx complete %d bytes => %s\n", len, gro_res_str[rc]); } stats: /* statistics. rc set to GRO_NORMAL for AP bridging */ if (unlikely(rc == GRO_DROP)) { ndev->stats.rx_dropped++; stats->rx_dropped++; wil_dbg_txrx(wil, "Rx drop %d bytes\n", len); } else { ndev->stats.rx_packets++; stats->rx_packets++; ndev->stats.rx_bytes += len; stats->rx_bytes += len; if (mcast) ndev->stats.multicast++; } } void wil_netif_rx_any(struct sk_buff *skb, struct net_device *ndev) { int cid, security; struct wil6210_priv *wil = ndev_to_wil(ndev); struct wil_net_stats *stats; wil->txrx_ops.get_netif_rx_params(skb, &cid, &security); stats = &wil->sta[cid].stats; skb_orphan(skb); if (security && (wil->txrx_ops.rx_crypto_check(wil, skb) != 0)) { wil_dbg_txrx(wil, "Rx drop %d bytes\n", skb->len); dev_kfree_skb(skb); ndev->stats.rx_dropped++; stats->rx_replay++; stats->rx_dropped++; return; } /* check errors reported by HW and update statistics */ if (unlikely(wil->txrx_ops.rx_error_check(wil, skb, stats))) { dev_kfree_skb(skb); return; } wil_netif_rx(skb, ndev, cid, stats, true); } /** * Proceed all completed skb's from Rx VRING * * Safe to call from NAPI poll, i.e. softirq with interrupts enabled */ void wil_rx_handle(struct wil6210_priv *wil, int *quota) { struct net_device *ndev = wil->main_ndev; struct wireless_dev *wdev = ndev->ieee80211_ptr; struct wil_ring *v = &wil->ring_rx; struct sk_buff *skb; if (unlikely(!v->va)) { wil_err(wil, "Rx IRQ while Rx not yet initialized\n"); return; } wil_dbg_txrx(wil, "rx_handle\n"); while ((*quota > 0) && (NULL != (skb = wil_vring_reap_rx(wil, v)))) { (*quota)--; /* monitor is currently supported on main interface only */ if (wdev->iftype == NL80211_IFTYPE_MONITOR) { skb->dev = ndev; skb_reset_mac_header(skb); skb->ip_summed = CHECKSUM_UNNECESSARY; skb->pkt_type = PACKET_OTHERHOST; skb->protocol = htons(ETH_P_802_2); wil_netif_rx_any(skb, ndev); } else { wil_rx_reorder(wil, skb); } } wil_rx_refill(wil, v->size); } static void wil_rx_buf_len_init(struct wil6210_priv *wil) { wil->rx_buf_len = rx_large_buf ? WIL_MAX_ETH_MTU : TXRX_BUF_LEN_DEFAULT - WIL_MAX_MPDU_OVERHEAD; if (mtu_max > wil->rx_buf_len) { /* do not allow RX buffers to be smaller than mtu_max, for * backward compatibility (mtu_max parameter was also used * to support receiving large packets) */ wil_info(wil, "Override RX buffer to mtu_max(%d)\n", mtu_max); wil->rx_buf_len = mtu_max; } } static int wil_rx_init(struct wil6210_priv *wil, uint order) { struct wil_ring *vring = &wil->ring_rx; int rc; wil_dbg_misc(wil, "rx_init\n"); if (vring->va) { wil_err(wil, "Rx ring already allocated\n"); return -EINVAL; } wil_rx_buf_len_init(wil); vring->size = 1 << order; vring->is_rx = true; rc = wil_vring_alloc(wil, vring); if (rc) return rc; rc = wmi_rx_chain_add(wil, vring); if (rc) goto err_free; rc = wil_rx_refill(wil, vring->size); if (rc) goto err_free; return 0; err_free: wil_vring_free(wil, vring); return rc; } static void wil_rx_fini(struct wil6210_priv *wil) { struct wil_ring *vring = &wil->ring_rx; wil_dbg_misc(wil, "rx_fini\n"); if (vring->va) wil_vring_free(wil, vring); } static int wil_tx_desc_map(union wil_tx_desc *desc, dma_addr_t pa, u32 len, int vring_index) { struct vring_tx_desc *d = &desc->legacy; wil_desc_addr_set(&d->dma.addr, pa); d->dma.ip_length = 0; /* 0..6: mac_length; 7:ip_version 0-IP6 1-IP4*/ d->dma.b11 = 0/*14 | BIT(7)*/; d->dma.error = 0; d->dma.status = 0; /* BIT(0) should be 0 for HW_OWNED */ d->dma.length = cpu_to_le16((u16)len); d->dma.d0 = (vring_index << DMA_CFG_DESC_TX_0_QID_POS); d->mac.d[0] = 0; d->mac.d[1] = 0; d->mac.d[2] = 0; d->mac.ucode_cmd = 0; /* translation type: 0 - bypass; 1 - 802.3; 2 - native wifi */ d->mac.d[2] = BIT(MAC_CFG_DESC_TX_2_SNAP_HDR_INSERTION_EN_POS) | (1 << MAC_CFG_DESC_TX_2_L2_TRANSLATION_TYPE_POS); return 0; } void wil_tx_data_init(struct wil_ring_tx_data *txdata) { spin_lock_bh(&txdata->lock); txdata->dot1x_open = 0; txdata->enabled = 0; txdata->idle = 0; txdata->last_idle = 0; txdata->begin = 0; txdata->agg_wsize = 0; txdata->agg_timeout = 0; txdata->agg_amsdu = 0; txdata->addba_in_progress = false; txdata->mid = U8_MAX; spin_unlock_bh(&txdata->lock); } static int wil_vring_init_tx(struct wil6210_vif *vif, int id, int size, int cid, int tid) { struct wil6210_priv *wil = vif_to_wil(vif); int rc; struct wmi_vring_cfg_cmd cmd = { .action = cpu_to_le32(WMI_VRING_CMD_ADD), .vring_cfg = { .tx_sw_ring = { .max_mpdu_size = cpu_to_le16(wil_mtu2macbuf(mtu_max)), .ring_size = cpu_to_le16(size), }, .ringid = id, .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, .mac_ctrl = 0, .to_resolution = 0, .agg_max_wsize = 0, .schd_params = { .priority = cpu_to_le16(0), .timeslot_us = cpu_to_le16(0xfff), }, }, }; struct { struct wmi_cmd_hdr wmi; struct wmi_vring_cfg_done_event cmd; } __packed reply = { .cmd = {.status = WMI_FW_STATUS_FAILURE}, }; struct wil_ring *vring = &wil->ring_tx[id]; struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id]; if (cid >= WIL6210_RX_DESC_MAX_CID) { cmd.vring_cfg.cidxtid = CIDXTID_EXTENDED_CID_TID; cmd.vring_cfg.cid = cid; cmd.vring_cfg.tid = tid; } else { cmd.vring_cfg.cidxtid = mk_cidxtid(cid, tid); } wil_dbg_misc(wil, "vring_init_tx: max_mpdu_size %d\n", cmd.vring_cfg.tx_sw_ring.max_mpdu_size); lockdep_assert_held(&wil->mutex); if (vring->va) { wil_err(wil, "Tx ring [%d] already allocated\n", id); rc = -EINVAL; goto out; } wil_tx_data_init(txdata); vring->is_rx = false; vring->size = size; rc = wil_vring_alloc(wil, vring); if (rc) goto out; wil->ring2cid_tid[id][0] = cid; wil->ring2cid_tid[id][1] = tid; cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); if (!vif->privacy) txdata->dot1x_open = true; rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS); if (rc) goto out_free; if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) { wil_err(wil, "Tx config failed, status 0x%02x\n", reply.cmd.status); rc = -EINVAL; goto out_free; } spin_lock_bh(&txdata->lock); vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr); txdata->mid = vif->mid; txdata->enabled = 1; spin_unlock_bh(&txdata->lock); if (txdata->dot1x_open && (agg_wsize >= 0)) wil_addba_tx_request(wil, id, agg_wsize); return 0; out_free: spin_lock_bh(&txdata->lock); txdata->dot1x_open = false; txdata->enabled = 0; spin_unlock_bh(&txdata->lock); wil_vring_free(wil, vring); wil->ring2cid_tid[id][0] = wil->max_assoc_sta; wil->ring2cid_tid[id][1] = 0; out: return rc; } static int wil_tx_vring_modify(struct wil6210_vif *vif, int ring_id, int cid, int tid) { struct wil6210_priv *wil = vif_to_wil(vif); int rc; struct wmi_vring_cfg_cmd cmd = { .action = cpu_to_le32(WMI_VRING_CMD_MODIFY), .vring_cfg = { .tx_sw_ring = { .max_mpdu_size = cpu_to_le16(wil_mtu2macbuf(mtu_max)), .ring_size = 0, }, .ringid = ring_id, .cidxtid = mk_cidxtid(cid, tid), .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, .mac_ctrl = 0, .to_resolution = 0, .agg_max_wsize = 0, .schd_params = { .priority = cpu_to_le16(0), .timeslot_us = cpu_to_le16(0xfff), }, }, }; struct { struct wmi_cmd_hdr wmi; struct wmi_vring_cfg_done_event cmd; } __packed reply = { .cmd = {.status = WMI_FW_STATUS_FAILURE}, }; struct wil_ring *vring = &wil->ring_tx[ring_id]; struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_id]; wil_dbg_misc(wil, "vring_modify: ring %d cid %d tid %d\n", ring_id, cid, tid); lockdep_assert_held(&wil->mutex); if (!vring->va) { wil_err(wil, "Tx ring [%d] not allocated\n", ring_id); return -EINVAL; } if (wil->ring2cid_tid[ring_id][0] != cid || wil->ring2cid_tid[ring_id][1] != tid) { wil_err(wil, "ring info does not match cid=%u tid=%u\n", wil->ring2cid_tid[ring_id][0], wil->ring2cid_tid[ring_id][1]); } cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); rc = wmi_call(wil, WMI_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS); if (rc) goto fail; if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) { wil_err(wil, "Tx modify failed, status 0x%02x\n", reply.cmd.status); rc = -EINVAL; goto fail; } /* set BA aggregation window size to 0 to force a new BA with the * new AP */ txdata->agg_wsize = 0; if (txdata->dot1x_open && agg_wsize >= 0) wil_addba_tx_request(wil, ring_id, agg_wsize); return 0; fail: spin_lock_bh(&txdata->lock); txdata->dot1x_open = false; txdata->enabled = 0; spin_unlock_bh(&txdata->lock); wil->ring2cid_tid[ring_id][0] = wil->max_assoc_sta; wil->ring2cid_tid[ring_id][1] = 0; return rc; } int wil_vring_init_bcast(struct wil6210_vif *vif, int id, int size) { struct wil6210_priv *wil = vif_to_wil(vif); int rc; struct wmi_bcast_vring_cfg_cmd cmd = { .action = cpu_to_le32(WMI_VRING_CMD_ADD), .vring_cfg = { .tx_sw_ring = { .max_mpdu_size = cpu_to_le16(wil_mtu2macbuf(mtu_max)), .ring_size = cpu_to_le16(size), }, .ringid = id, .encap_trans_type = WMI_VRING_ENC_TYPE_802_3, }, }; struct { struct wmi_cmd_hdr wmi; struct wmi_vring_cfg_done_event cmd; } __packed reply = { .cmd = {.status = WMI_FW_STATUS_FAILURE}, }; struct wil_ring *vring = &wil->ring_tx[id]; struct wil_ring_tx_data *txdata = &wil->ring_tx_data[id]; wil_dbg_misc(wil, "vring_init_bcast: max_mpdu_size %d\n", cmd.vring_cfg.tx_sw_ring.max_mpdu_size); lockdep_assert_held(&wil->mutex); if (vring->va) { wil_err(wil, "Tx ring [%d] already allocated\n", id); rc = -EINVAL; goto out; } wil_tx_data_init(txdata); vring->is_rx = false; vring->size = size; rc = wil_vring_alloc(wil, vring); if (rc) goto out; wil->ring2cid_tid[id][0] = wil->max_assoc_sta; /* CID */ wil->ring2cid_tid[id][1] = 0; /* TID */ cmd.vring_cfg.tx_sw_ring.ring_mem_base = cpu_to_le64(vring->pa); if (!vif->privacy) txdata->dot1x_open = true; rc = wmi_call(wil, WMI_BCAST_VRING_CFG_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_VRING_CFG_DONE_EVENTID, &reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS); if (rc) goto out_free; if (reply.cmd.status != WMI_FW_STATUS_SUCCESS) { wil_err(wil, "Tx config failed, status 0x%02x\n", reply.cmd.status); rc = -EINVAL; goto out_free; } spin_lock_bh(&txdata->lock); vring->hwtail = le32_to_cpu(reply.cmd.tx_vring_tail_ptr); txdata->mid = vif->mid; txdata->enabled = 1; spin_unlock_bh(&txdata->lock); return 0; out_free: spin_lock_bh(&txdata->lock); txdata->enabled = 0; txdata->dot1x_open = false; spin_unlock_bh(&txdata->lock); wil_vring_free(wil, vring); out: return rc; } static struct wil_ring *wil_find_tx_ucast(struct wil6210_priv *wil, struct wil6210_vif *vif, struct sk_buff *skb) { int i, cid; const u8 *da = wil_skb_get_da(skb); int min_ring_id = wil_get_min_tx_ring_id(wil); cid = wil_find_cid(wil, vif->mid, da); if (cid < 0 || cid >= wil->max_assoc_sta) return NULL; /* TODO: fix for multiple TID */ for (i = min_ring_id; i < ARRAY_SIZE(wil->ring2cid_tid); i++) { if (!wil->ring_tx_data[i].dot1x_open && skb->protocol != cpu_to_be16(ETH_P_PAE)) continue; if (wil->ring2cid_tid[i][0] == cid) { struct wil_ring *v = &wil->ring_tx[i]; struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i]; wil_dbg_txrx(wil, "find_tx_ucast: (%pM) -> [%d]\n", da, i); if (v->va && txdata->enabled) { return v; } else { wil_dbg_txrx(wil, "find_tx_ucast: vring[%d] not valid\n", i); return NULL; } } } return NULL; } static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif, struct wil_ring *ring, struct sk_buff *skb); static struct wil_ring *wil_find_tx_ring_sta(struct wil6210_priv *wil, struct wil6210_vif *vif, struct sk_buff *skb) { struct wil_ring *ring; int i; u8 cid; struct wil_ring_tx_data *txdata; int min_ring_id = wil_get_min_tx_ring_id(wil); /* In the STA mode, it is expected to have only 1 VRING * for the AP we connected to. * find 1-st vring eligible for this skb and use it. */ for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { ring = &wil->ring_tx[i]; txdata = &wil->ring_tx_data[i]; if (!ring->va || !txdata->enabled || txdata->mid != vif->mid) continue; cid = wil->ring2cid_tid[i][0]; if (cid >= wil->max_assoc_sta) /* skip BCAST */ continue; if (!wil->ring_tx_data[i].dot1x_open && skb->protocol != cpu_to_be16(ETH_P_PAE)) continue; wil_dbg_txrx(wil, "Tx -> ring %d\n", i); return ring; } wil_dbg_txrx(wil, "Tx while no rings active?\n"); return NULL; } /* Use one of 2 strategies: * * 1. New (real broadcast): * use dedicated broadcast vring * 2. Old (pseudo-DMS): * Find 1-st vring and return it; * duplicate skb and send it to other active vrings; * in all cases override dest address to unicast peer's address * Use old strategy when new is not supported yet: * - for PBSS */ static struct wil_ring *wil_find_tx_bcast_1(struct wil6210_priv *wil, struct wil6210_vif *vif, struct sk_buff *skb) { struct wil_ring *v; struct wil_ring_tx_data *txdata; int i = vif->bcast_ring; if (i < 0) return NULL; v = &wil->ring_tx[i]; txdata = &wil->ring_tx_data[i]; if (!v->va || !txdata->enabled) return NULL; if (!wil->ring_tx_data[i].dot1x_open && skb->protocol != cpu_to_be16(ETH_P_PAE)) return NULL; return v; } static void wil_set_da_for_vring(struct wil6210_priv *wil, struct sk_buff *skb, int vring_index) { u8 *da = wil_skb_get_da(skb); int cid = wil->ring2cid_tid[vring_index][0]; ether_addr_copy(da, wil->sta[cid].addr); } static struct wil_ring *wil_find_tx_bcast_2(struct wil6210_priv *wil, struct wil6210_vif *vif, struct sk_buff *skb) { struct wil_ring *v, *v2; struct sk_buff *skb2; int i; u8 cid; const u8 *src = wil_skb_get_sa(skb); struct wil_ring_tx_data *txdata, *txdata2; int min_ring_id = wil_get_min_tx_ring_id(wil); /* find 1-st vring eligible for data */ for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { v = &wil->ring_tx[i]; txdata = &wil->ring_tx_data[i]; if (!v->va || !txdata->enabled || txdata->mid != vif->mid) continue; cid = wil->ring2cid_tid[i][0]; if (cid >= wil->max_assoc_sta) /* skip BCAST */ continue; if (!wil->ring_tx_data[i].dot1x_open && skb->protocol != cpu_to_be16(ETH_P_PAE)) continue; /* don't Tx back to source when re-routing Rx->Tx at the AP */ if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN)) continue; goto found; } wil_dbg_txrx(wil, "Tx while no vrings active?\n"); return NULL; found: wil_dbg_txrx(wil, "BCAST -> ring %d\n", i); wil_set_da_for_vring(wil, skb, i); /* find other active vrings and duplicate skb for each */ for (i++; i < WIL6210_MAX_TX_RINGS; i++) { v2 = &wil->ring_tx[i]; txdata2 = &wil->ring_tx_data[i]; if (!v2->va || txdata2->mid != vif->mid) continue; cid = wil->ring2cid_tid[i][0]; if (cid >= wil->max_assoc_sta) /* skip BCAST */ continue; if (!wil->ring_tx_data[i].dot1x_open && skb->protocol != cpu_to_be16(ETH_P_PAE)) continue; if (0 == memcmp(wil->sta[cid].addr, src, ETH_ALEN)) continue; skb2 = skb_copy(skb, GFP_ATOMIC); if (skb2) { wil_dbg_txrx(wil, "BCAST DUP -> ring %d\n", i); wil_set_da_for_vring(wil, skb2, i); wil_tx_ring(wil, vif, v2, skb2); /* successful call to wil_tx_ring takes skb2 ref */ dev_kfree_skb_any(skb2); } else { wil_err(wil, "skb_copy failed\n"); } } return v; } static inline void wil_tx_desc_set_nr_frags(struct vring_tx_desc *d, int nr_frags) { d->mac.d[2] |= (nr_frags << MAC_CFG_DESC_TX_2_NUM_OF_DESCRIPTORS_POS); } /** * Sets the descriptor @d up for csum and/or TSO offloading. The corresponding * @skb is used to obtain the protocol and headers length. * @tso_desc_type is a descriptor type for TSO: 0 - a header, 1 - first data, * 2 - middle, 3 - last descriptor. */ static void wil_tx_desc_offload_setup_tso(struct vring_tx_desc *d, struct sk_buff *skb, int tso_desc_type, bool is_ipv4, int tcp_hdr_len, int skb_net_hdr_len) { d->dma.b11 = ETH_HLEN; /* MAC header length */ d->dma.b11 |= is_ipv4 << DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS; d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS); /* L4 header len: TCP header length */ d->dma.d0 |= (tcp_hdr_len & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK); /* Setup TSO: bit and desc type */ d->dma.d0 |= (BIT(DMA_CFG_DESC_TX_0_TCP_SEG_EN_POS)) | (tso_desc_type << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS); d->dma.d0 |= (is_ipv4 << DMA_CFG_DESC_TX_0_IPV4_CHECKSUM_EN_POS); d->dma.ip_length = skb_net_hdr_len; /* Enable TCP/UDP checksum */ d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS); /* Calculate pseudo-header */ d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS); } /** * Sets the descriptor @d up for csum. The corresponding * @skb is used to obtain the protocol and headers length. * Returns the protocol: 0 - not TCP, 1 - TCPv4, 2 - TCPv6. * Note, if d==NULL, the function only returns the protocol result. * * It is very similar to previous wil_tx_desc_offload_setup_tso. This * is "if unrolling" to optimize the critical path. */ static int wil_tx_desc_offload_setup(struct vring_tx_desc *d, struct sk_buff *skb){ int protocol; if (skb->ip_summed != CHECKSUM_PARTIAL) return 0; d->dma.b11 = ETH_HLEN; /* MAC header length */ switch (skb->protocol) { case cpu_to_be16(ETH_P_IP): protocol = ip_hdr(skb)->protocol; d->dma.b11 |= BIT(DMA_CFG_DESC_TX_OFFLOAD_CFG_L3T_IPV4_POS); break; case cpu_to_be16(ETH_P_IPV6): protocol = ipv6_hdr(skb)->nexthdr; break; default: return -EINVAL; } switch (protocol) { case IPPROTO_TCP: d->dma.d0 |= (2 << DMA_CFG_DESC_TX_0_L4_TYPE_POS); /* L4 header len: TCP header length */ d->dma.d0 |= (tcp_hdrlen(skb) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK); break; case IPPROTO_UDP: /* L4 header len: UDP header length */ d->dma.d0 |= (sizeof(struct udphdr) & DMA_CFG_DESC_TX_0_L4_LENGTH_MSK); break; default: return -EINVAL; } d->dma.ip_length = skb_network_header_len(skb); /* Enable TCP/UDP checksum */ d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_TCP_UDP_CHECKSUM_EN_POS); /* Calculate pseudo-header */ d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_PSEUDO_HEADER_CALC_EN_POS); return 0; } static inline void wil_tx_last_desc(struct vring_tx_desc *d) { d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS) | BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS) | BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS); } static inline void wil_set_tx_desc_last_tso(volatile struct vring_tx_desc *d) { d->dma.d0 |= wil_tso_type_lst << DMA_CFG_DESC_TX_0_SEGMENT_BUF_DETAILS_POS; } static int __wil_tx_vring_tso(struct wil6210_priv *wil, struct wil6210_vif *vif, struct wil_ring *vring, struct sk_buff *skb) { struct device *dev = wil_to_dev(wil); /* point to descriptors in shared memory */ volatile struct vring_tx_desc *_desc = NULL, *_hdr_desc, *_first_desc = NULL; /* pointers to shadow descriptors */ struct vring_tx_desc desc_mem, hdr_desc_mem, first_desc_mem, *d = &hdr_desc_mem, *hdr_desc = &hdr_desc_mem, *first_desc = &first_desc_mem; /* pointer to shadow descriptors' context */ struct wil_ctx *hdr_ctx, *first_ctx = NULL; int descs_used = 0; /* total number of used descriptors */ int sg_desc_cnt = 0; /* number of descriptors for current mss*/ u32 swhead = vring->swhead; int used, avail = wil_ring_avail_tx(vring); int nr_frags = skb_shinfo(skb)->nr_frags; int min_desc_required = nr_frags + 1; int mss = skb_shinfo(skb)->gso_size; /* payload size w/o headers */ int f, len, hdrlen, headlen; int vring_index = vring - wil->ring_tx; struct wil_ring_tx_data *txdata = &wil->ring_tx_data[vring_index]; uint i = swhead; dma_addr_t pa; const skb_frag_t *frag = NULL; int rem_data = mss; int lenmss; int hdr_compensation_need = true; int desc_tso_type = wil_tso_type_first; bool is_ipv4; int tcp_hdr_len; int skb_net_hdr_len; int gso_type; int rc = -EINVAL; wil_dbg_txrx(wil, "tx_vring_tso: %d bytes to vring %d\n", skb->len, vring_index); if (unlikely(!txdata->enabled)) return -EINVAL; /* A typical page 4K is 3-4 payloads, we assume each fragment * is a full payload, that's how min_desc_required has been * calculated. In real we might need more or less descriptors, * this is the initial check only. */ if (unlikely(avail < min_desc_required)) { wil_err_ratelimited(wil, "TSO: Tx ring[%2d] full. No space for %d fragments\n", vring_index, min_desc_required); return -ENOMEM; } /* Header Length = MAC header len + IP header len + TCP header len*/ hdrlen = ETH_HLEN + (int)skb_network_header_len(skb) + tcp_hdrlen(skb); gso_type = skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV6 | SKB_GSO_TCPV4); switch (gso_type) { case SKB_GSO_TCPV4: /* TCP v4, zero out the IP length and IPv4 checksum fields * as required by the offloading doc */ ip_hdr(skb)->tot_len = 0; ip_hdr(skb)->check = 0; is_ipv4 = true; break; case SKB_GSO_TCPV6: /* TCP v6, zero out the payload length */ ipv6_hdr(skb)->payload_len = 0; is_ipv4 = false; break; default: /* other than TCPv4 or TCPv6 types are not supported for TSO. * It is also illegal for both to be set simultaneously */ return -EINVAL; } if (skb->ip_summed != CHECKSUM_PARTIAL) return -EINVAL; /* tcp header length and skb network header length are fixed for all * packet's descriptors - read then once here */ tcp_hdr_len = tcp_hdrlen(skb); skb_net_hdr_len = skb_network_header_len(skb); _hdr_desc = &vring->va[i].tx.legacy; pa = dma_map_single(dev, skb->data, hdrlen, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev, pa))) { wil_err(wil, "TSO: Skb head DMA map error\n"); goto err_exit; } wil->txrx_ops.tx_desc_map((union wil_tx_desc *)hdr_desc, pa, hdrlen, vring_index); wil_tx_desc_offload_setup_tso(hdr_desc, skb, wil_tso_type_hdr, is_ipv4, tcp_hdr_len, skb_net_hdr_len); wil_tx_last_desc(hdr_desc); vring->ctx[i].mapped_as = wil_mapped_as_single; hdr_ctx = &vring->ctx[i]; descs_used++; headlen = skb_headlen(skb) - hdrlen; for (f = headlen ? -1 : 0; f < nr_frags; f++) { if (headlen) { len = headlen; wil_dbg_txrx(wil, "TSO: process skb head, len %u\n", len); } else { frag = &skb_shinfo(skb)->frags[f]; len = skb_frag_size(frag); wil_dbg_txrx(wil, "TSO: frag[%d]: len %u\n", f, len); } while (len) { wil_dbg_txrx(wil, "TSO: len %d, rem_data %d, descs_used %d\n", len, rem_data, descs_used); if (descs_used == avail) { wil_err_ratelimited(wil, "TSO: ring overflow\n"); rc = -ENOMEM; goto mem_error; } lenmss = min_t(int, rem_data, len); i = (swhead + descs_used) % vring->size; wil_dbg_txrx(wil, "TSO: lenmss %d, i %d\n", lenmss, i); if (!headlen) { pa = skb_frag_dma_map(dev, frag, skb_frag_size(frag) - len, lenmss, DMA_TO_DEVICE); vring->ctx[i].mapped_as = wil_mapped_as_page; } else { pa = dma_map_single(dev, skb->data + skb_headlen(skb) - headlen, lenmss, DMA_TO_DEVICE); vring->ctx[i].mapped_as = wil_mapped_as_single; headlen -= lenmss; } if (unlikely(dma_mapping_error(dev, pa))) { wil_err(wil, "TSO: DMA map page error\n"); goto mem_error; } _desc = &vring->va[i].tx.legacy; if (!_first_desc) { _first_desc = _desc; first_ctx = &vring->ctx[i]; d = first_desc; } else { d = &desc_mem; } wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, lenmss, vring_index); wil_tx_desc_offload_setup_tso(d, skb, desc_tso_type, is_ipv4, tcp_hdr_len, skb_net_hdr_len); /* use tso_type_first only once */ desc_tso_type = wil_tso_type_mid; descs_used++; /* desc used so far */ sg_desc_cnt++; /* desc used for this segment */ len -= lenmss; rem_data -= lenmss; wil_dbg_txrx(wil, "TSO: len %d, rem_data %d, descs_used %d, sg_desc_cnt %d,\n", len, rem_data, descs_used, sg_desc_cnt); /* Close the segment if reached mss size or last frag*/ if (rem_data == 0 || (f == nr_frags - 1 && len == 0)) { if (hdr_compensation_need) { /* first segment include hdr desc for * release */ hdr_ctx->nr_frags = sg_desc_cnt; wil_tx_desc_set_nr_frags(first_desc, sg_desc_cnt + 1); hdr_compensation_need = false; } else { wil_tx_desc_set_nr_frags(first_desc, sg_desc_cnt); } first_ctx->nr_frags = sg_desc_cnt - 1; wil_tx_last_desc(d); /* first descriptor may also be the last * for this mss - make sure not to copy * it twice */ if (first_desc != d) *_first_desc = *first_desc; /*last descriptor will be copied at the end * of this TS processing */ if (f < nr_frags - 1 || len > 0) *_desc = *d; rem_data = mss; _first_desc = NULL; sg_desc_cnt = 0; } else if (first_desc != d) /* update mid descriptor */ *_desc = *d; } } if (!_desc) goto mem_error; /* first descriptor may also be the last. * in this case d pointer is invalid */ if (_first_desc == _desc) d = first_desc; /* Last data descriptor */ wil_set_tx_desc_last_tso(d); *_desc = *d; /* Fill the total number of descriptors in first desc (hdr)*/ wil_tx_desc_set_nr_frags(hdr_desc, descs_used); *_hdr_desc = *hdr_desc; /* hold reference to skb * to prevent skb release before accounting * in case of immediate "tx done" */ vring->ctx[i].skb = skb_get(skb); /* performance monitoring */ used = wil_ring_used_tx(vring); if (wil_val_in_range(wil->ring_idle_trsh, used, used + descs_used)) { txdata->idle += get_cycles() - txdata->last_idle; wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n", vring_index, used, used + descs_used); } /* Make sure to advance the head only after descriptor update is done. * This will prevent a race condition where the completion thread * will see the DU bit set from previous run and will handle the * skb before it was completed. */ wmb(); /* advance swhead */ wil_ring_advance_head(vring, descs_used); wil_dbg_txrx(wil, "TSO: Tx swhead %d -> %d\n", swhead, vring->swhead); /* make sure all writes to descriptors (shared memory) are done before * committing them to HW */ wmb(); if (wil->tx_latency) *(ktime_t *)&skb->cb = ktime_get(); else memset(skb->cb, 0, sizeof(ktime_t)); wil_w(wil, vring->hwtail, vring->swhead); return 0; mem_error: while (descs_used > 0) { struct wil_ctx *ctx; i = (swhead + descs_used - 1) % vring->size; d = (struct vring_tx_desc *)&vring->va[i].tx.legacy; _desc = &vring->va[i].tx.legacy; *d = *_desc; _desc->dma.status = TX_DMA_STATUS_DU; ctx = &vring->ctx[i]; wil_txdesc_unmap(dev, (union wil_tx_desc *)d, ctx); memset(ctx, 0, sizeof(*ctx)); descs_used--; } err_exit: return rc; } static int __wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif, struct wil_ring *ring, struct sk_buff *skb) { struct device *dev = wil_to_dev(wil); struct vring_tx_desc dd, *d = ⅆ volatile struct vring_tx_desc *_d; u32 swhead = ring->swhead; int avail = wil_ring_avail_tx(ring); int nr_frags = skb_shinfo(skb)->nr_frags; uint f = 0; int ring_index = ring - wil->ring_tx; struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index]; uint i = swhead; dma_addr_t pa; int used; bool mcast = (ring_index == vif->bcast_ring); uint len = skb_headlen(skb); wil_dbg_txrx(wil, "tx_ring: %d bytes to ring %d, nr_frags %d\n", skb->len, ring_index, nr_frags); if (unlikely(!txdata->enabled)) return -EINVAL; if (unlikely(avail < 1 + nr_frags)) { wil_err_ratelimited(wil, "Tx ring[%2d] full. No space for %d fragments\n", ring_index, 1 + nr_frags); return -ENOMEM; } _d = &ring->va[i].tx.legacy; pa = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); wil_dbg_txrx(wil, "Tx[%2d] skb %d bytes 0x%p -> %pad\n", ring_index, skb_headlen(skb), skb->data, &pa); wil_hex_dump_txrx("Tx ", DUMP_PREFIX_OFFSET, 16, 1, skb->data, skb_headlen(skb), false); if (unlikely(dma_mapping_error(dev, pa))) return -EINVAL; ring->ctx[i].mapped_as = wil_mapped_as_single; /* 1-st segment */ wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len, ring_index); if (unlikely(mcast)) { d->mac.d[0] |= BIT(MAC_CFG_DESC_TX_0_MCS_EN_POS); /* MCS 0 */ if (unlikely(len > WIL_BCAST_MCS0_LIMIT)) /* set MCS 1 */ d->mac.d[0] |= (1 << MAC_CFG_DESC_TX_0_MCS_INDEX_POS); } /* Process TCP/UDP checksum offloading */ if (unlikely(wil_tx_desc_offload_setup(d, skb))) { wil_err(wil, "Tx[%2d] Failed to set cksum, drop packet\n", ring_index); goto dma_error; } ring->ctx[i].nr_frags = nr_frags; wil_tx_desc_set_nr_frags(d, nr_frags + 1); /* middle segments */ for (; f < nr_frags; f++) { const skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; int len = skb_frag_size(frag); *_d = *d; wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i); wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4, (const void *)d, sizeof(*d), false); i = (swhead + f + 1) % ring->size; _d = &ring->va[i].tx.legacy; pa = skb_frag_dma_map(dev, frag, 0, skb_frag_size(frag), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev, pa))) { wil_err(wil, "Tx[%2d] failed to map fragment\n", ring_index); goto dma_error; } ring->ctx[i].mapped_as = wil_mapped_as_page; wil->txrx_ops.tx_desc_map((union wil_tx_desc *)d, pa, len, ring_index); /* no need to check return code - * if it succeeded for 1-st descriptor, * it will succeed here too */ wil_tx_desc_offload_setup(d, skb); } /* for the last seg only */ d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_EOP_POS); d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_MARK_WB_POS); d->dma.d0 |= BIT(DMA_CFG_DESC_TX_0_CMD_DMA_IT_POS); *_d = *d; wil_dbg_txrx(wil, "Tx[%2d] desc[%4d]\n", ring_index, i); wil_hex_dump_txrx("TxD ", DUMP_PREFIX_NONE, 32, 4, (const void *)d, sizeof(*d), false); /* hold reference to skb * to prevent skb release before accounting * in case of immediate "tx done" */ ring->ctx[i].skb = skb_get(skb); /* performance monitoring */ used = wil_ring_used_tx(ring); if (wil_val_in_range(wil->ring_idle_trsh, used, used + nr_frags + 1)) { txdata->idle += get_cycles() - txdata->last_idle; wil_dbg_txrx(wil, "Ring[%2d] not idle %d -> %d\n", ring_index, used, used + nr_frags + 1); } /* Make sure to advance the head only after descriptor update is done. * This will prevent a race condition where the completion thread * will see the DU bit set from previous run and will handle the * skb before it was completed. */ wmb(); /* advance swhead */ wil_ring_advance_head(ring, nr_frags + 1); wil_dbg_txrx(wil, "Tx[%2d] swhead %d -> %d\n", ring_index, swhead, ring->swhead); trace_wil6210_tx(ring_index, swhead, skb->len, nr_frags); /* make sure all writes to descriptors (shared memory) are done before * committing them to HW */ wmb(); if (wil->tx_latency) *(ktime_t *)&skb->cb = ktime_get(); else memset(skb->cb, 0, sizeof(ktime_t)); wil_w(wil, ring->hwtail, ring->swhead); return 0; dma_error: /* unmap what we have mapped */ nr_frags = f + 1; /* frags mapped + one for skb head */ for (f = 0; f < nr_frags; f++) { struct wil_ctx *ctx; i = (swhead + f) % ring->size; ctx = &ring->ctx[i]; _d = &ring->va[i].tx.legacy; *d = *_d; _d->dma.status = TX_DMA_STATUS_DU; wil->txrx_ops.tx_desc_unmap(dev, (union wil_tx_desc *)d, ctx); memset(ctx, 0, sizeof(*ctx)); } return -EINVAL; } static int wil_tx_ring(struct wil6210_priv *wil, struct wil6210_vif *vif, struct wil_ring *ring, struct sk_buff *skb) { int ring_index = ring - wil->ring_tx; struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ring_index]; int rc; spin_lock(&txdata->lock); if (test_bit(wil_status_suspending, wil->status) || test_bit(wil_status_suspended, wil->status) || test_bit(wil_status_resuming, wil->status)) { wil_dbg_txrx(wil, "suspend/resume in progress. drop packet\n"); spin_unlock(&txdata->lock); return -EINVAL; } rc = (skb_is_gso(skb) ? wil->txrx_ops.tx_ring_tso : __wil_tx_ring) (wil, vif, ring, skb); spin_unlock(&txdata->lock); return rc; } /** * Check status of tx vrings and stop/wake net queues if needed * It will start/stop net queues of a specific VIF net_device. * * This function does one of two checks: * In case check_stop is true, will check if net queues need to be stopped. If * the conditions for stopping are met, netif_tx_stop_all_queues() is called. * In case check_stop is false, will check if net queues need to be waked. If * the conditions for waking are met, netif_tx_wake_all_queues() is called. * vring is the vring which is currently being modified by either adding * descriptors (tx) into it or removing descriptors (tx complete) from it. Can * be null when irrelevant (e.g. connect/disconnect events). * * The implementation is to stop net queues if modified vring has low * descriptor availability. Wake if all vrings are not in low descriptor * availability and modified vring has high descriptor availability. */ static inline void __wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif, struct wil_ring *ring, bool check_stop) { int i; int min_ring_id = wil_get_min_tx_ring_id(wil); if (unlikely(!vif)) return; if (ring) wil_dbg_txrx(wil, "vring %d, mid %d, check_stop=%d, stopped=%d", (int)(ring - wil->ring_tx), vif->mid, check_stop, vif->net_queue_stopped); else wil_dbg_txrx(wil, "check_stop=%d, mid=%d, stopped=%d", check_stop, vif->mid, vif->net_queue_stopped); if (ring && drop_if_ring_full) /* no need to stop/wake net queues */ return; if (check_stop == vif->net_queue_stopped) /* net queues already in desired state */ return; if (check_stop) { if (!ring || unlikely(wil_ring_avail_low(ring))) { /* not enough room in the vring */ netif_tx_stop_all_queues(vif_to_ndev(vif)); vif->net_queue_stopped = true; wil_dbg_txrx(wil, "netif_tx_stop called\n"); } return; } /* Do not wake the queues in suspend flow */ if (test_bit(wil_status_suspending, wil->status) || test_bit(wil_status_suspended, wil->status)) return; /* check wake */ for (i = min_ring_id; i < WIL6210_MAX_TX_RINGS; i++) { struct wil_ring *cur_ring = &wil->ring_tx[i]; struct wil_ring_tx_data *txdata = &wil->ring_tx_data[i]; if (txdata->mid != vif->mid || !cur_ring->va || !txdata->enabled || cur_ring == ring) continue; if (wil_ring_avail_low(cur_ring)) { wil_dbg_txrx(wil, "ring %d full, can't wake\n", (int)(cur_ring - wil->ring_tx)); return; } } if (!ring || wil_ring_avail_high(ring)) { /* enough room in the ring */ wil_dbg_txrx(wil, "calling netif_tx_wake\n"); netif_tx_wake_all_queues(vif_to_ndev(vif)); vif->net_queue_stopped = false; } } void wil_update_net_queues(struct wil6210_priv *wil, struct wil6210_vif *vif, struct wil_ring *ring, bool check_stop) { spin_lock(&wil->net_queue_lock); __wil_update_net_queues(wil, vif, ring, check_stop); spin_unlock(&wil->net_queue_lock); } void wil_update_net_queues_bh(struct wil6210_priv *wil, struct wil6210_vif *vif, struct wil_ring *ring, bool check_stop) { spin_lock_bh(&wil->net_queue_lock); __wil_update_net_queues(wil, vif, ring, check_stop); spin_unlock_bh(&wil->net_queue_lock); } netdev_tx_t wil_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct wil6210_vif *vif = ndev_to_vif(ndev); struct wil6210_priv *wil = vif_to_wil(vif); const u8 *da = wil_skb_get_da(skb); bool bcast = is_multicast_ether_addr(da); struct wil_ring *ring; static bool pr_once_fw; int rc; wil_dbg_txrx(wil, "start_xmit\n"); if (unlikely(!test_bit(wil_status_fwready, wil->status))) { if (!pr_once_fw) { wil_err(wil, "FW not ready\n"); pr_once_fw = true; } goto drop; } if (unlikely(!test_bit(wil_vif_fwconnected, vif->status))) { wil_dbg_ratelimited(wil, "VIF not connected, packet dropped\n"); goto drop; } if (unlikely(vif->wdev.iftype == NL80211_IFTYPE_MONITOR)) { wil_err(wil, "Xmit in monitor mode not supported\n"); goto drop; } pr_once_fw = false; /* find vring */ if (vif->wdev.iftype == NL80211_IFTYPE_STATION && !vif->pbss) { /* in STA mode (ESS), all to same VRING (to AP) */ ring = wil_find_tx_ring_sta(wil, vif, skb); } else if (bcast) { if (vif->pbss) /* in pbss, no bcast VRING - duplicate skb in * all stations VRINGs */ ring = wil_find_tx_bcast_2(wil, vif, skb); else if (vif->wdev.iftype == NL80211_IFTYPE_AP) /* AP has a dedicated bcast VRING */ ring = wil_find_tx_bcast_1(wil, vif, skb); else /* unexpected combination, fallback to duplicating * the skb in all stations VRINGs */ ring = wil_find_tx_bcast_2(wil, vif, skb); } else { /* unicast, find specific VRING by dest. address */ ring = wil_find_tx_ucast(wil, vif, skb); } if (unlikely(!ring)) { wil_dbg_txrx(wil, "No Tx RING found for %pM\n", da); goto drop; } /* set up vring entry */ rc = wil_tx_ring(wil, vif, ring, skb); switch (rc) { case 0: /* shall we stop net queues? */ wil_update_net_queues_bh(wil, vif, ring, true); /* statistics will be updated on the tx_complete */ dev_kfree_skb_any(skb); return NETDEV_TX_OK; case -ENOMEM: if (drop_if_ring_full) goto drop; return NETDEV_TX_BUSY; default: break; /* goto drop; */ } drop: ndev->stats.tx_dropped++; dev_kfree_skb_any(skb); return NET_XMIT_DROP; } void wil_tx_latency_calc(struct wil6210_priv *wil, struct sk_buff *skb, struct wil_sta_info *sta) { int skb_time_us; int bin; if (!wil->tx_latency) return; if (ktime_to_ms(*(ktime_t *)&skb->cb) == 0) return; skb_time_us = ktime_us_delta(ktime_get(), *(ktime_t *)&skb->cb); bin = skb_time_us / wil->tx_latency_res; bin = min_t(int, bin, WIL_NUM_LATENCY_BINS - 1); wil_dbg_txrx(wil, "skb time %dus => bin %d\n", skb_time_us, bin); sta->tx_latency_bins[bin]++; sta->stats.tx_latency_total_us += skb_time_us; if (skb_time_us < sta->stats.tx_latency_min_us) sta->stats.tx_latency_min_us = skb_time_us; if (skb_time_us > sta->stats.tx_latency_max_us) sta->stats.tx_latency_max_us = skb_time_us; } /** * Clean up transmitted skb's from the Tx VRING * * Return number of descriptors cleared * * Safe to call from IRQ */ int wil_tx_complete(struct wil6210_vif *vif, int ringid) { struct wil6210_priv *wil = vif_to_wil(vif); struct net_device *ndev = vif_to_ndev(vif); struct device *dev = wil_to_dev(wil); struct wil_ring *vring = &wil->ring_tx[ringid]; struct wil_ring_tx_data *txdata = &wil->ring_tx_data[ringid]; int done = 0; int cid = wil->ring2cid_tid[ringid][0]; struct wil_net_stats *stats = NULL; volatile struct vring_tx_desc *_d; int used_before_complete; int used_new; if (unlikely(!vring->va)) { wil_err(wil, "Tx irq[%d]: vring not initialized\n", ringid); return 0; } if (unlikely(!txdata->enabled)) { wil_info(wil, "Tx irq[%d]: vring disabled\n", ringid); return 0; } wil_dbg_txrx(wil, "tx_complete: (%d)\n", ringid); used_before_complete = wil_ring_used_tx(vring); if (cid < wil->max_assoc_sta) stats = &wil->sta[cid].stats; while (!wil_ring_is_empty(vring)) { int new_swtail; struct wil_ctx *ctx = &vring->ctx[vring->swtail]; /** * For the fragmented skb, HW will set DU bit only for the * last fragment. look for it. * In TSO the first DU will include hdr desc */ int lf = (vring->swtail + ctx->nr_frags) % vring->size; /* TODO: check we are not past head */ _d = &vring->va[lf].tx.legacy; if (unlikely(!(_d->dma.status & TX_DMA_STATUS_DU))) break; new_swtail = (lf + 1) % vring->size; while (vring->swtail != new_swtail) { struct vring_tx_desc dd, *d = ⅆ u16 dmalen; struct sk_buff *skb; ctx = &vring->ctx[vring->swtail]; skb = ctx->skb; _d = &vring->va[vring->swtail].tx.legacy; *d = *_d; dmalen = le16_to_cpu(d->dma.length); trace_wil6210_tx_done(ringid, vring->swtail, dmalen, d->dma.error); wil_dbg_txrx(wil, "TxC[%2d][%3d] : %d bytes, status 0x%02x err 0x%02x\n", ringid, vring->swtail, dmalen, d->dma.status, d->dma.error); wil_hex_dump_txrx("TxCD ", DUMP_PREFIX_NONE, 32, 4, (const void *)d, sizeof(*d), false); wil->txrx_ops.tx_desc_unmap(dev, (union wil_tx_desc *)d, ctx); if (skb) { if (likely(d->dma.error == 0)) { ndev->stats.tx_packets++; ndev->stats.tx_bytes += skb->len; if (stats) { stats->tx_packets++; stats->tx_bytes += skb->len; wil_tx_latency_calc(wil, skb, &wil->sta[cid]); } } else { ndev->stats.tx_errors++; if (stats) stats->tx_errors++; } if (skb->protocol == cpu_to_be16(ETH_P_PAE)) wil_tx_complete_handle_eapol(vif, skb); wil_consume_skb(skb, d->dma.error == 0); } memset(ctx, 0, sizeof(*ctx)); /* Make sure the ctx is zeroed before updating the tail * to prevent a case where wil_tx_ring will see * this descriptor as used and handle it before ctx zero * is completed. */ wmb(); /* There is no need to touch HW descriptor: * - ststus bit TX_DMA_STATUS_DU is set by design, * so hardware will not try to process this desc., * - rest of descriptor will be initialized on Tx. */ vring->swtail = wil_ring_next_tail(vring); done++; } } /* performance monitoring */ used_new = wil_ring_used_tx(vring); if (wil_val_in_range(wil->ring_idle_trsh, used_new, used_before_complete)) { wil_dbg_txrx(wil, "Ring[%2d] idle %d -> %d\n", ringid, used_before_complete, used_new); txdata->last_idle = get_cycles(); } /* shall we wake net queues? */ if (done) wil_update_net_queues(wil, vif, vring, false); return done; } static inline int wil_tx_init(struct wil6210_priv *wil) { return 0; } static inline void wil_tx_fini(struct wil6210_priv *wil) {} static void wil_get_reorder_params(struct wil6210_priv *wil, struct sk_buff *skb, int *tid, int *cid, int *mid, u16 *seq, int *mcast, int *retry) { struct vring_rx_desc *d = wil_skb_rxdesc(skb); *tid = wil_rxdesc_tid(d); *cid = wil_skb_get_cid(skb); *mid = wil_rxdesc_mid(d); *seq = wil_rxdesc_seq(d); *mcast = wil_rxdesc_mcast(d); *retry = wil_rxdesc_retry(d); } void wil_init_txrx_ops_legacy_dma(struct wil6210_priv *wil) { wil->txrx_ops.configure_interrupt_moderation = wil_configure_interrupt_moderation; /* TX ops */ wil->txrx_ops.tx_desc_map = wil_tx_desc_map; wil->txrx_ops.tx_desc_unmap = wil_txdesc_unmap; wil->txrx_ops.tx_ring_tso = __wil_tx_vring_tso; wil->txrx_ops.ring_init_tx = wil_vring_init_tx; wil->txrx_ops.ring_fini_tx = wil_vring_free; wil->txrx_ops.ring_init_bcast = wil_vring_init_bcast; wil->txrx_ops.tx_init = wil_tx_init; wil->txrx_ops.tx_fini = wil_tx_fini; wil->txrx_ops.tx_ring_modify = wil_tx_vring_modify; /* RX ops */ wil->txrx_ops.rx_init = wil_rx_init; wil->txrx_ops.wmi_addba_rx_resp = wmi_addba_rx_resp; wil->txrx_ops.get_reorder_params = wil_get_reorder_params; wil->txrx_ops.get_netif_rx_params = wil_get_netif_rx_params; wil->txrx_ops.rx_crypto_check = wil_rx_crypto_check; wil->txrx_ops.rx_error_check = wil_rx_error_check; wil->txrx_ops.is_rx_idle = wil_is_rx_idle; wil->txrx_ops.rx_fini = wil_rx_fini; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1