Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Colin McCabe | 3025 | 60.36% | 1 | 3.23% |
Vasily Khoruzhick | 1170 | 23.34% | 2 | 6.45% |
Sebastian Andrzej Siewior | 255 | 5.09% | 2 | 6.45% |
Dan J Williams | 212 | 4.23% | 2 | 6.45% |
Joe Perches | 158 | 3.15% | 2 | 6.45% |
Andrey Yurovsky | 50 | 1.00% | 5 | 16.13% |
Randy Dunlap | 24 | 0.48% | 1 | 3.23% |
Mike Rapoport | 22 | 0.44% | 1 | 3.23% |
Pan Bian | 19 | 0.38% | 1 | 3.23% |
Amitkumar Karwar | 18 | 0.36% | 1 | 3.23% |
Lubomir Rintel | 7 | 0.14% | 1 | 3.23% |
Alexey Dobriyan | 6 | 0.12% | 1 | 3.23% |
Nikanth Karthikesan | 6 | 0.12% | 1 | 3.23% |
Anna Neal | 6 | 0.12% | 1 | 3.23% |
Bhaktipriya Shridhar | 5 | 0.10% | 1 | 3.23% |
Holger Schurig | 5 | 0.10% | 1 | 3.23% |
Anton Vorontsov | 5 | 0.10% | 1 | 3.23% |
Jesper Juhl | 5 | 0.10% | 1 | 3.23% |
Jingoo Han | 4 | 0.08% | 1 | 3.23% |
Julia Lawall | 4 | 0.08% | 1 | 3.23% |
Tejun Heo | 3 | 0.06% | 1 | 3.23% |
Thomas Gleixner | 2 | 0.04% | 1 | 3.23% |
Paul Gortmaker | 1 | 0.02% | 1 | 3.23% |
Total | 5012 | 31 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * linux/drivers/net/wireless/libertas/if_spi.c * * Driver for Marvell SPI WLAN cards. * * Copyright 2008 Analog Devices Inc. * * Authors: * Andrey Yurovsky <andrey@cozybit.com> * Colin McCabe <colin@cozybit.com> * * Inspired by if_sdio.c, Copyright 2007-2008 Pierre Ossman */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/hardirq.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/firmware.h> #include <linux/jiffies.h> #include <linux/list.h> #include <linux/netdevice.h> #include <linux/slab.h> #include <linux/spi/libertas_spi.h> #include <linux/spi/spi.h> #include "host.h" #include "decl.h" #include "defs.h" #include "dev.h" #include "if_spi.h" struct if_spi_packet { struct list_head list; u16 blen; u8 buffer[0] __attribute__((aligned(4))); }; struct if_spi_card { struct spi_device *spi; struct lbs_private *priv; struct libertas_spi_platform_data *pdata; /* The card ID and card revision, as reported by the hardware. */ u16 card_id; u8 card_rev; /* The last time that we initiated an SPU operation */ unsigned long prev_xfer_time; int use_dummy_writes; unsigned long spu_port_delay; unsigned long spu_reg_delay; /* Handles all SPI communication (except for FW load) */ struct workqueue_struct *workqueue; struct work_struct packet_work; struct work_struct resume_work; u8 cmd_buffer[IF_SPI_CMD_BUF_SIZE]; /* A buffer of incoming packets from libertas core. * Since we can't sleep in hw_host_to_card, we have to buffer * them. */ struct list_head cmd_packet_list; struct list_head data_packet_list; /* Protects cmd_packet_list and data_packet_list */ spinlock_t buffer_lock; /* True is card suspended */ u8 suspended; }; static void free_if_spi_card(struct if_spi_card *card) { struct list_head *cursor, *next; struct if_spi_packet *packet; list_for_each_safe(cursor, next, &card->cmd_packet_list) { packet = container_of(cursor, struct if_spi_packet, list); list_del(&packet->list); kfree(packet); } list_for_each_safe(cursor, next, &card->data_packet_list) { packet = container_of(cursor, struct if_spi_packet, list); list_del(&packet->list); kfree(packet); } kfree(card); } #define MODEL_8385 0x04 #define MODEL_8686 0x0b #define MODEL_8688 0x10 static const struct lbs_fw_table fw_table[] = { { MODEL_8385, "libertas/gspi8385_helper.bin", "libertas/gspi8385.bin" }, { MODEL_8385, "libertas/gspi8385_hlp.bin", "libertas/gspi8385.bin" }, { MODEL_8686, "libertas/gspi8686_v9_helper.bin", "libertas/gspi8686_v9.bin" }, { MODEL_8686, "libertas/gspi8686_hlp.bin", "libertas/gspi8686.bin" }, { MODEL_8688, "libertas/gspi8688_helper.bin", "libertas/gspi8688.bin" }, { 0, NULL, NULL } }; MODULE_FIRMWARE("libertas/gspi8385_helper.bin"); MODULE_FIRMWARE("libertas/gspi8385_hlp.bin"); MODULE_FIRMWARE("libertas/gspi8385.bin"); MODULE_FIRMWARE("libertas/gspi8686_v9_helper.bin"); MODULE_FIRMWARE("libertas/gspi8686_v9.bin"); MODULE_FIRMWARE("libertas/gspi8686_hlp.bin"); MODULE_FIRMWARE("libertas/gspi8686.bin"); MODULE_FIRMWARE("libertas/gspi8688_helper.bin"); MODULE_FIRMWARE("libertas/gspi8688.bin"); /* * SPI Interface Unit Routines * * The SPU sits between the host and the WLAN module. * All communication with the firmware is through SPU transactions. * * First we have to put a SPU register name on the bus. Then we can * either read from or write to that register. * */ static void spu_transaction_init(struct if_spi_card *card) { if (!time_after(jiffies, card->prev_xfer_time + 1)) { /* Unfortunately, the SPU requires a delay between successive * transactions. If our last transaction was more than a jiffy * ago, we have obviously already delayed enough. * If not, we have to busy-wait to be on the safe side. */ ndelay(400); } } static void spu_transaction_finish(struct if_spi_card *card) { card->prev_xfer_time = jiffies; } /* * Write out a byte buffer to an SPI register, * using a series of 16-bit transfers. */ static int spu_write(struct if_spi_card *card, u16 reg, const u8 *buf, int len) { int err = 0; __le16 reg_out = cpu_to_le16(reg | IF_SPI_WRITE_OPERATION_MASK); struct spi_message m; struct spi_transfer reg_trans; struct spi_transfer data_trans; spi_message_init(&m); memset(®_trans, 0, sizeof(reg_trans)); memset(&data_trans, 0, sizeof(data_trans)); /* You must give an even number of bytes to the SPU, even if it * doesn't care about the last one. */ BUG_ON(len & 0x1); spu_transaction_init(card); /* write SPU register index */ reg_trans.tx_buf = ®_out; reg_trans.len = sizeof(reg_out); data_trans.tx_buf = buf; data_trans.len = len; spi_message_add_tail(®_trans, &m); spi_message_add_tail(&data_trans, &m); err = spi_sync(card->spi, &m); spu_transaction_finish(card); return err; } static inline int spu_write_u16(struct if_spi_card *card, u16 reg, u16 val) { __le16 buff; buff = cpu_to_le16(val); return spu_write(card, reg, (u8 *)&buff, sizeof(u16)); } static inline int spu_reg_is_port_reg(u16 reg) { switch (reg) { case IF_SPI_IO_RDWRPORT_REG: case IF_SPI_CMD_RDWRPORT_REG: case IF_SPI_DATA_RDWRPORT_REG: return 1; default: return 0; } } static int spu_read(struct if_spi_card *card, u16 reg, u8 *buf, int len) { unsigned int delay; int err = 0; __le16 reg_out = cpu_to_le16(reg | IF_SPI_READ_OPERATION_MASK); struct spi_message m; struct spi_transfer reg_trans; struct spi_transfer dummy_trans; struct spi_transfer data_trans; /* * You must take an even number of bytes from the SPU, even if you * don't care about the last one. */ BUG_ON(len & 0x1); spu_transaction_init(card); spi_message_init(&m); memset(®_trans, 0, sizeof(reg_trans)); memset(&dummy_trans, 0, sizeof(dummy_trans)); memset(&data_trans, 0, sizeof(data_trans)); /* write SPU register index */ reg_trans.tx_buf = ®_out; reg_trans.len = sizeof(reg_out); spi_message_add_tail(®_trans, &m); delay = spu_reg_is_port_reg(reg) ? card->spu_port_delay : card->spu_reg_delay; if (card->use_dummy_writes) { /* Clock in dummy cycles while the SPU fills the FIFO */ dummy_trans.len = delay / 8; spi_message_add_tail(&dummy_trans, &m); } else { /* Busy-wait while the SPU fills the FIFO */ reg_trans.delay_usecs = DIV_ROUND_UP((100 + (delay * 10)), 1000); } /* read in data */ data_trans.rx_buf = buf; data_trans.len = len; spi_message_add_tail(&data_trans, &m); err = spi_sync(card->spi, &m); spu_transaction_finish(card); return err; } /* Read 16 bits from an SPI register */ static inline int spu_read_u16(struct if_spi_card *card, u16 reg, u16 *val) { __le16 buf; int ret; ret = spu_read(card, reg, (u8 *)&buf, sizeof(buf)); if (ret == 0) *val = le16_to_cpup(&buf); return ret; } /* * Read 32 bits from an SPI register. * The low 16 bits are read first. */ static int spu_read_u32(struct if_spi_card *card, u16 reg, u32 *val) { __le32 buf; int err; err = spu_read(card, reg, (u8 *)&buf, sizeof(buf)); if (!err) *val = le32_to_cpup(&buf); return err; } /* * Keep reading 16 bits from an SPI register until you get the correct result. * * If mask = 0, the correct result is any non-zero number. * If mask != 0, the correct result is any number where * number & target_mask == target * * Returns -ETIMEDOUT if a second passes without the correct result. */ static int spu_wait_for_u16(struct if_spi_card *card, u16 reg, u16 target_mask, u16 target) { int err; unsigned long timeout = jiffies + 5*HZ; while (1) { u16 val; err = spu_read_u16(card, reg, &val); if (err) return err; if (target_mask) { if ((val & target_mask) == target) return 0; } else { if (val) return 0; } udelay(100); if (time_after(jiffies, timeout)) { pr_err("%s: timeout with val=%02x, target_mask=%02x, target=%02x\n", __func__, val, target_mask, target); return -ETIMEDOUT; } } } /* * Read 16 bits from an SPI register until you receive a specific value. * Returns -ETIMEDOUT if a 4 tries pass without success. */ static int spu_wait_for_u32(struct if_spi_card *card, u32 reg, u32 target) { int err, try; for (try = 0; try < 4; ++try) { u32 val = 0; err = spu_read_u32(card, reg, &val); if (err) return err; if (val == target) return 0; mdelay(100); } return -ETIMEDOUT; } static int spu_set_interrupt_mode(struct if_spi_card *card, int suppress_host_int, int auto_int) { int err = 0; /* * We can suppress a host interrupt by clearing the appropriate * bit in the "host interrupt status mask" register */ if (suppress_host_int) { err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_MASK_REG, 0); if (err) return err; } else { err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_MASK_REG, IF_SPI_HISM_TX_DOWNLOAD_RDY | IF_SPI_HISM_RX_UPLOAD_RDY | IF_SPI_HISM_CMD_DOWNLOAD_RDY | IF_SPI_HISM_CARDEVENT | IF_SPI_HISM_CMD_UPLOAD_RDY); if (err) return err; } /* * If auto-interrupts are on, the completion of certain transactions * will trigger an interrupt automatically. If auto-interrupts * are off, we need to set the "Card Interrupt Cause" register to * trigger a card interrupt. */ if (auto_int) { err = spu_write_u16(card, IF_SPI_HOST_INT_CTRL_REG, IF_SPI_HICT_TX_DOWNLOAD_OVER_AUTO | IF_SPI_HICT_RX_UPLOAD_OVER_AUTO | IF_SPI_HICT_CMD_DOWNLOAD_OVER_AUTO | IF_SPI_HICT_CMD_UPLOAD_OVER_AUTO); if (err) return err; } else { err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_MASK_REG, 0); if (err) return err; } return err; } static int spu_get_chip_revision(struct if_spi_card *card, u16 *card_id, u8 *card_rev) { int err = 0; u32 dev_ctrl; err = spu_read_u32(card, IF_SPI_DEVICEID_CTRL_REG, &dev_ctrl); if (err) return err; *card_id = IF_SPI_DEVICEID_CTRL_REG_TO_CARD_ID(dev_ctrl); *card_rev = IF_SPI_DEVICEID_CTRL_REG_TO_CARD_REV(dev_ctrl); return err; } static int spu_set_bus_mode(struct if_spi_card *card, u16 mode) { int err = 0; u16 rval; /* set bus mode */ err = spu_write_u16(card, IF_SPI_SPU_BUS_MODE_REG, mode); if (err) return err; /* Check that we were able to read back what we just wrote. */ err = spu_read_u16(card, IF_SPI_SPU_BUS_MODE_REG, &rval); if (err) return err; if ((rval & 0xF) != mode) { pr_err("Can't read bus mode register\n"); return -EIO; } return 0; } static int spu_init(struct if_spi_card *card, int use_dummy_writes) { int err = 0; u32 delay; /* * We have to start up in timed delay mode so that we can safely * read the Delay Read Register. */ card->use_dummy_writes = 0; err = spu_set_bus_mode(card, IF_SPI_BUS_MODE_SPI_CLOCK_PHASE_RISING | IF_SPI_BUS_MODE_DELAY_METHOD_TIMED | IF_SPI_BUS_MODE_16_BIT_ADDRESS_16_BIT_DATA); if (err) return err; card->spu_port_delay = 1000; card->spu_reg_delay = 1000; err = spu_read_u32(card, IF_SPI_DELAY_READ_REG, &delay); if (err) return err; card->spu_port_delay = delay & 0x0000ffff; card->spu_reg_delay = (delay & 0xffff0000) >> 16; /* If dummy clock delay mode has been requested, switch to it now */ if (use_dummy_writes) { card->use_dummy_writes = 1; err = spu_set_bus_mode(card, IF_SPI_BUS_MODE_SPI_CLOCK_PHASE_RISING | IF_SPI_BUS_MODE_DELAY_METHOD_DUMMY_CLOCK | IF_SPI_BUS_MODE_16_BIT_ADDRESS_16_BIT_DATA); if (err) return err; } lbs_deb_spi("Initialized SPU unit. " "spu_port_delay=0x%04lx, spu_reg_delay=0x%04lx\n", card->spu_port_delay, card->spu_reg_delay); return err; } /* * Firmware Loading */ static int if_spi_prog_helper_firmware(struct if_spi_card *card, const struct firmware *firmware) { int err = 0; int bytes_remaining; const u8 *fw; u8 temp[HELPER_FW_LOAD_CHUNK_SZ]; err = spu_set_interrupt_mode(card, 1, 0); if (err) goto out; bytes_remaining = firmware->size; fw = firmware->data; /* Load helper firmware image */ while (bytes_remaining > 0) { /* * Scratch pad 1 should contain the number of bytes we * want to download to the firmware */ err = spu_write_u16(card, IF_SPI_SCRATCH_1_REG, HELPER_FW_LOAD_CHUNK_SZ); if (err) goto out; err = spu_wait_for_u16(card, IF_SPI_HOST_INT_STATUS_REG, IF_SPI_HIST_CMD_DOWNLOAD_RDY, IF_SPI_HIST_CMD_DOWNLOAD_RDY); if (err) goto out; /* * Feed the data into the command read/write port reg * in chunks of 64 bytes */ memset(temp, 0, sizeof(temp)); memcpy(temp, fw, min(bytes_remaining, HELPER_FW_LOAD_CHUNK_SZ)); mdelay(10); err = spu_write(card, IF_SPI_CMD_RDWRPORT_REG, temp, HELPER_FW_LOAD_CHUNK_SZ); if (err) goto out; /* Interrupt the boot code */ err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_REG, 0); if (err) goto out; err = spu_write_u16(card, IF_SPI_CARD_INT_CAUSE_REG, IF_SPI_CIC_CMD_DOWNLOAD_OVER); if (err) goto out; bytes_remaining -= HELPER_FW_LOAD_CHUNK_SZ; fw += HELPER_FW_LOAD_CHUNK_SZ; } /* * Once the helper / single stage firmware download is complete, * write 0 to scratch pad 1 and interrupt the * bootloader. This completes the helper download. */ err = spu_write_u16(card, IF_SPI_SCRATCH_1_REG, FIRMWARE_DNLD_OK); if (err) goto out; err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_REG, 0); if (err) goto out; err = spu_write_u16(card, IF_SPI_CARD_INT_CAUSE_REG, IF_SPI_CIC_CMD_DOWNLOAD_OVER); out: if (err) pr_err("failed to load helper firmware (err=%d)\n", err); return err; } /* * Returns the length of the next packet the firmware expects us to send. * Sets crc_err if the previous transfer had a CRC error. */ static int if_spi_prog_main_firmware_check_len(struct if_spi_card *card, int *crc_err) { u16 len; int err = 0; /* * wait until the host interrupt status register indicates * that we are ready to download */ err = spu_wait_for_u16(card, IF_SPI_HOST_INT_STATUS_REG, IF_SPI_HIST_CMD_DOWNLOAD_RDY, IF_SPI_HIST_CMD_DOWNLOAD_RDY); if (err) { pr_err("timed out waiting for host_int_status\n"); return err; } /* Ask the device how many bytes of firmware it wants. */ err = spu_read_u16(card, IF_SPI_SCRATCH_1_REG, &len); if (err) return err; if (len > IF_SPI_CMD_BUF_SIZE) { pr_err("firmware load device requested a larger transfer than we are prepared to handle (len = %d)\n", len); return -EIO; } if (len & 0x1) { lbs_deb_spi("%s: crc error\n", __func__); len &= ~0x1; *crc_err = 1; } else *crc_err = 0; return len; } static int if_spi_prog_main_firmware(struct if_spi_card *card, const struct firmware *firmware) { struct lbs_private *priv = card->priv; int len, prev_len; int bytes, crc_err = 0, err = 0; const u8 *fw; u16 num_crc_errs; err = spu_set_interrupt_mode(card, 1, 0); if (err) goto out; err = spu_wait_for_u16(card, IF_SPI_SCRATCH_1_REG, 0, 0); if (err) { netdev_err(priv->dev, "%s: timed out waiting for initial scratch reg = 0\n", __func__); goto out; } num_crc_errs = 0; prev_len = 0; bytes = firmware->size; fw = firmware->data; while ((len = if_spi_prog_main_firmware_check_len(card, &crc_err))) { if (len < 0) { err = len; goto out; } if (bytes < 0) { /* * If there are no more bytes left, we would normally * expect to have terminated with len = 0 */ netdev_err(priv->dev, "Firmware load wants more bytes than we have to offer.\n"); break; } if (crc_err) { /* Previous transfer failed. */ if (++num_crc_errs > MAX_MAIN_FW_LOAD_CRC_ERR) { pr_err("Too many CRC errors encountered in firmware load.\n"); err = -EIO; goto out; } } else { /* Previous transfer succeeded. Advance counters. */ bytes -= prev_len; fw += prev_len; } if (bytes < len) { memset(card->cmd_buffer, 0, len); memcpy(card->cmd_buffer, fw, bytes); } else memcpy(card->cmd_buffer, fw, len); err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_REG, 0); if (err) goto out; err = spu_write(card, IF_SPI_CMD_RDWRPORT_REG, card->cmd_buffer, len); if (err) goto out; err = spu_write_u16(card, IF_SPI_CARD_INT_CAUSE_REG , IF_SPI_CIC_CMD_DOWNLOAD_OVER); if (err) goto out; prev_len = len; } if (bytes > prev_len) { pr_err("firmware load wants fewer bytes than we have to offer\n"); } /* Confirm firmware download */ err = spu_wait_for_u32(card, IF_SPI_SCRATCH_4_REG, SUCCESSFUL_FW_DOWNLOAD_MAGIC); if (err) { pr_err("failed to confirm the firmware download\n"); goto out; } out: if (err) pr_err("failed to load firmware (err=%d)\n", err); return err; } /* * SPI Transfer Thread * * The SPI worker handles all SPI transfers, so there is no need for a lock. */ /* Move a command from the card to the host */ static int if_spi_c2h_cmd(struct if_spi_card *card) { struct lbs_private *priv = card->priv; unsigned long flags; int err = 0; u16 len; u8 i; /* * We need a buffer big enough to handle whatever people send to * hw_host_to_card */ BUILD_BUG_ON(IF_SPI_CMD_BUF_SIZE < LBS_CMD_BUFFER_SIZE); BUILD_BUG_ON(IF_SPI_CMD_BUF_SIZE < LBS_UPLD_SIZE); /* * It's just annoying if the buffer size isn't a multiple of 4, because * then we might have len < IF_SPI_CMD_BUF_SIZE but * ALIGN(len, 4) > IF_SPI_CMD_BUF_SIZE */ BUILD_BUG_ON(IF_SPI_CMD_BUF_SIZE % 4 != 0); /* How many bytes are there to read? */ err = spu_read_u16(card, IF_SPI_SCRATCH_2_REG, &len); if (err) goto out; if (!len) { netdev_err(priv->dev, "%s: error: card has no data for host\n", __func__); err = -EINVAL; goto out; } else if (len > IF_SPI_CMD_BUF_SIZE) { netdev_err(priv->dev, "%s: error: response packet too large: %d bytes, but maximum is %d\n", __func__, len, IF_SPI_CMD_BUF_SIZE); err = -EINVAL; goto out; } /* Read the data from the WLAN module into our command buffer */ err = spu_read(card, IF_SPI_CMD_RDWRPORT_REG, card->cmd_buffer, ALIGN(len, 4)); if (err) goto out; spin_lock_irqsave(&priv->driver_lock, flags); i = (priv->resp_idx == 0) ? 1 : 0; BUG_ON(priv->resp_len[i]); priv->resp_len[i] = len; memcpy(priv->resp_buf[i], card->cmd_buffer, len); lbs_notify_command_response(priv, i); spin_unlock_irqrestore(&priv->driver_lock, flags); out: if (err) netdev_err(priv->dev, "%s: err=%d\n", __func__, err); return err; } /* Move data from the card to the host */ static int if_spi_c2h_data(struct if_spi_card *card) { struct lbs_private *priv = card->priv; struct sk_buff *skb; char *data; u16 len; int err = 0; /* How many bytes are there to read? */ err = spu_read_u16(card, IF_SPI_SCRATCH_1_REG, &len); if (err) goto out; if (!len) { netdev_err(priv->dev, "%s: error: card has no data for host\n", __func__); err = -EINVAL; goto out; } else if (len > MRVDRV_ETH_RX_PACKET_BUFFER_SIZE) { netdev_err(priv->dev, "%s: error: card has %d bytes of data, but our maximum skb size is %zu\n", __func__, len, MRVDRV_ETH_RX_PACKET_BUFFER_SIZE); err = -EINVAL; goto out; } /* TODO: should we allocate a smaller skb if we have less data? */ skb = dev_alloc_skb(MRVDRV_ETH_RX_PACKET_BUFFER_SIZE); if (!skb) { err = -ENOBUFS; goto out; } skb_reserve(skb, IPFIELD_ALIGN_OFFSET); data = skb_put(skb, len); /* Read the data from the WLAN module into our skb... */ err = spu_read(card, IF_SPI_DATA_RDWRPORT_REG, data, ALIGN(len, 4)); if (err) { dev_kfree_skb(skb); goto out; } /* pass the SKB to libertas */ err = lbs_process_rxed_packet(card->priv, skb); /* lbs_process_rxed_packet() consumes the skb */ out: if (err) netdev_err(priv->dev, "%s: err=%d\n", __func__, err); return err; } /* Move data or a command from the host to the card. */ static void if_spi_h2c(struct if_spi_card *card, struct if_spi_packet *packet, int type) { struct lbs_private *priv = card->priv; int err = 0; u16 port_reg; switch (type) { case MVMS_DAT: port_reg = IF_SPI_DATA_RDWRPORT_REG; break; case MVMS_CMD: port_reg = IF_SPI_CMD_RDWRPORT_REG; break; default: netdev_err(priv->dev, "can't transfer buffer of type %d\n", type); err = -EINVAL; goto out; } /* Write the data to the card */ err = spu_write(card, port_reg, packet->buffer, packet->blen); if (err) goto out; out: kfree(packet); if (err) netdev_err(priv->dev, "%s: error %d\n", __func__, err); } /* Inform the host about a card event */ static void if_spi_e2h(struct if_spi_card *card) { int err = 0; u32 cause; struct lbs_private *priv = card->priv; err = spu_read_u32(card, IF_SPI_SCRATCH_3_REG, &cause); if (err) goto out; /* re-enable the card event interrupt */ spu_write_u16(card, IF_SPI_HOST_INT_STATUS_REG, ~IF_SPI_HICU_CARD_EVENT); /* generate a card interrupt */ spu_write_u16(card, IF_SPI_CARD_INT_CAUSE_REG, IF_SPI_CIC_HOST_EVENT); lbs_queue_event(priv, cause & 0xff); out: if (err) netdev_err(priv->dev, "%s: error %d\n", __func__, err); } static void if_spi_host_to_card_worker(struct work_struct *work) { int err; struct if_spi_card *card; u16 hiStatus; unsigned long flags; struct if_spi_packet *packet; struct lbs_private *priv; card = container_of(work, struct if_spi_card, packet_work); priv = card->priv; /* * Read the host interrupt status register to see what we * can do. */ err = spu_read_u16(card, IF_SPI_HOST_INT_STATUS_REG, &hiStatus); if (err) { netdev_err(priv->dev, "I/O error\n"); goto err; } if (hiStatus & IF_SPI_HIST_CMD_UPLOAD_RDY) { err = if_spi_c2h_cmd(card); if (err) goto err; } if (hiStatus & IF_SPI_HIST_RX_UPLOAD_RDY) { err = if_spi_c2h_data(card); if (err) goto err; } /* * workaround: in PS mode, the card does not set the Command * Download Ready bit, but it sets TX Download Ready. */ if (hiStatus & IF_SPI_HIST_CMD_DOWNLOAD_RDY || (card->priv->psstate != PS_STATE_FULL_POWER && (hiStatus & IF_SPI_HIST_TX_DOWNLOAD_RDY))) { /* * This means two things. First of all, * if there was a previous command sent, the card has * successfully received it. * Secondly, it is now ready to download another * command. */ lbs_host_to_card_done(card->priv); /* Do we have any command packets from the host to send? */ packet = NULL; spin_lock_irqsave(&card->buffer_lock, flags); if (!list_empty(&card->cmd_packet_list)) { packet = (struct if_spi_packet *)(card-> cmd_packet_list.next); list_del(&packet->list); } spin_unlock_irqrestore(&card->buffer_lock, flags); if (packet) if_spi_h2c(card, packet, MVMS_CMD); } if (hiStatus & IF_SPI_HIST_TX_DOWNLOAD_RDY) { /* Do we have any data packets from the host to send? */ packet = NULL; spin_lock_irqsave(&card->buffer_lock, flags); if (!list_empty(&card->data_packet_list)) { packet = (struct if_spi_packet *)(card-> data_packet_list.next); list_del(&packet->list); } spin_unlock_irqrestore(&card->buffer_lock, flags); if (packet) if_spi_h2c(card, packet, MVMS_DAT); } if (hiStatus & IF_SPI_HIST_CARD_EVENT) if_spi_e2h(card); err: if (err) netdev_err(priv->dev, "%s: got error %d\n", __func__, err); } /* * Host to Card * * Called from Libertas to transfer some data to the WLAN device * We can't sleep here. */ static int if_spi_host_to_card(struct lbs_private *priv, u8 type, u8 *buf, u16 nb) { int err = 0; unsigned long flags; struct if_spi_card *card = priv->card; struct if_spi_packet *packet; u16 blen; if (nb == 0) { netdev_err(priv->dev, "%s: invalid size requested: %d\n", __func__, nb); err = -EINVAL; goto out; } blen = ALIGN(nb, 4); packet = kzalloc(sizeof(struct if_spi_packet) + blen, GFP_ATOMIC); if (!packet) { err = -ENOMEM; goto out; } packet->blen = blen; memcpy(packet->buffer, buf, nb); memset(packet->buffer + nb, 0, blen - nb); switch (type) { case MVMS_CMD: priv->dnld_sent = DNLD_CMD_SENT; spin_lock_irqsave(&card->buffer_lock, flags); list_add_tail(&packet->list, &card->cmd_packet_list); spin_unlock_irqrestore(&card->buffer_lock, flags); break; case MVMS_DAT: priv->dnld_sent = DNLD_DATA_SENT; spin_lock_irqsave(&card->buffer_lock, flags); list_add_tail(&packet->list, &card->data_packet_list); spin_unlock_irqrestore(&card->buffer_lock, flags); break; default: kfree(packet); netdev_err(priv->dev, "can't transfer buffer of type %d\n", type); err = -EINVAL; break; } /* Queue spi xfer work */ queue_work(card->workqueue, &card->packet_work); out: return err; } /* * Host Interrupts * * Service incoming interrupts from the WLAN device. We can't sleep here, so * don't try to talk on the SPI bus, just queue the SPI xfer work. */ static irqreturn_t if_spi_host_interrupt(int irq, void *dev_id) { struct if_spi_card *card = dev_id; queue_work(card->workqueue, &card->packet_work); return IRQ_HANDLED; } /* * SPI callbacks */ static int if_spi_init_card(struct if_spi_card *card) { struct lbs_private *priv = card->priv; int err, i; u32 scratch; const struct firmware *helper = NULL; const struct firmware *mainfw = NULL; err = spu_init(card, card->pdata->use_dummy_writes); if (err) goto out; err = spu_get_chip_revision(card, &card->card_id, &card->card_rev); if (err) goto out; err = spu_read_u32(card, IF_SPI_SCRATCH_4_REG, &scratch); if (err) goto out; if (scratch == SUCCESSFUL_FW_DOWNLOAD_MAGIC) lbs_deb_spi("Firmware is already loaded for " "Marvell WLAN 802.11 adapter\n"); else { /* Check if we support this card */ for (i = 0; i < ARRAY_SIZE(fw_table); i++) { if (card->card_id == fw_table[i].model) break; } if (i == ARRAY_SIZE(fw_table)) { netdev_err(priv->dev, "Unsupported chip_id: 0x%02x\n", card->card_id); err = -ENODEV; goto out; } err = lbs_get_firmware(&card->spi->dev, card->card_id, &fw_table[0], &helper, &mainfw); if (err) { netdev_err(priv->dev, "failed to find firmware (%d)\n", err); goto out; } lbs_deb_spi("Initializing FW for Marvell WLAN 802.11 adapter " "(chip_id = 0x%04x, chip_rev = 0x%02x) " "attached to SPI bus_num %d, chip_select %d. " "spi->max_speed_hz=%d\n", card->card_id, card->card_rev, card->spi->master->bus_num, card->spi->chip_select, card->spi->max_speed_hz); err = if_spi_prog_helper_firmware(card, helper); if (err) goto out; err = if_spi_prog_main_firmware(card, mainfw); if (err) goto out; lbs_deb_spi("loaded FW for Marvell WLAN 802.11 adapter\n"); } err = spu_set_interrupt_mode(card, 0, 1); if (err) goto out; out: return err; } static void if_spi_resume_worker(struct work_struct *work) { struct if_spi_card *card; card = container_of(work, struct if_spi_card, resume_work); if (card->suspended) { if (card->pdata->setup) card->pdata->setup(card->spi); /* Init card ... */ if_spi_init_card(card); enable_irq(card->spi->irq); /* And resume it ... */ lbs_resume(card->priv); card->suspended = 0; } } static int if_spi_probe(struct spi_device *spi) { struct if_spi_card *card; struct lbs_private *priv = NULL; struct libertas_spi_platform_data *pdata = dev_get_platdata(&spi->dev); int err = 0; if (!pdata) { err = -EINVAL; goto out; } if (pdata->setup) { err = pdata->setup(spi); if (err) goto out; } /* Allocate card structure to represent this specific device */ card = kzalloc(sizeof(struct if_spi_card), GFP_KERNEL); if (!card) { err = -ENOMEM; goto teardown; } spi_set_drvdata(spi, card); card->pdata = pdata; card->spi = spi; card->prev_xfer_time = jiffies; INIT_LIST_HEAD(&card->cmd_packet_list); INIT_LIST_HEAD(&card->data_packet_list); spin_lock_init(&card->buffer_lock); /* Initialize the SPI Interface Unit */ /* Firmware load */ err = if_spi_init_card(card); if (err) goto free_card; /* * Register our card with libertas. * This will call alloc_etherdev. */ priv = lbs_add_card(card, &spi->dev); if (IS_ERR(priv)) { err = PTR_ERR(priv); goto free_card; } card->priv = priv; priv->setup_fw_on_resume = 1; priv->card = card; priv->hw_host_to_card = if_spi_host_to_card; priv->enter_deep_sleep = NULL; priv->exit_deep_sleep = NULL; priv->reset_deep_sleep_wakeup = NULL; priv->fw_ready = 1; /* Initialize interrupt handling stuff. */ card->workqueue = alloc_workqueue("libertas_spi", WQ_MEM_RECLAIM, 0); if (!card->workqueue) { err = -ENOMEM; goto remove_card; } INIT_WORK(&card->packet_work, if_spi_host_to_card_worker); INIT_WORK(&card->resume_work, if_spi_resume_worker); err = request_irq(spi->irq, if_spi_host_interrupt, IRQF_TRIGGER_FALLING, "libertas_spi", card); if (err) { pr_err("can't get host irq line-- request_irq failed\n"); goto terminate_workqueue; } /* * Start the card. * This will call register_netdev, and we'll start * getting interrupts... */ err = lbs_start_card(priv); if (err) goto release_irq; lbs_deb_spi("Finished initializing WLAN module.\n"); /* successful exit */ goto out; release_irq: free_irq(spi->irq, card); terminate_workqueue: destroy_workqueue(card->workqueue); remove_card: lbs_remove_card(priv); /* will call free_netdev */ free_card: free_if_spi_card(card); teardown: if (pdata->teardown) pdata->teardown(spi); out: return err; } static int libertas_spi_remove(struct spi_device *spi) { struct if_spi_card *card = spi_get_drvdata(spi); struct lbs_private *priv = card->priv; lbs_deb_spi("libertas_spi_remove\n"); cancel_work_sync(&card->resume_work); lbs_stop_card(priv); lbs_remove_card(priv); /* will call free_netdev */ free_irq(spi->irq, card); destroy_workqueue(card->workqueue); if (card->pdata->teardown) card->pdata->teardown(spi); free_if_spi_card(card); return 0; } static int if_spi_suspend(struct device *dev) { struct spi_device *spi = to_spi_device(dev); struct if_spi_card *card = spi_get_drvdata(spi); if (!card->suspended) { lbs_suspend(card->priv); flush_workqueue(card->workqueue); disable_irq(spi->irq); if (card->pdata->teardown) card->pdata->teardown(spi); card->suspended = 1; } return 0; } static int if_spi_resume(struct device *dev) { struct spi_device *spi = to_spi_device(dev); struct if_spi_card *card = spi_get_drvdata(spi); /* Schedule delayed work */ schedule_work(&card->resume_work); return 0; } static const struct dev_pm_ops if_spi_pm_ops = { .suspend = if_spi_suspend, .resume = if_spi_resume, }; static struct spi_driver libertas_spi_driver = { .probe = if_spi_probe, .remove = libertas_spi_remove, .driver = { .name = "libertas_spi", .pm = &if_spi_pm_ops, }, }; /* * Module functions */ static int __init if_spi_init_module(void) { int ret = 0; printk(KERN_INFO "libertas_spi: Libertas SPI driver\n"); ret = spi_register_driver(&libertas_spi_driver); return ret; } static void __exit if_spi_exit_module(void) { spi_unregister_driver(&libertas_spi_driver); } module_init(if_spi_init_module); module_exit(if_spi_exit_module); MODULE_DESCRIPTION("Libertas SPI WLAN Driver"); MODULE_AUTHOR("Andrey Yurovsky <andrey@cozybit.com>, " "Colin McCabe <colin@cozybit.com>"); MODULE_LICENSE("GPL"); MODULE_ALIAS("spi:libertas_spi");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1