Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thomas Petazzoni | 3301 | 66.47% | 16 | 30.77% |
Russell King | 1018 | 20.50% | 9 | 17.31% |
Jason Gunthorpe | 354 | 7.13% | 4 | 7.69% |
Seungwon Jeon | 137 | 2.76% | 1 | 1.92% |
Sebastian Hesselbarth | 71 | 1.43% | 5 | 9.62% |
Björn Helgaas | 16 | 0.32% | 3 | 5.77% |
JiSheng Zhang | 13 | 0.26% | 2 | 3.85% |
Fabio Estevam | 13 | 0.26% | 1 | 1.92% |
Andrew Lunn | 11 | 0.22% | 1 | 1.92% |
Tushar Behera | 9 | 0.18% | 1 | 1.92% |
Jingoo Han | 5 | 0.10% | 2 | 3.85% |
Rob Herring | 5 | 0.10% | 2 | 3.85% |
Willy Tarreau | 4 | 0.08% | 1 | 1.92% |
Jean-Jacques Hiblot | 3 | 0.06% | 1 | 1.92% |
Lucas Stach | 3 | 0.06% | 1 | 1.92% |
Paul Gortmaker | 2 | 0.04% | 1 | 1.92% |
Yijing Wang | 1 | 0.02% | 1 | 1.92% |
Total | 4966 | 52 |
// SPDX-License-Identifier: GPL-2.0 /* * PCIe driver for Marvell Armada 370 and Armada XP SoCs * * Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com> */ #include <linux/kernel.h> #include <linux/pci.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/gpio.h> #include <linux/init.h> #include <linux/mbus.h> #include <linux/msi.h> #include <linux/slab.h> #include <linux/platform_device.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/of_gpio.h> #include <linux/of_pci.h> #include <linux/of_platform.h> #include "../pci.h" #include "../pci-bridge-emul.h" /* * PCIe unit register offsets. */ #define PCIE_DEV_ID_OFF 0x0000 #define PCIE_CMD_OFF 0x0004 #define PCIE_DEV_REV_OFF 0x0008 #define PCIE_BAR_LO_OFF(n) (0x0010 + ((n) << 3)) #define PCIE_BAR_HI_OFF(n) (0x0014 + ((n) << 3)) #define PCIE_CAP_PCIEXP 0x0060 #define PCIE_HEADER_LOG_4_OFF 0x0128 #define PCIE_BAR_CTRL_OFF(n) (0x1804 + (((n) - 1) * 4)) #define PCIE_WIN04_CTRL_OFF(n) (0x1820 + ((n) << 4)) #define PCIE_WIN04_BASE_OFF(n) (0x1824 + ((n) << 4)) #define PCIE_WIN04_REMAP_OFF(n) (0x182c + ((n) << 4)) #define PCIE_WIN5_CTRL_OFF 0x1880 #define PCIE_WIN5_BASE_OFF 0x1884 #define PCIE_WIN5_REMAP_OFF 0x188c #define PCIE_CONF_ADDR_OFF 0x18f8 #define PCIE_CONF_ADDR_EN 0x80000000 #define PCIE_CONF_REG(r) ((((r) & 0xf00) << 16) | ((r) & 0xfc)) #define PCIE_CONF_BUS(b) (((b) & 0xff) << 16) #define PCIE_CONF_DEV(d) (((d) & 0x1f) << 11) #define PCIE_CONF_FUNC(f) (((f) & 0x7) << 8) #define PCIE_CONF_ADDR(bus, devfn, where) \ (PCIE_CONF_BUS(bus) | PCIE_CONF_DEV(PCI_SLOT(devfn)) | \ PCIE_CONF_FUNC(PCI_FUNC(devfn)) | PCIE_CONF_REG(where) | \ PCIE_CONF_ADDR_EN) #define PCIE_CONF_DATA_OFF 0x18fc #define PCIE_MASK_OFF 0x1910 #define PCIE_MASK_ENABLE_INTS 0x0f000000 #define PCIE_CTRL_OFF 0x1a00 #define PCIE_CTRL_X1_MODE 0x0001 #define PCIE_STAT_OFF 0x1a04 #define PCIE_STAT_BUS 0xff00 #define PCIE_STAT_DEV 0x1f0000 #define PCIE_STAT_LINK_DOWN BIT(0) #define PCIE_RC_RTSTA 0x1a14 #define PCIE_DEBUG_CTRL 0x1a60 #define PCIE_DEBUG_SOFT_RESET BIT(20) struct mvebu_pcie_port; /* Structure representing all PCIe interfaces */ struct mvebu_pcie { struct platform_device *pdev; struct mvebu_pcie_port *ports; struct msi_controller *msi; struct list_head resources; struct resource io; struct resource realio; struct resource mem; struct resource busn; int nports; }; struct mvebu_pcie_window { phys_addr_t base; phys_addr_t remap; size_t size; }; /* Structure representing one PCIe interface */ struct mvebu_pcie_port { char *name; void __iomem *base; u32 port; u32 lane; int devfn; unsigned int mem_target; unsigned int mem_attr; unsigned int io_target; unsigned int io_attr; struct clk *clk; struct gpio_desc *reset_gpio; char *reset_name; struct pci_bridge_emul bridge; struct device_node *dn; struct mvebu_pcie *pcie; struct mvebu_pcie_window memwin; struct mvebu_pcie_window iowin; u32 saved_pcie_stat; }; static inline void mvebu_writel(struct mvebu_pcie_port *port, u32 val, u32 reg) { writel(val, port->base + reg); } static inline u32 mvebu_readl(struct mvebu_pcie_port *port, u32 reg) { return readl(port->base + reg); } static inline bool mvebu_has_ioport(struct mvebu_pcie_port *port) { return port->io_target != -1 && port->io_attr != -1; } static bool mvebu_pcie_link_up(struct mvebu_pcie_port *port) { return !(mvebu_readl(port, PCIE_STAT_OFF) & PCIE_STAT_LINK_DOWN); } static void mvebu_pcie_set_local_bus_nr(struct mvebu_pcie_port *port, int nr) { u32 stat; stat = mvebu_readl(port, PCIE_STAT_OFF); stat &= ~PCIE_STAT_BUS; stat |= nr << 8; mvebu_writel(port, stat, PCIE_STAT_OFF); } static void mvebu_pcie_set_local_dev_nr(struct mvebu_pcie_port *port, int nr) { u32 stat; stat = mvebu_readl(port, PCIE_STAT_OFF); stat &= ~PCIE_STAT_DEV; stat |= nr << 16; mvebu_writel(port, stat, PCIE_STAT_OFF); } /* * Setup PCIE BARs and Address Decode Wins: * BAR[0,2] -> disabled, BAR[1] -> covers all DRAM banks * WIN[0-3] -> DRAM bank[0-3] */ static void mvebu_pcie_setup_wins(struct mvebu_pcie_port *port) { const struct mbus_dram_target_info *dram; u32 size; int i; dram = mv_mbus_dram_info(); /* First, disable and clear BARs and windows. */ for (i = 1; i < 3; i++) { mvebu_writel(port, 0, PCIE_BAR_CTRL_OFF(i)); mvebu_writel(port, 0, PCIE_BAR_LO_OFF(i)); mvebu_writel(port, 0, PCIE_BAR_HI_OFF(i)); } for (i = 0; i < 5; i++) { mvebu_writel(port, 0, PCIE_WIN04_CTRL_OFF(i)); mvebu_writel(port, 0, PCIE_WIN04_BASE_OFF(i)); mvebu_writel(port, 0, PCIE_WIN04_REMAP_OFF(i)); } mvebu_writel(port, 0, PCIE_WIN5_CTRL_OFF); mvebu_writel(port, 0, PCIE_WIN5_BASE_OFF); mvebu_writel(port, 0, PCIE_WIN5_REMAP_OFF); /* Setup windows for DDR banks. Count total DDR size on the fly. */ size = 0; for (i = 0; i < dram->num_cs; i++) { const struct mbus_dram_window *cs = dram->cs + i; mvebu_writel(port, cs->base & 0xffff0000, PCIE_WIN04_BASE_OFF(i)); mvebu_writel(port, 0, PCIE_WIN04_REMAP_OFF(i)); mvebu_writel(port, ((cs->size - 1) & 0xffff0000) | (cs->mbus_attr << 8) | (dram->mbus_dram_target_id << 4) | 1, PCIE_WIN04_CTRL_OFF(i)); size += cs->size; } /* Round up 'size' to the nearest power of two. */ if ((size & (size - 1)) != 0) size = 1 << fls(size); /* Setup BAR[1] to all DRAM banks. */ mvebu_writel(port, dram->cs[0].base, PCIE_BAR_LO_OFF(1)); mvebu_writel(port, 0, PCIE_BAR_HI_OFF(1)); mvebu_writel(port, ((size - 1) & 0xffff0000) | 1, PCIE_BAR_CTRL_OFF(1)); } static void mvebu_pcie_setup_hw(struct mvebu_pcie_port *port) { u32 cmd, mask; /* Point PCIe unit MBUS decode windows to DRAM space. */ mvebu_pcie_setup_wins(port); /* Master + slave enable. */ cmd = mvebu_readl(port, PCIE_CMD_OFF); cmd |= PCI_COMMAND_IO; cmd |= PCI_COMMAND_MEMORY; cmd |= PCI_COMMAND_MASTER; mvebu_writel(port, cmd, PCIE_CMD_OFF); /* Enable interrupt lines A-D. */ mask = mvebu_readl(port, PCIE_MASK_OFF); mask |= PCIE_MASK_ENABLE_INTS; mvebu_writel(port, mask, PCIE_MASK_OFF); } static int mvebu_pcie_hw_rd_conf(struct mvebu_pcie_port *port, struct pci_bus *bus, u32 devfn, int where, int size, u32 *val) { void __iomem *conf_data = port->base + PCIE_CONF_DATA_OFF; mvebu_writel(port, PCIE_CONF_ADDR(bus->number, devfn, where), PCIE_CONF_ADDR_OFF); switch (size) { case 1: *val = readb_relaxed(conf_data + (where & 3)); break; case 2: *val = readw_relaxed(conf_data + (where & 2)); break; case 4: *val = readl_relaxed(conf_data); break; } return PCIBIOS_SUCCESSFUL; } static int mvebu_pcie_hw_wr_conf(struct mvebu_pcie_port *port, struct pci_bus *bus, u32 devfn, int where, int size, u32 val) { void __iomem *conf_data = port->base + PCIE_CONF_DATA_OFF; mvebu_writel(port, PCIE_CONF_ADDR(bus->number, devfn, where), PCIE_CONF_ADDR_OFF); switch (size) { case 1: writeb(val, conf_data + (where & 3)); break; case 2: writew(val, conf_data + (where & 2)); break; case 4: writel(val, conf_data); break; default: return PCIBIOS_BAD_REGISTER_NUMBER; } return PCIBIOS_SUCCESSFUL; } /* * Remove windows, starting from the largest ones to the smallest * ones. */ static void mvebu_pcie_del_windows(struct mvebu_pcie_port *port, phys_addr_t base, size_t size) { while (size) { size_t sz = 1 << (fls(size) - 1); mvebu_mbus_del_window(base, sz); base += sz; size -= sz; } } /* * MBus windows can only have a power of two size, but PCI BARs do not * have this constraint. Therefore, we have to split the PCI BAR into * areas each having a power of two size. We start from the largest * one (i.e highest order bit set in the size). */ static void mvebu_pcie_add_windows(struct mvebu_pcie_port *port, unsigned int target, unsigned int attribute, phys_addr_t base, size_t size, phys_addr_t remap) { size_t size_mapped = 0; while (size) { size_t sz = 1 << (fls(size) - 1); int ret; ret = mvebu_mbus_add_window_remap_by_id(target, attribute, base, sz, remap); if (ret) { phys_addr_t end = base + sz - 1; dev_err(&port->pcie->pdev->dev, "Could not create MBus window at [mem %pa-%pa]: %d\n", &base, &end, ret); mvebu_pcie_del_windows(port, base - size_mapped, size_mapped); return; } size -= sz; size_mapped += sz; base += sz; if (remap != MVEBU_MBUS_NO_REMAP) remap += sz; } } static void mvebu_pcie_set_window(struct mvebu_pcie_port *port, unsigned int target, unsigned int attribute, const struct mvebu_pcie_window *desired, struct mvebu_pcie_window *cur) { if (desired->base == cur->base && desired->remap == cur->remap && desired->size == cur->size) return; if (cur->size != 0) { mvebu_pcie_del_windows(port, cur->base, cur->size); cur->size = 0; cur->base = 0; /* * If something tries to change the window while it is enabled * the change will not be done atomically. That would be * difficult to do in the general case. */ } if (desired->size == 0) return; mvebu_pcie_add_windows(port, target, attribute, desired->base, desired->size, desired->remap); *cur = *desired; } static void mvebu_pcie_handle_iobase_change(struct mvebu_pcie_port *port) { struct mvebu_pcie_window desired = {}; struct pci_bridge_emul_conf *conf = &port->bridge.conf; /* Are the new iobase/iolimit values invalid? */ if (conf->iolimit < conf->iobase || conf->iolimitupper < conf->iobaseupper || !(conf->command & PCI_COMMAND_IO)) { mvebu_pcie_set_window(port, port->io_target, port->io_attr, &desired, &port->iowin); return; } if (!mvebu_has_ioport(port)) { dev_WARN(&port->pcie->pdev->dev, "Attempt to set IO when IO is disabled\n"); return; } /* * We read the PCI-to-PCI bridge emulated registers, and * calculate the base address and size of the address decoding * window to setup, according to the PCI-to-PCI bridge * specifications. iobase is the bus address, port->iowin_base * is the CPU address. */ desired.remap = ((conf->iobase & 0xF0) << 8) | (conf->iobaseupper << 16); desired.base = port->pcie->io.start + desired.remap; desired.size = ((0xFFF | ((conf->iolimit & 0xF0) << 8) | (conf->iolimitupper << 16)) - desired.remap) + 1; mvebu_pcie_set_window(port, port->io_target, port->io_attr, &desired, &port->iowin); } static void mvebu_pcie_handle_membase_change(struct mvebu_pcie_port *port) { struct mvebu_pcie_window desired = {.remap = MVEBU_MBUS_NO_REMAP}; struct pci_bridge_emul_conf *conf = &port->bridge.conf; /* Are the new membase/memlimit values invalid? */ if (conf->memlimit < conf->membase || !(conf->command & PCI_COMMAND_MEMORY)) { mvebu_pcie_set_window(port, port->mem_target, port->mem_attr, &desired, &port->memwin); return; } /* * We read the PCI-to-PCI bridge emulated registers, and * calculate the base address and size of the address decoding * window to setup, according to the PCI-to-PCI bridge * specifications. */ desired.base = ((conf->membase & 0xFFF0) << 16); desired.size = (((conf->memlimit & 0xFFF0) << 16) | 0xFFFFF) - desired.base + 1; mvebu_pcie_set_window(port, port->mem_target, port->mem_attr, &desired, &port->memwin); } static pci_bridge_emul_read_status_t mvebu_pci_bridge_emul_pcie_conf_read(struct pci_bridge_emul *bridge, int reg, u32 *value) { struct mvebu_pcie_port *port = bridge->data; switch (reg) { case PCI_EXP_DEVCAP: *value = mvebu_readl(port, PCIE_CAP_PCIEXP + PCI_EXP_DEVCAP); break; case PCI_EXP_DEVCTL: *value = mvebu_readl(port, PCIE_CAP_PCIEXP + PCI_EXP_DEVCTL) & ~(PCI_EXP_DEVCTL_URRE | PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_NFERE | PCI_EXP_DEVCTL_CERE); break; case PCI_EXP_LNKCAP: /* * PCIe requires the clock power management capability to be * hard-wired to zero for downstream ports */ *value = mvebu_readl(port, PCIE_CAP_PCIEXP + PCI_EXP_LNKCAP) & ~PCI_EXP_LNKCAP_CLKPM; break; case PCI_EXP_LNKCTL: *value = mvebu_readl(port, PCIE_CAP_PCIEXP + PCI_EXP_LNKCTL); break; case PCI_EXP_SLTCTL: *value = PCI_EXP_SLTSTA_PDS << 16; break; case PCI_EXP_RTSTA: *value = mvebu_readl(port, PCIE_RC_RTSTA); break; default: return PCI_BRIDGE_EMUL_NOT_HANDLED; } return PCI_BRIDGE_EMUL_HANDLED; } static void mvebu_pci_bridge_emul_base_conf_write(struct pci_bridge_emul *bridge, int reg, u32 old, u32 new, u32 mask) { struct mvebu_pcie_port *port = bridge->data; struct pci_bridge_emul_conf *conf = &bridge->conf; switch (reg) { case PCI_COMMAND: { if (!mvebu_has_ioport(port)) conf->command &= ~PCI_COMMAND_IO; if ((old ^ new) & PCI_COMMAND_IO) mvebu_pcie_handle_iobase_change(port); if ((old ^ new) & PCI_COMMAND_MEMORY) mvebu_pcie_handle_membase_change(port); break; } case PCI_IO_BASE: /* * We keep bit 1 set, it is a read-only bit that * indicates we support 32 bits addressing for the * I/O */ conf->iobase |= PCI_IO_RANGE_TYPE_32; conf->iolimit |= PCI_IO_RANGE_TYPE_32; mvebu_pcie_handle_iobase_change(port); break; case PCI_MEMORY_BASE: mvebu_pcie_handle_membase_change(port); break; case PCI_IO_BASE_UPPER16: mvebu_pcie_handle_iobase_change(port); break; case PCI_PRIMARY_BUS: mvebu_pcie_set_local_bus_nr(port, conf->secondary_bus); break; default: break; } } static void mvebu_pci_bridge_emul_pcie_conf_write(struct pci_bridge_emul *bridge, int reg, u32 old, u32 new, u32 mask) { struct mvebu_pcie_port *port = bridge->data; switch (reg) { case PCI_EXP_DEVCTL: /* * Armada370 data says these bits must always * be zero when in root complex mode. */ new &= ~(PCI_EXP_DEVCTL_URRE | PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_NFERE | PCI_EXP_DEVCTL_CERE); mvebu_writel(port, new, PCIE_CAP_PCIEXP + PCI_EXP_DEVCTL); break; case PCI_EXP_LNKCTL: /* * If we don't support CLKREQ, we must ensure that the * CLKREQ enable bit always reads zero. Since we haven't * had this capability, and it's dependent on board wiring, * disable it for the time being. */ new &= ~PCI_EXP_LNKCTL_CLKREQ_EN; mvebu_writel(port, new, PCIE_CAP_PCIEXP + PCI_EXP_LNKCTL); break; case PCI_EXP_RTSTA: mvebu_writel(port, new, PCIE_RC_RTSTA); break; } } struct pci_bridge_emul_ops mvebu_pci_bridge_emul_ops = { .write_base = mvebu_pci_bridge_emul_base_conf_write, .read_pcie = mvebu_pci_bridge_emul_pcie_conf_read, .write_pcie = mvebu_pci_bridge_emul_pcie_conf_write, }; /* * Initialize the configuration space of the PCI-to-PCI bridge * associated with the given PCIe interface. */ static void mvebu_pci_bridge_emul_init(struct mvebu_pcie_port *port) { struct pci_bridge_emul *bridge = &port->bridge; bridge->conf.vendor = PCI_VENDOR_ID_MARVELL; bridge->conf.device = mvebu_readl(port, PCIE_DEV_ID_OFF) >> 16; bridge->conf.class_revision = mvebu_readl(port, PCIE_DEV_REV_OFF) & 0xff; if (mvebu_has_ioport(port)) { /* We support 32 bits I/O addressing */ bridge->conf.iobase = PCI_IO_RANGE_TYPE_32; bridge->conf.iolimit = PCI_IO_RANGE_TYPE_32; } bridge->has_pcie = true; bridge->data = port; bridge->ops = &mvebu_pci_bridge_emul_ops; pci_bridge_emul_init(bridge, PCI_BRIDGE_EMUL_NO_PREFETCHABLE_BAR); } static inline struct mvebu_pcie *sys_to_pcie(struct pci_sys_data *sys) { return sys->private_data; } static struct mvebu_pcie_port *mvebu_pcie_find_port(struct mvebu_pcie *pcie, struct pci_bus *bus, int devfn) { int i; for (i = 0; i < pcie->nports; i++) { struct mvebu_pcie_port *port = &pcie->ports[i]; if (bus->number == 0 && port->devfn == devfn) return port; if (bus->number != 0 && bus->number >= port->bridge.conf.secondary_bus && bus->number <= port->bridge.conf.subordinate_bus) return port; } return NULL; } /* PCI configuration space write function */ static int mvebu_pcie_wr_conf(struct pci_bus *bus, u32 devfn, int where, int size, u32 val) { struct mvebu_pcie *pcie = bus->sysdata; struct mvebu_pcie_port *port; int ret; port = mvebu_pcie_find_port(pcie, bus, devfn); if (!port) return PCIBIOS_DEVICE_NOT_FOUND; /* Access the emulated PCI-to-PCI bridge */ if (bus->number == 0) return pci_bridge_emul_conf_write(&port->bridge, where, size, val); if (!mvebu_pcie_link_up(port)) return PCIBIOS_DEVICE_NOT_FOUND; /* Access the real PCIe interface */ ret = mvebu_pcie_hw_wr_conf(port, bus, devfn, where, size, val); return ret; } /* PCI configuration space read function */ static int mvebu_pcie_rd_conf(struct pci_bus *bus, u32 devfn, int where, int size, u32 *val) { struct mvebu_pcie *pcie = bus->sysdata; struct mvebu_pcie_port *port; int ret; port = mvebu_pcie_find_port(pcie, bus, devfn); if (!port) { *val = 0xffffffff; return PCIBIOS_DEVICE_NOT_FOUND; } /* Access the emulated PCI-to-PCI bridge */ if (bus->number == 0) return pci_bridge_emul_conf_read(&port->bridge, where, size, val); if (!mvebu_pcie_link_up(port)) { *val = 0xffffffff; return PCIBIOS_DEVICE_NOT_FOUND; } /* Access the real PCIe interface */ ret = mvebu_pcie_hw_rd_conf(port, bus, devfn, where, size, val); return ret; } static struct pci_ops mvebu_pcie_ops = { .read = mvebu_pcie_rd_conf, .write = mvebu_pcie_wr_conf, }; static resource_size_t mvebu_pcie_align_resource(struct pci_dev *dev, const struct resource *res, resource_size_t start, resource_size_t size, resource_size_t align) { if (dev->bus->number != 0) return start; /* * On the PCI-to-PCI bridge side, the I/O windows must have at * least a 64 KB size and the memory windows must have at * least a 1 MB size. Moreover, MBus windows need to have a * base address aligned on their size, and their size must be * a power of two. This means that if the BAR doesn't have a * power of two size, several MBus windows will actually be * created. We need to ensure that the biggest MBus window * (which will be the first one) is aligned on its size, which * explains the rounddown_pow_of_two() being done here. */ if (res->flags & IORESOURCE_IO) return round_up(start, max_t(resource_size_t, SZ_64K, rounddown_pow_of_two(size))); else if (res->flags & IORESOURCE_MEM) return round_up(start, max_t(resource_size_t, SZ_1M, rounddown_pow_of_two(size))); else return start; } static void __iomem *mvebu_pcie_map_registers(struct platform_device *pdev, struct device_node *np, struct mvebu_pcie_port *port) { struct resource regs; int ret = 0; ret = of_address_to_resource(np, 0, ®s); if (ret) return ERR_PTR(ret); return devm_ioremap_resource(&pdev->dev, ®s); } #define DT_FLAGS_TO_TYPE(flags) (((flags) >> 24) & 0x03) #define DT_TYPE_IO 0x1 #define DT_TYPE_MEM32 0x2 #define DT_CPUADDR_TO_TARGET(cpuaddr) (((cpuaddr) >> 56) & 0xFF) #define DT_CPUADDR_TO_ATTR(cpuaddr) (((cpuaddr) >> 48) & 0xFF) static int mvebu_get_tgt_attr(struct device_node *np, int devfn, unsigned long type, unsigned int *tgt, unsigned int *attr) { const int na = 3, ns = 2; const __be32 *range; int rlen, nranges, rangesz, pna, i; *tgt = -1; *attr = -1; range = of_get_property(np, "ranges", &rlen); if (!range) return -EINVAL; pna = of_n_addr_cells(np); rangesz = pna + na + ns; nranges = rlen / sizeof(__be32) / rangesz; for (i = 0; i < nranges; i++, range += rangesz) { u32 flags = of_read_number(range, 1); u32 slot = of_read_number(range + 1, 1); u64 cpuaddr = of_read_number(range + na, pna); unsigned long rtype; if (DT_FLAGS_TO_TYPE(flags) == DT_TYPE_IO) rtype = IORESOURCE_IO; else if (DT_FLAGS_TO_TYPE(flags) == DT_TYPE_MEM32) rtype = IORESOURCE_MEM; else continue; if (slot == PCI_SLOT(devfn) && type == rtype) { *tgt = DT_CPUADDR_TO_TARGET(cpuaddr); *attr = DT_CPUADDR_TO_ATTR(cpuaddr); return 0; } } return -ENOENT; } #ifdef CONFIG_PM_SLEEP static int mvebu_pcie_suspend(struct device *dev) { struct mvebu_pcie *pcie; int i; pcie = dev_get_drvdata(dev); for (i = 0; i < pcie->nports; i++) { struct mvebu_pcie_port *port = pcie->ports + i; port->saved_pcie_stat = mvebu_readl(port, PCIE_STAT_OFF); } return 0; } static int mvebu_pcie_resume(struct device *dev) { struct mvebu_pcie *pcie; int i; pcie = dev_get_drvdata(dev); for (i = 0; i < pcie->nports; i++) { struct mvebu_pcie_port *port = pcie->ports + i; mvebu_writel(port, port->saved_pcie_stat, PCIE_STAT_OFF); mvebu_pcie_setup_hw(port); } return 0; } #endif static void mvebu_pcie_port_clk_put(void *data) { struct mvebu_pcie_port *port = data; clk_put(port->clk); } static int mvebu_pcie_parse_port(struct mvebu_pcie *pcie, struct mvebu_pcie_port *port, struct device_node *child) { struct device *dev = &pcie->pdev->dev; enum of_gpio_flags flags; int reset_gpio, ret; port->pcie = pcie; if (of_property_read_u32(child, "marvell,pcie-port", &port->port)) { dev_warn(dev, "ignoring %pOF, missing pcie-port property\n", child); goto skip; } if (of_property_read_u32(child, "marvell,pcie-lane", &port->lane)) port->lane = 0; port->name = devm_kasprintf(dev, GFP_KERNEL, "pcie%d.%d", port->port, port->lane); if (!port->name) { ret = -ENOMEM; goto err; } port->devfn = of_pci_get_devfn(child); if (port->devfn < 0) goto skip; ret = mvebu_get_tgt_attr(dev->of_node, port->devfn, IORESOURCE_MEM, &port->mem_target, &port->mem_attr); if (ret < 0) { dev_err(dev, "%s: cannot get tgt/attr for mem window\n", port->name); goto skip; } if (resource_size(&pcie->io) != 0) { mvebu_get_tgt_attr(dev->of_node, port->devfn, IORESOURCE_IO, &port->io_target, &port->io_attr); } else { port->io_target = -1; port->io_attr = -1; } reset_gpio = of_get_named_gpio_flags(child, "reset-gpios", 0, &flags); if (reset_gpio == -EPROBE_DEFER) { ret = reset_gpio; goto err; } if (gpio_is_valid(reset_gpio)) { unsigned long gpio_flags; port->reset_name = devm_kasprintf(dev, GFP_KERNEL, "%s-reset", port->name); if (!port->reset_name) { ret = -ENOMEM; goto err; } if (flags & OF_GPIO_ACTIVE_LOW) { dev_info(dev, "%pOF: reset gpio is active low\n", child); gpio_flags = GPIOF_ACTIVE_LOW | GPIOF_OUT_INIT_LOW; } else { gpio_flags = GPIOF_OUT_INIT_HIGH; } ret = devm_gpio_request_one(dev, reset_gpio, gpio_flags, port->reset_name); if (ret) { if (ret == -EPROBE_DEFER) goto err; goto skip; } port->reset_gpio = gpio_to_desc(reset_gpio); } port->clk = of_clk_get_by_name(child, NULL); if (IS_ERR(port->clk)) { dev_err(dev, "%s: cannot get clock\n", port->name); goto skip; } ret = devm_add_action(dev, mvebu_pcie_port_clk_put, port); if (ret < 0) { clk_put(port->clk); goto err; } return 1; skip: ret = 0; /* In the case of skipping, we need to free these */ devm_kfree(dev, port->reset_name); port->reset_name = NULL; devm_kfree(dev, port->name); port->name = NULL; err: return ret; } /* * Power up a PCIe port. PCIe requires the refclk to be stable for 100µs * prior to releasing PERST. See table 2-4 in section 2.6.2 AC Specifications * of the PCI Express Card Electromechanical Specification, 1.1. */ static int mvebu_pcie_powerup(struct mvebu_pcie_port *port) { int ret; ret = clk_prepare_enable(port->clk); if (ret < 0) return ret; if (port->reset_gpio) { u32 reset_udelay = PCI_PM_D3COLD_WAIT * 1000; of_property_read_u32(port->dn, "reset-delay-us", &reset_udelay); udelay(100); gpiod_set_value_cansleep(port->reset_gpio, 0); msleep(reset_udelay / 1000); } return 0; } /* * Power down a PCIe port. Strictly, PCIe requires us to place the card * in D3hot state before asserting PERST#. */ static void mvebu_pcie_powerdown(struct mvebu_pcie_port *port) { gpiod_set_value_cansleep(port->reset_gpio, 1); clk_disable_unprepare(port->clk); } /* * We can't use devm_of_pci_get_host_bridge_resources() because we * need to parse our special DT properties encoding the MEM and IO * apertures. */ static int mvebu_pcie_parse_request_resources(struct mvebu_pcie *pcie) { struct device *dev = &pcie->pdev->dev; struct device_node *np = dev->of_node; int ret; INIT_LIST_HEAD(&pcie->resources); /* Get the bus range */ ret = of_pci_parse_bus_range(np, &pcie->busn); if (ret) { dev_err(dev, "failed to parse bus-range property: %d\n", ret); return ret; } pci_add_resource(&pcie->resources, &pcie->busn); /* Get the PCIe memory aperture */ mvebu_mbus_get_pcie_mem_aperture(&pcie->mem); if (resource_size(&pcie->mem) == 0) { dev_err(dev, "invalid memory aperture size\n"); return -EINVAL; } pcie->mem.name = "PCI MEM"; pci_add_resource(&pcie->resources, &pcie->mem); /* Get the PCIe IO aperture */ mvebu_mbus_get_pcie_io_aperture(&pcie->io); if (resource_size(&pcie->io) != 0) { pcie->realio.flags = pcie->io.flags; pcie->realio.start = PCIBIOS_MIN_IO; pcie->realio.end = min_t(resource_size_t, IO_SPACE_LIMIT - SZ_64K, resource_size(&pcie->io) - 1); pcie->realio.name = "PCI I/O"; pci_add_resource(&pcie->resources, &pcie->realio); } return devm_request_pci_bus_resources(dev, &pcie->resources); } /* * This is a copy of pci_host_probe(), except that it does the I/O * remap as the last step, once we are sure we won't fail. * * It should be removed once the I/O remap error handling issue has * been sorted out. */ static int mvebu_pci_host_probe(struct pci_host_bridge *bridge) { struct mvebu_pcie *pcie; struct pci_bus *bus, *child; int ret; ret = pci_scan_root_bus_bridge(bridge); if (ret < 0) { dev_err(bridge->dev.parent, "Scanning root bridge failed"); return ret; } pcie = pci_host_bridge_priv(bridge); if (resource_size(&pcie->io) != 0) { unsigned int i; for (i = 0; i < resource_size(&pcie->realio); i += SZ_64K) pci_ioremap_io(i, pcie->io.start + i); } bus = bridge->bus; /* * We insert PCI resources into the iomem_resource and * ioport_resource trees in either pci_bus_claim_resources() * or pci_bus_assign_resources(). */ if (pci_has_flag(PCI_PROBE_ONLY)) { pci_bus_claim_resources(bus); } else { pci_bus_size_bridges(bus); pci_bus_assign_resources(bus); list_for_each_entry(child, &bus->children, node) pcie_bus_configure_settings(child); } pci_bus_add_devices(bus); return 0; } static int mvebu_pcie_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mvebu_pcie *pcie; struct pci_host_bridge *bridge; struct device_node *np = dev->of_node; struct device_node *child; int num, i, ret; bridge = devm_pci_alloc_host_bridge(dev, sizeof(struct mvebu_pcie)); if (!bridge) return -ENOMEM; pcie = pci_host_bridge_priv(bridge); pcie->pdev = pdev; platform_set_drvdata(pdev, pcie); ret = mvebu_pcie_parse_request_resources(pcie); if (ret) return ret; num = of_get_available_child_count(np); pcie->ports = devm_kcalloc(dev, num, sizeof(*pcie->ports), GFP_KERNEL); if (!pcie->ports) return -ENOMEM; i = 0; for_each_available_child_of_node(np, child) { struct mvebu_pcie_port *port = &pcie->ports[i]; ret = mvebu_pcie_parse_port(pcie, port, child); if (ret < 0) { of_node_put(child); return ret; } else if (ret == 0) { continue; } port->dn = child; i++; } pcie->nports = i; for (i = 0; i < pcie->nports; i++) { struct mvebu_pcie_port *port = &pcie->ports[i]; child = port->dn; if (!child) continue; ret = mvebu_pcie_powerup(port); if (ret < 0) continue; port->base = mvebu_pcie_map_registers(pdev, child, port); if (IS_ERR(port->base)) { dev_err(dev, "%s: cannot map registers\n", port->name); port->base = NULL; mvebu_pcie_powerdown(port); continue; } mvebu_pcie_setup_hw(port); mvebu_pcie_set_local_dev_nr(port, 1); mvebu_pci_bridge_emul_init(port); } pcie->nports = i; list_splice_init(&pcie->resources, &bridge->windows); bridge->dev.parent = dev; bridge->sysdata = pcie; bridge->busnr = 0; bridge->ops = &mvebu_pcie_ops; bridge->map_irq = of_irq_parse_and_map_pci; bridge->swizzle_irq = pci_common_swizzle; bridge->align_resource = mvebu_pcie_align_resource; bridge->msi = pcie->msi; return mvebu_pci_host_probe(bridge); } static const struct of_device_id mvebu_pcie_of_match_table[] = { { .compatible = "marvell,armada-xp-pcie", }, { .compatible = "marvell,armada-370-pcie", }, { .compatible = "marvell,dove-pcie", }, { .compatible = "marvell,kirkwood-pcie", }, {}, }; static const struct dev_pm_ops mvebu_pcie_pm_ops = { SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(mvebu_pcie_suspend, mvebu_pcie_resume) }; static struct platform_driver mvebu_pcie_driver = { .driver = { .name = "mvebu-pcie", .of_match_table = mvebu_pcie_of_match_table, /* driver unloading/unbinding currently not supported */ .suppress_bind_attrs = true, .pm = &mvebu_pcie_pm_ops, }, .probe = mvebu_pcie_probe, }; builtin_platform_driver(mvebu_pcie_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1