Contributors: 15
Author Tokens Token Proportion Commits Commit Proportion
Sreedhara DS 1489 61.30% 4 10.53%
Andy Shevchenko 573 23.59% 12 31.58%
Kuppuswamy Sathyanarayanan 224 9.22% 5 13.16%
David Cohen 46 1.89% 2 5.26%
Alan Cox 25 1.03% 3 7.89%
Hong Liu 15 0.62% 2 5.26%
Arjan van de Ven 14 0.58% 2 5.26%
Paul Gortmaker 11 0.45% 1 2.63%
Jia-Ju Bai 8 0.33% 1 2.63%
Benoit Taine 6 0.25% 1 2.63%
Christophe Jaillet 6 0.25% 1 2.63%
Axel Lin 4 0.16% 1 2.63%
Feng Tang 3 0.12% 1 2.63%
Bhumika Goyal 3 0.12% 1 2.63%
Jianwei Yang 2 0.08% 1 2.63%
Total 2429 38


// SPDX-License-Identifier: GPL-2.0
/*
 * Driver for the Intel SCU IPC mechanism
 *
 * (C) Copyright 2008-2010,2015 Intel Corporation
 * Author: Sreedhara DS (sreedhara.ds@intel.com)
 *
 * SCU running in ARC processor communicates with other entity running in IA
 * core through IPC mechanism which in turn messaging between IA core ad SCU.
 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
 * along with other APIs.
 */

#include <linux/delay.h>
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/pm.h>
#include <linux/sfi.h>

#include <asm/intel-mid.h>
#include <asm/intel_scu_ipc.h>

/* IPC defines the following message types */
#define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
#define IPCMSG_BATTERY        0xEF /* Coulomb Counter Accumulator */
#define IPCMSG_FW_UPDATE      0xFE /* Firmware update */
#define IPCMSG_PCNTRL         0xFF /* Power controller unit read/write */
#define IPCMSG_FW_REVISION    0xF4 /* Get firmware revision */

/* Command id associated with message IPCMSG_PCNTRL */
#define IPC_CMD_PCNTRL_W      0 /* Register write */
#define IPC_CMD_PCNTRL_R      1 /* Register read */
#define IPC_CMD_PCNTRL_M      2 /* Register read-modify-write */

/*
 * IPC register summary
 *
 * IPC register blocks are memory mapped at fixed address of PCI BAR 0.
 * To read or write information to the SCU, driver writes to IPC-1 memory
 * mapped registers. The following is the IPC mechanism
 *
 * 1. IA core cDMI interface claims this transaction and converts it to a
 *    Transaction Layer Packet (TLP) message which is sent across the cDMI.
 *
 * 2. South Complex cDMI block receives this message and writes it to
 *    the IPC-1 register block, causing an interrupt to the SCU
 *
 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
 *    message handler is called within firmware.
 */

#define IPC_WWBUF_SIZE    20		/* IPC Write buffer Size */
#define IPC_RWBUF_SIZE    20		/* IPC Read buffer Size */
#define IPC_IOC	          0x100		/* IPC command register IOC bit */

#define PCI_DEVICE_ID_LINCROFT		0x082a
#define PCI_DEVICE_ID_PENWELL		0x080e
#define PCI_DEVICE_ID_CLOVERVIEW	0x08ea
#define PCI_DEVICE_ID_TANGIER		0x11a0

/* intel scu ipc driver data */
struct intel_scu_ipc_pdata_t {
	u32 i2c_base;
	u32 i2c_len;
	u8 irq_mode;
};

static const struct intel_scu_ipc_pdata_t intel_scu_ipc_lincroft_pdata = {
	.i2c_base = 0xff12b000,
	.i2c_len = 0x10,
	.irq_mode = 0,
};

/* Penwell and Cloverview */
static const struct intel_scu_ipc_pdata_t intel_scu_ipc_penwell_pdata = {
	.i2c_base = 0xff12b000,
	.i2c_len = 0x10,
	.irq_mode = 1,
};

static const struct intel_scu_ipc_pdata_t intel_scu_ipc_tangier_pdata = {
	.i2c_base  = 0xff00d000,
	.i2c_len = 0x10,
	.irq_mode = 0,
};

struct intel_scu_ipc_dev {
	struct device *dev;
	void __iomem *ipc_base;
	void __iomem *i2c_base;
	struct completion cmd_complete;
	u8 irq_mode;
};

static struct intel_scu_ipc_dev  ipcdev; /* Only one for now */

/*
 * IPC Read Buffer (Read Only):
 * 16 byte buffer for receiving data from SCU, if IPC command
 * processing results in response data
 */
#define IPC_READ_BUFFER		0x90

#define IPC_I2C_CNTRL_ADDR	0
#define I2C_DATA_ADDR		0x04

static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */

/*
 * Send ipc command
 * Command Register (Write Only):
 * A write to this register results in an interrupt to the SCU core processor
 * Format:
 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
 */
static inline void ipc_command(struct intel_scu_ipc_dev *scu, u32 cmd)
{
	if (scu->irq_mode) {
		reinit_completion(&scu->cmd_complete);
		writel(cmd | IPC_IOC, scu->ipc_base);
	}
	writel(cmd, scu->ipc_base);
}

/*
 * Write ipc data
 * IPC Write Buffer (Write Only):
 * 16-byte buffer for sending data associated with IPC command to
 * SCU. Size of the data is specified in the IPC_COMMAND_REG register
 */
static inline void ipc_data_writel(struct intel_scu_ipc_dev *scu, u32 data, u32 offset)
{
	writel(data, scu->ipc_base + 0x80 + offset);
}

/*
 * Status Register (Read Only):
 * Driver will read this register to get the ready/busy status of the IPC
 * block and error status of the IPC command that was just processed by SCU
 * Format:
 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
 */
static inline u8 ipc_read_status(struct intel_scu_ipc_dev *scu)
{
	return __raw_readl(scu->ipc_base + 0x04);
}

/* Read ipc byte data */
static inline u8 ipc_data_readb(struct intel_scu_ipc_dev *scu, u32 offset)
{
	return readb(scu->ipc_base + IPC_READ_BUFFER + offset);
}

/* Read ipc u32 data */
static inline u32 ipc_data_readl(struct intel_scu_ipc_dev *scu, u32 offset)
{
	return readl(scu->ipc_base + IPC_READ_BUFFER + offset);
}

/* Wait till scu status is busy */
static inline int busy_loop(struct intel_scu_ipc_dev *scu)
{
	u32 status = ipc_read_status(scu);
	u32 loop_count = 100000;

	/* break if scu doesn't reset busy bit after huge retry */
	while ((status & BIT(0)) && --loop_count) {
		udelay(1); /* scu processing time is in few u secods */
		status = ipc_read_status(scu);
	}

	if (status & BIT(0)) {
		dev_err(scu->dev, "IPC timed out");
		return -ETIMEDOUT;
	}

	if (status & BIT(1))
		return -EIO;

	return 0;
}

/* Wait till ipc ioc interrupt is received or timeout in 3 HZ */
static inline int ipc_wait_for_interrupt(struct intel_scu_ipc_dev *scu)
{
	int status;

	if (!wait_for_completion_timeout(&scu->cmd_complete, 3 * HZ)) {
		dev_err(scu->dev, "IPC timed out\n");
		return -ETIMEDOUT;
	}

	status = ipc_read_status(scu);
	if (status & BIT(1))
		return -EIO;

	return 0;
}

static int intel_scu_ipc_check_status(struct intel_scu_ipc_dev *scu)
{
	return scu->irq_mode ? ipc_wait_for_interrupt(scu) : busy_loop(scu);
}

/* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
{
	struct intel_scu_ipc_dev *scu = &ipcdev;
	int nc;
	u32 offset = 0;
	int err;
	u8 cbuf[IPC_WWBUF_SIZE];
	u32 *wbuf = (u32 *)&cbuf;

	memset(cbuf, 0, sizeof(cbuf));

	mutex_lock(&ipclock);

	if (scu->dev == NULL) {
		mutex_unlock(&ipclock);
		return -ENODEV;
	}

	for (nc = 0; nc < count; nc++, offset += 2) {
		cbuf[offset] = addr[nc];
		cbuf[offset + 1] = addr[nc] >> 8;
	}

	if (id == IPC_CMD_PCNTRL_R) {
		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
			ipc_data_writel(scu, wbuf[nc], offset);
		ipc_command(scu, (count * 2) << 16 | id << 12 | 0 << 8 | op);
	} else if (id == IPC_CMD_PCNTRL_W) {
		for (nc = 0; nc < count; nc++, offset += 1)
			cbuf[offset] = data[nc];
		for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
			ipc_data_writel(scu, wbuf[nc], offset);
		ipc_command(scu, (count * 3) << 16 | id << 12 | 0 << 8 | op);
	} else if (id == IPC_CMD_PCNTRL_M) {
		cbuf[offset] = data[0];
		cbuf[offset + 1] = data[1];
		ipc_data_writel(scu, wbuf[0], 0); /* Write wbuff */
		ipc_command(scu, 4 << 16 | id << 12 | 0 << 8 | op);
	}

	err = intel_scu_ipc_check_status(scu);
	if (!err && id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
		/* Workaround: values are read as 0 without memcpy_fromio */
		memcpy_fromio(cbuf, scu->ipc_base + 0x90, 16);
		for (nc = 0; nc < count; nc++)
			data[nc] = ipc_data_readb(scu, nc);
	}
	mutex_unlock(&ipclock);
	return err;
}

/**
 *	intel_scu_ipc_ioread8		-	read a word via the SCU
 *	@addr: register on SCU
 *	@data: return pointer for read byte
 *
 *	Read a single register. Returns 0 on success or an error code. All
 *	locking between SCU accesses is handled for the caller.
 *
 *	This function may sleep.
 */
int intel_scu_ipc_ioread8(u16 addr, u8 *data)
{
	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
}
EXPORT_SYMBOL(intel_scu_ipc_ioread8);

/**
 *	intel_scu_ipc_ioread16		-	read a word via the SCU
 *	@addr: register on SCU
 *	@data: return pointer for read word
 *
 *	Read a register pair. Returns 0 on success or an error code. All
 *	locking between SCU accesses is handled for the caller.
 *
 *	This function may sleep.
 */
int intel_scu_ipc_ioread16(u16 addr, u16 *data)
{
	u16 x[2] = {addr, addr + 1};
	return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
}
EXPORT_SYMBOL(intel_scu_ipc_ioread16);

/**
 *	intel_scu_ipc_ioread32		-	read a dword via the SCU
 *	@addr: register on SCU
 *	@data: return pointer for read dword
 *
 *	Read four registers. Returns 0 on success or an error code. All
 *	locking between SCU accesses is handled for the caller.
 *
 *	This function may sleep.
 */
int intel_scu_ipc_ioread32(u16 addr, u32 *data)
{
	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
	return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
}
EXPORT_SYMBOL(intel_scu_ipc_ioread32);

/**
 *	intel_scu_ipc_iowrite8		-	write a byte via the SCU
 *	@addr: register on SCU
 *	@data: byte to write
 *
 *	Write a single register. Returns 0 on success or an error code. All
 *	locking between SCU accesses is handled for the caller.
 *
 *	This function may sleep.
 */
int intel_scu_ipc_iowrite8(u16 addr, u8 data)
{
	return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
}
EXPORT_SYMBOL(intel_scu_ipc_iowrite8);

/**
 *	intel_scu_ipc_iowrite16		-	write a word via the SCU
 *	@addr: register on SCU
 *	@data: word to write
 *
 *	Write two registers. Returns 0 on success or an error code. All
 *	locking between SCU accesses is handled for the caller.
 *
 *	This function may sleep.
 */
int intel_scu_ipc_iowrite16(u16 addr, u16 data)
{
	u16 x[2] = {addr, addr + 1};
	return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
}
EXPORT_SYMBOL(intel_scu_ipc_iowrite16);

/**
 *	intel_scu_ipc_iowrite32		-	write a dword via the SCU
 *	@addr: register on SCU
 *	@data: dword to write
 *
 *	Write four registers. Returns 0 on success or an error code. All
 *	locking between SCU accesses is handled for the caller.
 *
 *	This function may sleep.
 */
int intel_scu_ipc_iowrite32(u16 addr, u32 data)
{
	u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
	return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
}
EXPORT_SYMBOL(intel_scu_ipc_iowrite32);

/**
 *	intel_scu_ipc_readvv		-	read a set of registers
 *	@addr: register list
 *	@data: bytes to return
 *	@len: length of array
 *
 *	Read registers. Returns 0 on success or an error code. All
 *	locking between SCU accesses is handled for the caller.
 *
 *	The largest array length permitted by the hardware is 5 items.
 *
 *	This function may sleep.
 */
int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
{
	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
}
EXPORT_SYMBOL(intel_scu_ipc_readv);

/**
 *	intel_scu_ipc_writev		-	write a set of registers
 *	@addr: register list
 *	@data: bytes to write
 *	@len: length of array
 *
 *	Write registers. Returns 0 on success or an error code. All
 *	locking between SCU accesses is handled for the caller.
 *
 *	The largest array length permitted by the hardware is 5 items.
 *
 *	This function may sleep.
 *
 */
int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
{
	return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
}
EXPORT_SYMBOL(intel_scu_ipc_writev);

/**
 *	intel_scu_ipc_update_register	-	r/m/w a register
 *	@addr: register address
 *	@bits: bits to update
 *	@mask: mask of bits to update
 *
 *	Read-modify-write power control unit register. The first data argument
 *	must be register value and second is mask value
 *	mask is a bitmap that indicates which bits to update.
 *	0 = masked. Don't modify this bit, 1 = modify this bit.
 *	returns 0 on success or an error code.
 *
 *	This function may sleep. Locking between SCU accesses is handled
 *	for the caller.
 */
int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
{
	u8 data[2] = { bits, mask };
	return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
}
EXPORT_SYMBOL(intel_scu_ipc_update_register);

/**
 *	intel_scu_ipc_simple_command	-	send a simple command
 *	@cmd: command
 *	@sub: sub type
 *
 *	Issue a simple command to the SCU. Do not use this interface if
 *	you must then access data as any data values may be overwritten
 *	by another SCU access by the time this function returns.
 *
 *	This function may sleep. Locking for SCU accesses is handled for
 *	the caller.
 */
int intel_scu_ipc_simple_command(int cmd, int sub)
{
	struct intel_scu_ipc_dev *scu = &ipcdev;
	int err;

	mutex_lock(&ipclock);
	if (scu->dev == NULL) {
		mutex_unlock(&ipclock);
		return -ENODEV;
	}
	ipc_command(scu, sub << 12 | cmd);
	err = intel_scu_ipc_check_status(scu);
	mutex_unlock(&ipclock);
	return err;
}
EXPORT_SYMBOL(intel_scu_ipc_simple_command);

/**
 *	intel_scu_ipc_command	-	command with data
 *	@cmd: command
 *	@sub: sub type
 *	@in: input data
 *	@inlen: input length in dwords
 *	@out: output data
 *	@outlein: output length in dwords
 *
 *	Issue a command to the SCU which involves data transfers. Do the
 *	data copies under the lock but leave it for the caller to interpret
 */
int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
			  u32 *out, int outlen)
{
	struct intel_scu_ipc_dev *scu = &ipcdev;
	int i, err;

	mutex_lock(&ipclock);
	if (scu->dev == NULL) {
		mutex_unlock(&ipclock);
		return -ENODEV;
	}

	for (i = 0; i < inlen; i++)
		ipc_data_writel(scu, *in++, 4 * i);

	ipc_command(scu, (inlen << 16) | (sub << 12) | cmd);
	err = intel_scu_ipc_check_status(scu);

	if (!err) {
		for (i = 0; i < outlen; i++)
			*out++ = ipc_data_readl(scu, 4 * i);
	}

	mutex_unlock(&ipclock);
	return err;
}
EXPORT_SYMBOL(intel_scu_ipc_command);

#define IPC_SPTR		0x08
#define IPC_DPTR		0x0C

/**
 * intel_scu_ipc_raw_command() - IPC command with data and pointers
 * @cmd:	IPC command code.
 * @sub:	IPC command sub type.
 * @in:		input data of this IPC command.
 * @inlen:	input data length in dwords.
 * @out:	output data of this IPC command.
 * @outlen:	output data length in dwords.
 * @sptr:	data writing to SPTR register.
 * @dptr:	data writing to DPTR register.
 *
 * Send an IPC command to SCU with input/output data and source/dest pointers.
 *
 * Return:	an IPC error code or 0 on success.
 */
int intel_scu_ipc_raw_command(int cmd, int sub, u8 *in, int inlen,
			      u32 *out, int outlen, u32 dptr, u32 sptr)
{
	struct intel_scu_ipc_dev *scu = &ipcdev;
	int inbuflen = DIV_ROUND_UP(inlen, 4);
	u32 inbuf[4];
	int i, err;

	/* Up to 16 bytes */
	if (inbuflen > 4)
		return -EINVAL;

	mutex_lock(&ipclock);
	if (scu->dev == NULL) {
		mutex_unlock(&ipclock);
		return -ENODEV;
	}

	writel(dptr, scu->ipc_base + IPC_DPTR);
	writel(sptr, scu->ipc_base + IPC_SPTR);

	/*
	 * SRAM controller doesn't support 8-bit writes, it only
	 * supports 32-bit writes, so we have to copy input data into
	 * the temporary buffer, and SCU FW will use the inlen to
	 * determine the actual input data length in the temporary
	 * buffer.
	 */
	memcpy(inbuf, in, inlen);

	for (i = 0; i < inbuflen; i++)
		ipc_data_writel(scu, inbuf[i], 4 * i);

	ipc_command(scu, (inlen << 16) | (sub << 12) | cmd);
	err = intel_scu_ipc_check_status(scu);
	if (!err) {
		for (i = 0; i < outlen; i++)
			*out++ = ipc_data_readl(scu, 4 * i);
	}

	mutex_unlock(&ipclock);
	return err;
}
EXPORT_SYMBOL_GPL(intel_scu_ipc_raw_command);

/* I2C commands */
#define IPC_I2C_WRITE 1 /* I2C Write command */
#define IPC_I2C_READ  2 /* I2C Read command */

/**
 *	intel_scu_ipc_i2c_cntrl		-	I2C read/write operations
 *	@addr: I2C address + command bits
 *	@data: data to read/write
 *
 *	Perform an an I2C read/write operation via the SCU. All locking is
 *	handled for the caller. This function may sleep.
 *
 *	Returns an error code or 0 on success.
 *
 *	This has to be in the IPC driver for the locking.
 */
int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
{
	struct intel_scu_ipc_dev *scu = &ipcdev;
	u32 cmd = 0;

	mutex_lock(&ipclock);
	if (scu->dev == NULL) {
		mutex_unlock(&ipclock);
		return -ENODEV;
	}
	cmd = (addr >> 24) & 0xFF;
	if (cmd == IPC_I2C_READ) {
		writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR);
		/* Write not getting updated without delay */
		usleep_range(1000, 2000);
		*data = readl(scu->i2c_base + I2C_DATA_ADDR);
	} else if (cmd == IPC_I2C_WRITE) {
		writel(*data, scu->i2c_base + I2C_DATA_ADDR);
		usleep_range(1000, 2000);
		writel(addr, scu->i2c_base + IPC_I2C_CNTRL_ADDR);
	} else {
		dev_err(scu->dev,
			"intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);

		mutex_unlock(&ipclock);
		return -EIO;
	}
	mutex_unlock(&ipclock);
	return 0;
}
EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);

/*
 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
 * When ioc bit is set to 1, caller api must wait for interrupt handler called
 * which in turn unlocks the caller api. Currently this is not used
 *
 * This is edge triggered so we need take no action to clear anything
 */
static irqreturn_t ioc(int irq, void *dev_id)
{
	struct intel_scu_ipc_dev *scu = dev_id;

	if (scu->irq_mode)
		complete(&scu->cmd_complete);

	return IRQ_HANDLED;
}

/**
 *	ipc_probe	-	probe an Intel SCU IPC
 *	@pdev: the PCI device matching
 *	@id: entry in the match table
 *
 *	Enable and install an intel SCU IPC. This appears in the PCI space
 *	but uses some hard coded addresses as well.
 */
static int ipc_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
	int err;
	struct intel_scu_ipc_dev *scu = &ipcdev;
	struct intel_scu_ipc_pdata_t *pdata;

	if (scu->dev)		/* We support only one SCU */
		return -EBUSY;

	pdata = (struct intel_scu_ipc_pdata_t *)id->driver_data;
	if (!pdata)
		return -ENODEV;

	scu->irq_mode = pdata->irq_mode;

	err = pcim_enable_device(pdev);
	if (err)
		return err;

	err = pcim_iomap_regions(pdev, 1 << 0, pci_name(pdev));
	if (err)
		return err;

	init_completion(&scu->cmd_complete);

	scu->ipc_base = pcim_iomap_table(pdev)[0];

	scu->i2c_base = ioremap_nocache(pdata->i2c_base, pdata->i2c_len);
	if (!scu->i2c_base)
		return -ENOMEM;

	err = devm_request_irq(&pdev->dev, pdev->irq, ioc, 0, "intel_scu_ipc",
			       scu);
	if (err)
		return err;

	/* Assign device at last */
	scu->dev = &pdev->dev;

	intel_scu_devices_create();

	pci_set_drvdata(pdev, scu);
	return 0;
}

#define SCU_DEVICE(id, pdata)	{PCI_VDEVICE(INTEL, id), (kernel_ulong_t)&pdata}

static const struct pci_device_id pci_ids[] = {
	SCU_DEVICE(PCI_DEVICE_ID_LINCROFT,	intel_scu_ipc_lincroft_pdata),
	SCU_DEVICE(PCI_DEVICE_ID_PENWELL,	intel_scu_ipc_penwell_pdata),
	SCU_DEVICE(PCI_DEVICE_ID_CLOVERVIEW,	intel_scu_ipc_penwell_pdata),
	SCU_DEVICE(PCI_DEVICE_ID_TANGIER,	intel_scu_ipc_tangier_pdata),
	{}
};

static struct pci_driver ipc_driver = {
	.driver = {
		.suppress_bind_attrs = true,
	},
	.name = "intel_scu_ipc",
	.id_table = pci_ids,
	.probe = ipc_probe,
};
builtin_pci_driver(ipc_driver);