Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Richard Cochran | 1509 | 79.21% | 10 | 40.00% |
Grygorii Strashko | 205 | 10.76% | 1 | 4.00% |
Jiri Benc | 50 | 2.62% | 1 | 4.00% |
Dmitry Torokhov | 31 | 1.63% | 1 | 4.00% |
Miroslav Lichvar | 26 | 1.36% | 1 | 4.00% |
Ben Hutchings | 20 | 1.05% | 1 | 4.00% |
Thomas Gleixner | 15 | 0.79% | 2 | 8.00% |
Yue haibing | 14 | 0.73% | 1 | 4.00% |
Dan Carpenter | 9 | 0.47% | 1 | 4.00% |
Christophe Jaillet | 8 | 0.42% | 1 | 4.00% |
Deepa Dinamani | 7 | 0.37% | 2 | 8.00% |
Shalom Toledo | 5 | 0.26% | 1 | 4.00% |
Rasmus Villemoes | 4 | 0.21% | 1 | 4.00% |
Greg Kroah-Hartman | 2 | 0.10% | 1 | 4.00% |
Total | 1905 | 25 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * PTP 1588 clock support * * Copyright (C) 2010 OMICRON electronics GmbH */ #include <linux/idr.h> #include <linux/device.h> #include <linux/err.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/posix-clock.h> #include <linux/pps_kernel.h> #include <linux/slab.h> #include <linux/syscalls.h> #include <linux/uaccess.h> #include <uapi/linux/sched/types.h> #include "ptp_private.h" #define PTP_MAX_ALARMS 4 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT) #define PTP_PPS_EVENT PPS_CAPTUREASSERT #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC) /* private globals */ static dev_t ptp_devt; static struct class *ptp_class; static DEFINE_IDA(ptp_clocks_map); /* time stamp event queue operations */ static inline int queue_free(struct timestamp_event_queue *q) { return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1; } static void enqueue_external_timestamp(struct timestamp_event_queue *queue, struct ptp_clock_event *src) { struct ptp_extts_event *dst; unsigned long flags; s64 seconds; u32 remainder; seconds = div_u64_rem(src->timestamp, 1000000000, &remainder); spin_lock_irqsave(&queue->lock, flags); dst = &queue->buf[queue->tail]; dst->index = src->index; dst->t.sec = seconds; dst->t.nsec = remainder; if (!queue_free(queue)) queue->head = (queue->head + 1) % PTP_MAX_TIMESTAMPS; queue->tail = (queue->tail + 1) % PTP_MAX_TIMESTAMPS; spin_unlock_irqrestore(&queue->lock, flags); } s32 scaled_ppm_to_ppb(long ppm) { /* * The 'freq' field in the 'struct timex' is in parts per * million, but with a 16 bit binary fractional field. * * We want to calculate * * ppb = scaled_ppm * 1000 / 2^16 * * which simplifies to * * ppb = scaled_ppm * 125 / 2^13 */ s64 ppb = 1 + ppm; ppb *= 125; ppb >>= 13; return (s32) ppb; } EXPORT_SYMBOL(scaled_ppm_to_ppb); /* posix clock implementation */ static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp) { tp->tv_sec = 0; tp->tv_nsec = 1; return 0; } static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp) { struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); return ptp->info->settime64(ptp->info, tp); } static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp) { struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); int err; if (ptp->info->gettimex64) err = ptp->info->gettimex64(ptp->info, tp, NULL); else err = ptp->info->gettime64(ptp->info, tp); return err; } static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx) { struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); struct ptp_clock_info *ops; int err = -EOPNOTSUPP; ops = ptp->info; if (tx->modes & ADJ_SETOFFSET) { struct timespec64 ts; ktime_t kt; s64 delta; ts.tv_sec = tx->time.tv_sec; ts.tv_nsec = tx->time.tv_usec; if (!(tx->modes & ADJ_NANO)) ts.tv_nsec *= 1000; if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC) return -EINVAL; kt = timespec64_to_ktime(ts); delta = ktime_to_ns(kt); err = ops->adjtime(ops, delta); } else if (tx->modes & ADJ_FREQUENCY) { s32 ppb = scaled_ppm_to_ppb(tx->freq); if (ppb > ops->max_adj || ppb < -ops->max_adj) return -ERANGE; if (ops->adjfine) err = ops->adjfine(ops, tx->freq); else err = ops->adjfreq(ops, ppb); ptp->dialed_frequency = tx->freq; } else if (tx->modes == 0) { tx->freq = ptp->dialed_frequency; err = 0; } return err; } static struct posix_clock_operations ptp_clock_ops = { .owner = THIS_MODULE, .clock_adjtime = ptp_clock_adjtime, .clock_gettime = ptp_clock_gettime, .clock_getres = ptp_clock_getres, .clock_settime = ptp_clock_settime, .ioctl = ptp_ioctl, .open = ptp_open, .poll = ptp_poll, .read = ptp_read, }; static void delete_ptp_clock(struct posix_clock *pc) { struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock); mutex_destroy(&ptp->tsevq_mux); mutex_destroy(&ptp->pincfg_mux); ida_simple_remove(&ptp_clocks_map, ptp->index); kfree(ptp); } static void ptp_aux_kworker(struct kthread_work *work) { struct ptp_clock *ptp = container_of(work, struct ptp_clock, aux_work.work); struct ptp_clock_info *info = ptp->info; long delay; delay = info->do_aux_work(info); if (delay >= 0) kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay); } /* public interface */ struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info, struct device *parent) { struct ptp_clock *ptp; int err = 0, index, major = MAJOR(ptp_devt); if (info->n_alarm > PTP_MAX_ALARMS) return ERR_PTR(-EINVAL); /* Initialize a clock structure. */ err = -ENOMEM; ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL); if (ptp == NULL) goto no_memory; index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL); if (index < 0) { err = index; goto no_slot; } ptp->clock.ops = ptp_clock_ops; ptp->clock.release = delete_ptp_clock; ptp->info = info; ptp->devid = MKDEV(major, index); ptp->index = index; spin_lock_init(&ptp->tsevq.lock); mutex_init(&ptp->tsevq_mux); mutex_init(&ptp->pincfg_mux); init_waitqueue_head(&ptp->tsev_wq); if (ptp->info->do_aux_work) { kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker); ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index); if (IS_ERR(ptp->kworker)) { err = PTR_ERR(ptp->kworker); pr_err("failed to create ptp aux_worker %d\n", err); goto kworker_err; } } err = ptp_populate_pin_groups(ptp); if (err) goto no_pin_groups; /* Create a new device in our class. */ ptp->dev = device_create_with_groups(ptp_class, parent, ptp->devid, ptp, ptp->pin_attr_groups, "ptp%d", ptp->index); if (IS_ERR(ptp->dev)) { err = PTR_ERR(ptp->dev); goto no_device; } /* Register a new PPS source. */ if (info->pps) { struct pps_source_info pps; memset(&pps, 0, sizeof(pps)); snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index); pps.mode = PTP_PPS_MODE; pps.owner = info->owner; ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS); if (IS_ERR(ptp->pps_source)) { err = PTR_ERR(ptp->pps_source); pr_err("failed to register pps source\n"); goto no_pps; } } /* Create a posix clock. */ err = posix_clock_register(&ptp->clock, ptp->devid); if (err) { pr_err("failed to create posix clock\n"); goto no_clock; } return ptp; no_clock: if (ptp->pps_source) pps_unregister_source(ptp->pps_source); no_pps: device_destroy(ptp_class, ptp->devid); no_device: ptp_cleanup_pin_groups(ptp); no_pin_groups: if (ptp->kworker) kthread_destroy_worker(ptp->kworker); kworker_err: mutex_destroy(&ptp->tsevq_mux); mutex_destroy(&ptp->pincfg_mux); ida_simple_remove(&ptp_clocks_map, index); no_slot: kfree(ptp); no_memory: return ERR_PTR(err); } EXPORT_SYMBOL(ptp_clock_register); int ptp_clock_unregister(struct ptp_clock *ptp) { ptp->defunct = 1; wake_up_interruptible(&ptp->tsev_wq); if (ptp->kworker) { kthread_cancel_delayed_work_sync(&ptp->aux_work); kthread_destroy_worker(ptp->kworker); } /* Release the clock's resources. */ if (ptp->pps_source) pps_unregister_source(ptp->pps_source); device_destroy(ptp_class, ptp->devid); ptp_cleanup_pin_groups(ptp); posix_clock_unregister(&ptp->clock); return 0; } EXPORT_SYMBOL(ptp_clock_unregister); void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event) { struct pps_event_time evt; switch (event->type) { case PTP_CLOCK_ALARM: break; case PTP_CLOCK_EXTTS: enqueue_external_timestamp(&ptp->tsevq, event); wake_up_interruptible(&ptp->tsev_wq); break; case PTP_CLOCK_PPS: pps_get_ts(&evt); pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL); break; case PTP_CLOCK_PPSUSR: pps_event(ptp->pps_source, &event->pps_times, PTP_PPS_EVENT, NULL); break; } } EXPORT_SYMBOL(ptp_clock_event); int ptp_clock_index(struct ptp_clock *ptp) { return ptp->index; } EXPORT_SYMBOL(ptp_clock_index); int ptp_find_pin(struct ptp_clock *ptp, enum ptp_pin_function func, unsigned int chan) { struct ptp_pin_desc *pin = NULL; int i; mutex_lock(&ptp->pincfg_mux); for (i = 0; i < ptp->info->n_pins; i++) { if (ptp->info->pin_config[i].func == func && ptp->info->pin_config[i].chan == chan) { pin = &ptp->info->pin_config[i]; break; } } mutex_unlock(&ptp->pincfg_mux); return pin ? i : -1; } EXPORT_SYMBOL(ptp_find_pin); int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay) { return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay); } EXPORT_SYMBOL(ptp_schedule_worker); /* module operations */ static void __exit ptp_exit(void) { class_destroy(ptp_class); unregister_chrdev_region(ptp_devt, MINORMASK + 1); ida_destroy(&ptp_clocks_map); } static int __init ptp_init(void) { int err; ptp_class = class_create(THIS_MODULE, "ptp"); if (IS_ERR(ptp_class)) { pr_err("ptp: failed to allocate class\n"); return PTR_ERR(ptp_class); } err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp"); if (err < 0) { pr_err("ptp: failed to allocate device region\n"); goto no_region; } ptp_class->dev_groups = ptp_groups; pr_info("PTP clock support registered\n"); return 0; no_region: class_destroy(ptp_class); return err; } subsys_initcall(ptp_init); module_exit(ptp_exit); MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>"); MODULE_DESCRIPTION("PTP clocks support"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1