Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Buesch | 1726 | 39.01% | 7 | 29.17% |
Heiko Schocher | 1379 | 31.17% | 1 | 4.17% |
Mylène Josserand | 1194 | 26.99% | 7 | 29.17% |
Javier Martinez Canillas | 47 | 1.06% | 1 | 4.17% |
Arnd Bergmann | 29 | 0.66% | 1 | 4.17% |
Gregory Hermant | 25 | 0.57% | 1 | 4.17% |
Dan Carpenter | 9 | 0.20% | 1 | 4.17% |
Alexandre Belloni | 8 | 0.18% | 1 | 4.17% |
Jingoo Han | 3 | 0.07% | 1 | 4.17% |
Thomas Gleixner | 2 | 0.05% | 1 | 4.17% |
Arvind Yadav | 1 | 0.02% | 1 | 4.17% |
Axel Lin | 1 | 0.02% | 1 | 4.17% |
Total | 4424 | 24 |
// SPDX-License-Identifier: GPL-2.0-only /* * Micro Crystal RV-3029 / RV-3049 rtc class driver * * Author: Gregory Hermant <gregory.hermant@calao-systems.com> * Michael Buesch <m@bues.ch> * * based on previously existing rtc class drivers */ #include <linux/module.h> #include <linux/i2c.h> #include <linux/spi/spi.h> #include <linux/bcd.h> #include <linux/rtc.h> #include <linux/delay.h> #include <linux/of.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/regmap.h> /* Register map */ /* control section */ #define RV3029_ONOFF_CTRL 0x00 #define RV3029_ONOFF_CTRL_WE BIT(0) #define RV3029_ONOFF_CTRL_TE BIT(1) #define RV3029_ONOFF_CTRL_TAR BIT(2) #define RV3029_ONOFF_CTRL_EERE BIT(3) #define RV3029_ONOFF_CTRL_SRON BIT(4) #define RV3029_ONOFF_CTRL_TD0 BIT(5) #define RV3029_ONOFF_CTRL_TD1 BIT(6) #define RV3029_ONOFF_CTRL_CLKINT BIT(7) #define RV3029_IRQ_CTRL 0x01 #define RV3029_IRQ_CTRL_AIE BIT(0) #define RV3029_IRQ_CTRL_TIE BIT(1) #define RV3029_IRQ_CTRL_V1IE BIT(2) #define RV3029_IRQ_CTRL_V2IE BIT(3) #define RV3029_IRQ_CTRL_SRIE BIT(4) #define RV3029_IRQ_FLAGS 0x02 #define RV3029_IRQ_FLAGS_AF BIT(0) #define RV3029_IRQ_FLAGS_TF BIT(1) #define RV3029_IRQ_FLAGS_V1IF BIT(2) #define RV3029_IRQ_FLAGS_V2IF BIT(3) #define RV3029_IRQ_FLAGS_SRF BIT(4) #define RV3029_STATUS 0x03 #define RV3029_STATUS_VLOW1 BIT(2) #define RV3029_STATUS_VLOW2 BIT(3) #define RV3029_STATUS_SR BIT(4) #define RV3029_STATUS_PON BIT(5) #define RV3029_STATUS_EEBUSY BIT(7) #define RV3029_RST_CTRL 0x04 #define RV3029_RST_CTRL_SYSR BIT(4) #define RV3029_CONTROL_SECTION_LEN 0x05 /* watch section */ #define RV3029_W_SEC 0x08 #define RV3029_W_MINUTES 0x09 #define RV3029_W_HOURS 0x0A #define RV3029_REG_HR_12_24 BIT(6) /* 24h/12h mode */ #define RV3029_REG_HR_PM BIT(5) /* PM/AM bit in 12h mode */ #define RV3029_W_DATE 0x0B #define RV3029_W_DAYS 0x0C #define RV3029_W_MONTHS 0x0D #define RV3029_W_YEARS 0x0E #define RV3029_WATCH_SECTION_LEN 0x07 /* alarm section */ #define RV3029_A_SC 0x10 #define RV3029_A_MN 0x11 #define RV3029_A_HR 0x12 #define RV3029_A_DT 0x13 #define RV3029_A_DW 0x14 #define RV3029_A_MO 0x15 #define RV3029_A_YR 0x16 #define RV3029_A_AE_X BIT(7) #define RV3029_ALARM_SECTION_LEN 0x07 /* timer section */ #define RV3029_TIMER_LOW 0x18 #define RV3029_TIMER_HIGH 0x19 /* temperature section */ #define RV3029_TEMP_PAGE 0x20 /* eeprom data section */ #define RV3029_E2P_EEDATA1 0x28 #define RV3029_E2P_EEDATA2 0x29 #define RV3029_E2PDATA_SECTION_LEN 0x02 /* eeprom control section */ #define RV3029_CONTROL_E2P_EECTRL 0x30 #define RV3029_EECTRL_THP BIT(0) /* temp scan interval */ #define RV3029_EECTRL_THE BIT(1) /* thermometer enable */ #define RV3029_EECTRL_FD0 BIT(2) /* CLKOUT */ #define RV3029_EECTRL_FD1 BIT(3) /* CLKOUT */ #define RV3029_TRICKLE_1K BIT(4) /* 1.5K resistance */ #define RV3029_TRICKLE_5K BIT(5) /* 5K resistance */ #define RV3029_TRICKLE_20K BIT(6) /* 20K resistance */ #define RV3029_TRICKLE_80K BIT(7) /* 80K resistance */ #define RV3029_TRICKLE_MASK (RV3029_TRICKLE_1K |\ RV3029_TRICKLE_5K |\ RV3029_TRICKLE_20K |\ RV3029_TRICKLE_80K) #define RV3029_TRICKLE_SHIFT 4 #define RV3029_CONTROL_E2P_XOFFS 0x31 /* XTAL offset */ #define RV3029_CONTROL_E2P_XOFFS_SIGN BIT(7) /* Sign: 1->pos, 0->neg */ #define RV3029_CONTROL_E2P_QCOEF 0x32 /* XTAL temp drift coef */ #define RV3029_CONTROL_E2P_TURNOVER 0x33 /* XTAL turnover temp (in *C) */ #define RV3029_CONTROL_E2P_TOV_MASK 0x3F /* XTAL turnover temp mask */ /* user ram section */ #define RV3029_USR1_RAM_PAGE 0x38 #define RV3029_USR1_SECTION_LEN 0x04 #define RV3029_USR2_RAM_PAGE 0x3C #define RV3029_USR2_SECTION_LEN 0x04 struct rv3029_data { struct device *dev; struct rtc_device *rtc; struct regmap *regmap; int irq; }; static int rv3029_read_regs(struct device *dev, u8 reg, u8 *buf, unsigned int len) { struct rv3029_data *rv3029 = dev_get_drvdata(dev); if ((reg > RV3029_USR1_RAM_PAGE + 7) || (reg + len > RV3029_USR1_RAM_PAGE + 8)) return -EINVAL; return regmap_bulk_read(rv3029->regmap, reg, buf, len); } static int rv3029_write_regs(struct device *dev, u8 reg, u8 const buf[], unsigned int len) { struct rv3029_data *rv3029 = dev_get_drvdata(dev); if ((reg > RV3029_USR1_RAM_PAGE + 7) || (reg + len > RV3029_USR1_RAM_PAGE + 8)) return -EINVAL; return regmap_bulk_write(rv3029->regmap, reg, buf, len); } static int rv3029_update_bits(struct device *dev, u8 reg, u8 mask, u8 set) { u8 buf; int ret; ret = rv3029_read_regs(dev, reg, &buf, 1); if (ret < 0) return ret; buf &= ~mask; buf |= set & mask; ret = rv3029_write_regs(dev, reg, &buf, 1); if (ret < 0) return ret; return 0; } static int rv3029_get_sr(struct device *dev, u8 *buf) { int ret = rv3029_read_regs(dev, RV3029_STATUS, buf, 1); if (ret < 0) return -EIO; dev_dbg(dev, "status = 0x%.2x (%d)\n", buf[0], buf[0]); return 0; } static int rv3029_set_sr(struct device *dev, u8 val) { u8 buf[1]; int sr; buf[0] = val; sr = rv3029_write_regs(dev, RV3029_STATUS, buf, 1); dev_dbg(dev, "status = 0x%.2x (%d)\n", buf[0], buf[0]); if (sr < 0) return -EIO; return 0; } static int rv3029_eeprom_busywait(struct device *dev) { int i, ret; u8 sr; for (i = 100; i > 0; i--) { ret = rv3029_get_sr(dev, &sr); if (ret < 0) break; if (!(sr & RV3029_STATUS_EEBUSY)) break; usleep_range(1000, 10000); } if (i <= 0) { dev_err(dev, "EEPROM busy wait timeout.\n"); return -ETIMEDOUT; } return ret; } static int rv3029_eeprom_exit(struct device *dev) { /* Re-enable eeprom refresh */ return rv3029_update_bits(dev, RV3029_ONOFF_CTRL, RV3029_ONOFF_CTRL_EERE, RV3029_ONOFF_CTRL_EERE); } static int rv3029_eeprom_enter(struct device *dev) { int ret; u8 sr; /* Check whether we are in the allowed voltage range. */ ret = rv3029_get_sr(dev, &sr); if (ret < 0) return ret; if (sr & (RV3029_STATUS_VLOW1 | RV3029_STATUS_VLOW2)) { /* We clear the bits and retry once just in case * we had a brown out in early startup. */ sr &= ~RV3029_STATUS_VLOW1; sr &= ~RV3029_STATUS_VLOW2; ret = rv3029_set_sr(dev, sr); if (ret < 0) return ret; usleep_range(1000, 10000); ret = rv3029_get_sr(dev, &sr); if (ret < 0) return ret; if (sr & (RV3029_STATUS_VLOW1 | RV3029_STATUS_VLOW2)) { dev_err(dev, "Supply voltage is too low to safely access the EEPROM.\n"); return -ENODEV; } } /* Disable eeprom refresh. */ ret = rv3029_update_bits(dev, RV3029_ONOFF_CTRL, RV3029_ONOFF_CTRL_EERE, 0); if (ret < 0) return ret; /* Wait for any previous eeprom accesses to finish. */ ret = rv3029_eeprom_busywait(dev); if (ret < 0) rv3029_eeprom_exit(dev); return ret; } static int rv3029_eeprom_read(struct device *dev, u8 reg, u8 buf[], size_t len) { int ret, err; err = rv3029_eeprom_enter(dev); if (err < 0) return err; ret = rv3029_read_regs(dev, reg, buf, len); err = rv3029_eeprom_exit(dev); if (err < 0) return err; return ret; } static int rv3029_eeprom_write(struct device *dev, u8 reg, u8 const buf[], size_t len) { int ret, err; size_t i; u8 tmp; err = rv3029_eeprom_enter(dev); if (err < 0) return err; for (i = 0; i < len; i++, reg++) { ret = rv3029_read_regs(dev, reg, &tmp, 1); if (ret < 0) break; if (tmp != buf[i]) { ret = rv3029_write_regs(dev, reg, &buf[i], 1); if (ret < 0) break; } ret = rv3029_eeprom_busywait(dev); if (ret < 0) break; } err = rv3029_eeprom_exit(dev); if (err < 0) return err; return ret; } static int rv3029_eeprom_update_bits(struct device *dev, u8 reg, u8 mask, u8 set) { u8 buf; int ret; ret = rv3029_eeprom_read(dev, reg, &buf, 1); if (ret < 0) return ret; buf &= ~mask; buf |= set & mask; ret = rv3029_eeprom_write(dev, reg, &buf, 1); if (ret < 0) return ret; return 0; } static irqreturn_t rv3029_handle_irq(int irq, void *dev_id) { struct device *dev = dev_id; struct rv3029_data *rv3029 = dev_get_drvdata(dev); struct mutex *lock = &rv3029->rtc->ops_lock; unsigned long events = 0; u8 flags, controls; int ret; mutex_lock(lock); ret = rv3029_read_regs(dev, RV3029_IRQ_CTRL, &controls, 1); if (ret) { dev_warn(dev, "Read IRQ Control Register error %d\n", ret); mutex_unlock(lock); return IRQ_NONE; } ret = rv3029_read_regs(dev, RV3029_IRQ_FLAGS, &flags, 1); if (ret) { dev_warn(dev, "Read IRQ Flags Register error %d\n", ret); mutex_unlock(lock); return IRQ_NONE; } if (flags & RV3029_IRQ_FLAGS_AF) { flags &= ~RV3029_IRQ_FLAGS_AF; controls &= ~RV3029_IRQ_CTRL_AIE; events |= RTC_AF; } if (events) { rtc_update_irq(rv3029->rtc, 1, events); rv3029_write_regs(dev, RV3029_IRQ_FLAGS, &flags, 1); rv3029_write_regs(dev, RV3029_IRQ_CTRL, &controls, 1); } mutex_unlock(lock); return IRQ_HANDLED; } static int rv3029_read_time(struct device *dev, struct rtc_time *tm) { u8 buf[1]; int ret; u8 regs[RV3029_WATCH_SECTION_LEN] = { 0, }; ret = rv3029_get_sr(dev, buf); if (ret < 0) { dev_err(dev, "%s: reading SR failed\n", __func__); return -EIO; } ret = rv3029_read_regs(dev, RV3029_W_SEC, regs, RV3029_WATCH_SECTION_LEN); if (ret < 0) { dev_err(dev, "%s: reading RTC section failed\n", __func__); return ret; } tm->tm_sec = bcd2bin(regs[RV3029_W_SEC - RV3029_W_SEC]); tm->tm_min = bcd2bin(regs[RV3029_W_MINUTES - RV3029_W_SEC]); /* HR field has a more complex interpretation */ { const u8 _hr = regs[RV3029_W_HOURS - RV3029_W_SEC]; if (_hr & RV3029_REG_HR_12_24) { /* 12h format */ tm->tm_hour = bcd2bin(_hr & 0x1f); if (_hr & RV3029_REG_HR_PM) /* PM flag set */ tm->tm_hour += 12; } else /* 24h format */ tm->tm_hour = bcd2bin(_hr & 0x3f); } tm->tm_mday = bcd2bin(regs[RV3029_W_DATE - RV3029_W_SEC]); tm->tm_mon = bcd2bin(regs[RV3029_W_MONTHS - RV3029_W_SEC]) - 1; tm->tm_year = bcd2bin(regs[RV3029_W_YEARS - RV3029_W_SEC]) + 100; tm->tm_wday = bcd2bin(regs[RV3029_W_DAYS - RV3029_W_SEC]) - 1; return 0; } static int rv3029_read_alarm(struct device *dev, struct rtc_wkalrm *alarm) { struct rtc_time *const tm = &alarm->time; int ret; u8 regs[8], controls, flags; ret = rv3029_get_sr(dev, regs); if (ret < 0) { dev_err(dev, "%s: reading SR failed\n", __func__); return -EIO; } ret = rv3029_read_regs(dev, RV3029_A_SC, regs, RV3029_ALARM_SECTION_LEN); if (ret < 0) { dev_err(dev, "%s: reading alarm section failed\n", __func__); return ret; } ret = rv3029_read_regs(dev, RV3029_IRQ_CTRL, &controls, 1); if (ret) { dev_err(dev, "Read IRQ Control Register error %d\n", ret); return ret; } ret = rv3029_read_regs(dev, RV3029_IRQ_FLAGS, &flags, 1); if (ret < 0) { dev_err(dev, "Read IRQ Flags Register error %d\n", ret); return ret; } tm->tm_sec = bcd2bin(regs[RV3029_A_SC - RV3029_A_SC] & 0x7f); tm->tm_min = bcd2bin(regs[RV3029_A_MN - RV3029_A_SC] & 0x7f); tm->tm_hour = bcd2bin(regs[RV3029_A_HR - RV3029_A_SC] & 0x3f); tm->tm_mday = bcd2bin(regs[RV3029_A_DT - RV3029_A_SC] & 0x3f); tm->tm_mon = bcd2bin(regs[RV3029_A_MO - RV3029_A_SC] & 0x1f) - 1; tm->tm_year = bcd2bin(regs[RV3029_A_YR - RV3029_A_SC] & 0x7f) + 100; tm->tm_wday = bcd2bin(regs[RV3029_A_DW - RV3029_A_SC] & 0x07) - 1; alarm->enabled = !!(controls & RV3029_IRQ_CTRL_AIE); alarm->pending = (flags & RV3029_IRQ_FLAGS_AF) && alarm->enabled; return 0; } static int rv3029_alarm_irq_enable(struct device *dev, unsigned int enable) { int ret; u8 controls; ret = rv3029_read_regs(dev, RV3029_IRQ_CTRL, &controls, 1); if (ret < 0) { dev_warn(dev, "Read IRQ Control Register error %d\n", ret); return ret; } /* enable/disable AIE irq */ if (enable) controls |= RV3029_IRQ_CTRL_AIE; else controls &= ~RV3029_IRQ_CTRL_AIE; ret = rv3029_write_regs(dev, RV3029_IRQ_CTRL, &controls, 1); if (ret < 0) { dev_err(dev, "can't update INT reg\n"); return ret; } return 0; } static int rv3029_set_alarm(struct device *dev, struct rtc_wkalrm *alarm) { struct rtc_time *const tm = &alarm->time; int ret; u8 regs[8]; /* * The clock has an 8 bit wide bcd-coded register (they never learn) * for the year. tm_year is an offset from 1900 and we are interested * in the 2000-2099 range, so any value less than 100 is invalid. */ if (tm->tm_year < 100) return -EINVAL; ret = rv3029_get_sr(dev, regs); if (ret < 0) { dev_err(dev, "%s: reading SR failed\n", __func__); return -EIO; } /* Activate all the alarms with AE_x bit */ regs[RV3029_A_SC - RV3029_A_SC] = bin2bcd(tm->tm_sec) | RV3029_A_AE_X; regs[RV3029_A_MN - RV3029_A_SC] = bin2bcd(tm->tm_min) | RV3029_A_AE_X; regs[RV3029_A_HR - RV3029_A_SC] = (bin2bcd(tm->tm_hour) & 0x3f) | RV3029_A_AE_X; regs[RV3029_A_DT - RV3029_A_SC] = (bin2bcd(tm->tm_mday) & 0x3f) | RV3029_A_AE_X; regs[RV3029_A_MO - RV3029_A_SC] = (bin2bcd(tm->tm_mon + 1) & 0x1f) | RV3029_A_AE_X; regs[RV3029_A_DW - RV3029_A_SC] = (bin2bcd(tm->tm_wday + 1) & 0x7) | RV3029_A_AE_X; regs[RV3029_A_YR - RV3029_A_SC] = (bin2bcd(tm->tm_year - 100)) | RV3029_A_AE_X; /* Write the alarm */ ret = rv3029_write_regs(dev, RV3029_A_SC, regs, RV3029_ALARM_SECTION_LEN); if (ret < 0) return ret; if (alarm->enabled) { /* enable AIE irq */ ret = rv3029_alarm_irq_enable(dev, 1); if (ret) return ret; } else { /* disable AIE irq */ ret = rv3029_alarm_irq_enable(dev, 0); if (ret) return ret; } return 0; } static int rv3029_set_time(struct device *dev, struct rtc_time *tm) { u8 regs[8]; int ret; /* * The clock has an 8 bit wide bcd-coded register (they never learn) * for the year. tm_year is an offset from 1900 and we are interested * in the 2000-2099 range, so any value less than 100 is invalid. */ if (tm->tm_year < 100) return -EINVAL; regs[RV3029_W_SEC - RV3029_W_SEC] = bin2bcd(tm->tm_sec); regs[RV3029_W_MINUTES - RV3029_W_SEC] = bin2bcd(tm->tm_min); regs[RV3029_W_HOURS - RV3029_W_SEC] = bin2bcd(tm->tm_hour); regs[RV3029_W_DATE - RV3029_W_SEC] = bin2bcd(tm->tm_mday); regs[RV3029_W_MONTHS - RV3029_W_SEC] = bin2bcd(tm->tm_mon + 1); regs[RV3029_W_DAYS - RV3029_W_SEC] = bin2bcd(tm->tm_wday + 1) & 0x7; regs[RV3029_W_YEARS - RV3029_W_SEC] = bin2bcd(tm->tm_year - 100); ret = rv3029_write_regs(dev, RV3029_W_SEC, regs, RV3029_WATCH_SECTION_LEN); if (ret < 0) return ret; ret = rv3029_get_sr(dev, regs); if (ret < 0) { dev_err(dev, "%s: reading SR failed\n", __func__); return ret; } /* clear PON bit */ ret = rv3029_set_sr(dev, (regs[0] & ~RV3029_STATUS_PON)); if (ret < 0) { dev_err(dev, "%s: reading SR failed\n", __func__); return ret; } return 0; } static const struct rv3029_trickle_tab_elem { u32 r; /* resistance in ohms */ u8 conf; /* trickle config bits */ } rv3029_trickle_tab[] = { { .r = 1076, .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K | RV3029_TRICKLE_20K | RV3029_TRICKLE_80K, }, { .r = 1091, .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K | RV3029_TRICKLE_20K, }, { .r = 1137, .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K | RV3029_TRICKLE_80K, }, { .r = 1154, .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_5K, }, { .r = 1371, .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_20K | RV3029_TRICKLE_80K, }, { .r = 1395, .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_20K, }, { .r = 1472, .conf = RV3029_TRICKLE_1K | RV3029_TRICKLE_80K, }, { .r = 1500, .conf = RV3029_TRICKLE_1K, }, { .r = 3810, .conf = RV3029_TRICKLE_5K | RV3029_TRICKLE_20K | RV3029_TRICKLE_80K, }, { .r = 4000, .conf = RV3029_TRICKLE_5K | RV3029_TRICKLE_20K, }, { .r = 4706, .conf = RV3029_TRICKLE_5K | RV3029_TRICKLE_80K, }, { .r = 5000, .conf = RV3029_TRICKLE_5K, }, { .r = 16000, .conf = RV3029_TRICKLE_20K | RV3029_TRICKLE_80K, }, { .r = 20000, .conf = RV3029_TRICKLE_20K, }, { .r = 80000, .conf = RV3029_TRICKLE_80K, }, }; static void rv3029_trickle_config(struct device *dev) { struct device_node *of_node = dev->of_node; const struct rv3029_trickle_tab_elem *elem; int i, err; u32 ohms; u8 trickle_set_bits; if (!of_node) return; /* Configure the trickle charger. */ err = of_property_read_u32(of_node, "trickle-resistor-ohms", &ohms); if (err) { /* Disable trickle charger. */ trickle_set_bits = 0; } else { /* Enable trickle charger. */ for (i = 0; i < ARRAY_SIZE(rv3029_trickle_tab); i++) { elem = &rv3029_trickle_tab[i]; if (elem->r >= ohms) break; } trickle_set_bits = elem->conf; dev_info(dev, "Trickle charger enabled at %d ohms resistance.\n", elem->r); } err = rv3029_eeprom_update_bits(dev, RV3029_CONTROL_E2P_EECTRL, RV3029_TRICKLE_MASK, trickle_set_bits); if (err < 0) dev_err(dev, "Failed to update trickle charger config\n"); } #ifdef CONFIG_RTC_DRV_RV3029_HWMON static int rv3029_read_temp(struct device *dev, int *temp_mC) { int ret; u8 temp; ret = rv3029_read_regs(dev, RV3029_TEMP_PAGE, &temp, 1); if (ret < 0) return ret; *temp_mC = ((int)temp - 60) * 1000; return 0; } static ssize_t rv3029_hwmon_show_temp(struct device *dev, struct device_attribute *attr, char *buf) { int ret, temp_mC; ret = rv3029_read_temp(dev, &temp_mC); if (ret < 0) return ret; return sprintf(buf, "%d\n", temp_mC); } static ssize_t rv3029_hwmon_set_update_interval(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long interval_ms; int ret; u8 th_set_bits = 0; ret = kstrtoul(buf, 10, &interval_ms); if (ret < 0) return ret; if (interval_ms != 0) { th_set_bits |= RV3029_EECTRL_THE; if (interval_ms >= 16000) th_set_bits |= RV3029_EECTRL_THP; } ret = rv3029_eeprom_update_bits(dev, RV3029_CONTROL_E2P_EECTRL, RV3029_EECTRL_THE | RV3029_EECTRL_THP, th_set_bits); if (ret < 0) return ret; return count; } static ssize_t rv3029_hwmon_show_update_interval(struct device *dev, struct device_attribute *attr, char *buf) { int ret, interval_ms; u8 eectrl; ret = rv3029_eeprom_read(dev, RV3029_CONTROL_E2P_EECTRL, &eectrl, 1); if (ret < 0) return ret; if (eectrl & RV3029_EECTRL_THE) { if (eectrl & RV3029_EECTRL_THP) interval_ms = 16000; else interval_ms = 1000; } else { interval_ms = 0; } return sprintf(buf, "%d\n", interval_ms); } static SENSOR_DEVICE_ATTR(temp1_input, S_IRUGO, rv3029_hwmon_show_temp, NULL, 0); static SENSOR_DEVICE_ATTR(update_interval, S_IWUSR | S_IRUGO, rv3029_hwmon_show_update_interval, rv3029_hwmon_set_update_interval, 0); static struct attribute *rv3029_hwmon_attrs[] = { &sensor_dev_attr_temp1_input.dev_attr.attr, &sensor_dev_attr_update_interval.dev_attr.attr, NULL, }; ATTRIBUTE_GROUPS(rv3029_hwmon); static void rv3029_hwmon_register(struct device *dev, const char *name) { struct rv3029_data *rv3029 = dev_get_drvdata(dev); struct device *hwmon_dev; hwmon_dev = devm_hwmon_device_register_with_groups(dev, name, rv3029, rv3029_hwmon_groups); if (IS_ERR(hwmon_dev)) { dev_warn(dev, "unable to register hwmon device %ld\n", PTR_ERR(hwmon_dev)); } } #else /* CONFIG_RTC_DRV_RV3029_HWMON */ static void rv3029_hwmon_register(struct device *dev, const char *name) { } #endif /* CONFIG_RTC_DRV_RV3029_HWMON */ static struct rtc_class_ops rv3029_rtc_ops = { .read_time = rv3029_read_time, .set_time = rv3029_set_time, }; static int rv3029_probe(struct device *dev, struct regmap *regmap, int irq, const char *name) { struct rv3029_data *rv3029; int rc = 0; u8 buf[1]; rv3029 = devm_kzalloc(dev, sizeof(*rv3029), GFP_KERNEL); if (!rv3029) return -ENOMEM; rv3029->regmap = regmap; rv3029->irq = irq; rv3029->dev = dev; dev_set_drvdata(dev, rv3029); rc = rv3029_get_sr(dev, buf); if (rc < 0) { dev_err(dev, "reading status failed\n"); return rc; } rv3029_trickle_config(dev); rv3029_hwmon_register(dev, name); rv3029->rtc = devm_rtc_device_register(dev, name, &rv3029_rtc_ops, THIS_MODULE); if (IS_ERR(rv3029->rtc)) { dev_err(dev, "unable to register the class device\n"); return PTR_ERR(rv3029->rtc); } if (rv3029->irq > 0) { rc = devm_request_threaded_irq(dev, rv3029->irq, NULL, rv3029_handle_irq, IRQF_TRIGGER_LOW | IRQF_ONESHOT, "rv3029", dev); if (rc) { dev_warn(dev, "unable to request IRQ, alarms disabled\n"); rv3029->irq = 0; } else { rv3029_rtc_ops.read_alarm = rv3029_read_alarm; rv3029_rtc_ops.set_alarm = rv3029_set_alarm; rv3029_rtc_ops.alarm_irq_enable = rv3029_alarm_irq_enable; } } return 0; } #if IS_ENABLED(CONFIG_I2C) static int rv3029_i2c_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct regmap *regmap; static const struct regmap_config config = { .reg_bits = 8, .val_bits = 8, }; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_I2C_BLOCK | I2C_FUNC_SMBUS_BYTE)) { dev_err(&client->dev, "Adapter does not support SMBUS_I2C_BLOCK or SMBUS_I2C_BYTE\n"); return -ENODEV; } regmap = devm_regmap_init_i2c(client, &config); if (IS_ERR(regmap)) { dev_err(&client->dev, "%s: regmap allocation failed: %ld\n", __func__, PTR_ERR(regmap)); return PTR_ERR(regmap); } return rv3029_probe(&client->dev, regmap, client->irq, client->name); } static const struct i2c_device_id rv3029_id[] = { { "rv3029", 0 }, { "rv3029c2", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, rv3029_id); static const struct of_device_id rv3029_of_match[] = { { .compatible = "microcrystal,rv3029" }, /* Backward compatibility only, do not use compatibles below: */ { .compatible = "rv3029" }, { .compatible = "rv3029c2" }, { .compatible = "mc,rv3029c2" }, { } }; MODULE_DEVICE_TABLE(of, rv3029_of_match); static struct i2c_driver rv3029_driver = { .driver = { .name = "rtc-rv3029c2", .of_match_table = of_match_ptr(rv3029_of_match), }, .probe = rv3029_i2c_probe, .id_table = rv3029_id, }; static int rv3029_register_driver(void) { return i2c_add_driver(&rv3029_driver); } static void rv3029_unregister_driver(void) { i2c_del_driver(&rv3029_driver); } #else static int rv3029_register_driver(void) { return 0; } static void rv3029_unregister_driver(void) { } #endif #if IS_ENABLED(CONFIG_SPI_MASTER) static int rv3049_probe(struct spi_device *spi) { static const struct regmap_config config = { .reg_bits = 8, .val_bits = 8, }; struct regmap *regmap; regmap = devm_regmap_init_spi(spi, &config); if (IS_ERR(regmap)) { dev_err(&spi->dev, "%s: regmap allocation failed: %ld\n", __func__, PTR_ERR(regmap)); return PTR_ERR(regmap); } return rv3029_probe(&spi->dev, regmap, spi->irq, "rv3049"); } static struct spi_driver rv3049_driver = { .driver = { .name = "rv3049", }, .probe = rv3049_probe, }; static int rv3049_register_driver(void) { return spi_register_driver(&rv3049_driver); } static void rv3049_unregister_driver(void) { spi_unregister_driver(&rv3049_driver); } #else static int rv3049_register_driver(void) { return 0; } static void rv3049_unregister_driver(void) { } #endif static int __init rv30x9_init(void) { int ret; ret = rv3029_register_driver(); if (ret) { pr_err("Failed to register rv3029 driver: %d\n", ret); return ret; } ret = rv3049_register_driver(); if (ret) { pr_err("Failed to register rv3049 driver: %d\n", ret); rv3029_unregister_driver(); } return ret; } module_init(rv30x9_init) static void __exit rv30x9_exit(void) { rv3049_unregister_driver(); rv3029_unregister_driver(); } module_exit(rv30x9_exit) MODULE_AUTHOR("Gregory Hermant <gregory.hermant@calao-systems.com>"); MODULE_AUTHOR("Michael Buesch <m@bues.ch>"); MODULE_DESCRIPTION("Micro Crystal RV3029/RV3049 RTC driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("spi:rv3049");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1