Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rui Miguel Silva | 5419 | 95.24% | 3 | 14.29% |
Fabio Estevam | 132 | 2.32% | 7 | 33.33% |
Sébastien Szymanski | 79 | 1.39% | 1 | 4.76% |
Steve Longerbeam | 37 | 0.65% | 8 | 38.10% |
Mauro Carvalho Chehab | 20 | 0.35% | 1 | 4.76% |
Dan Carpenter | 3 | 0.05% | 1 | 4.76% |
Total | 5690 | 21 |
// SPDX-License-Identifier: GPL-2.0 /* * V4L2 Capture CSI Subdev for Freescale i.MX6UL/L / i.MX7 SOC * * Copyright (c) 2019 Linaro Ltd * */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/gcd.h> #include <linux/interrupt.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of_graph.h> #include <linux/pinctrl/consumer.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/types.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-device.h> #include <media/v4l2-event.h> #include <media/v4l2-fwnode.h> #include <media/v4l2-mc.h> #include <media/v4l2-subdev.h> #include <media/videobuf2-dma-contig.h> #include <media/imx.h> #include "imx-media.h" #define IMX7_CSI_PAD_SINK 0 #define IMX7_CSI_PAD_SRC 1 #define IMX7_CSI_PADS_NUM 2 /* reset values */ #define CSICR1_RESET_VAL 0x40000800 #define CSICR2_RESET_VAL 0x0 #define CSICR3_RESET_VAL 0x0 /* csi control reg 1 */ #define BIT_SWAP16_EN BIT(31) #define BIT_EXT_VSYNC BIT(30) #define BIT_EOF_INT_EN BIT(29) #define BIT_PRP_IF_EN BIT(28) #define BIT_CCIR_MODE BIT(27) #define BIT_COF_INT_EN BIT(26) #define BIT_SF_OR_INTEN BIT(25) #define BIT_RF_OR_INTEN BIT(24) #define BIT_SFF_DMA_DONE_INTEN BIT(22) #define BIT_STATFF_INTEN BIT(21) #define BIT_FB2_DMA_DONE_INTEN BIT(20) #define BIT_FB1_DMA_DONE_INTEN BIT(19) #define BIT_RXFF_INTEN BIT(18) #define BIT_SOF_POL BIT(17) #define BIT_SOF_INTEN BIT(16) #define BIT_MCLKDIV (0xF << 12) #define BIT_HSYNC_POL BIT(11) #define BIT_CCIR_EN BIT(10) #define BIT_MCLKEN BIT(9) #define BIT_FCC BIT(8) #define BIT_PACK_DIR BIT(7) #define BIT_CLR_STATFIFO BIT(6) #define BIT_CLR_RXFIFO BIT(5) #define BIT_GCLK_MODE BIT(4) #define BIT_INV_DATA BIT(3) #define BIT_INV_PCLK BIT(2) #define BIT_REDGE BIT(1) #define BIT_PIXEL_BIT BIT(0) #define SHIFT_MCLKDIV 12 /* control reg 3 */ #define BIT_FRMCNT (0xFFFF << 16) #define BIT_FRMCNT_RST BIT(15) #define BIT_DMA_REFLASH_RFF BIT(14) #define BIT_DMA_REFLASH_SFF BIT(13) #define BIT_DMA_REQ_EN_RFF BIT(12) #define BIT_DMA_REQ_EN_SFF BIT(11) #define BIT_STATFF_LEVEL (0x7 << 8) #define BIT_HRESP_ERR_EN BIT(7) #define BIT_RXFF_LEVEL (0x7 << 4) #define BIT_TWO_8BIT_SENSOR BIT(3) #define BIT_ZERO_PACK_EN BIT(2) #define BIT_ECC_INT_EN BIT(1) #define BIT_ECC_AUTO_EN BIT(0) #define SHIFT_FRMCNT 16 #define SHIFT_RXFIFO_LEVEL 4 /* csi status reg */ #define BIT_ADDR_CH_ERR_INT BIT(28) #define BIT_FIELD0_INT BIT(27) #define BIT_FIELD1_INT BIT(26) #define BIT_SFF_OR_INT BIT(25) #define BIT_RFF_OR_INT BIT(24) #define BIT_DMA_TSF_DONE_SFF BIT(22) #define BIT_STATFF_INT BIT(21) #define BIT_DMA_TSF_DONE_FB2 BIT(20) #define BIT_DMA_TSF_DONE_FB1 BIT(19) #define BIT_RXFF_INT BIT(18) #define BIT_EOF_INT BIT(17) #define BIT_SOF_INT BIT(16) #define BIT_F2_INT BIT(15) #define BIT_F1_INT BIT(14) #define BIT_COF_INT BIT(13) #define BIT_HRESP_ERR_INT BIT(7) #define BIT_ECC_INT BIT(1) #define BIT_DRDY BIT(0) /* csi control reg 18 */ #define BIT_CSI_HW_ENABLE BIT(31) #define BIT_MIPI_DATA_FORMAT_RAW8 (0x2a << 25) #define BIT_MIPI_DATA_FORMAT_RAW10 (0x2b << 25) #define BIT_MIPI_DATA_FORMAT_RAW12 (0x2c << 25) #define BIT_MIPI_DATA_FORMAT_RAW14 (0x2d << 25) #define BIT_MIPI_DATA_FORMAT_YUV422_8B (0x1e << 25) #define BIT_MIPI_DATA_FORMAT_MASK (0x3F << 25) #define BIT_MIPI_DATA_FORMAT_OFFSET 25 #define BIT_DATA_FROM_MIPI BIT(22) #define BIT_MIPI_YU_SWAP BIT(21) #define BIT_MIPI_DOUBLE_CMPNT BIT(20) #define BIT_BASEADDR_CHG_ERR_EN BIT(9) #define BIT_BASEADDR_SWITCH_SEL BIT(5) #define BIT_BASEADDR_SWITCH_EN BIT(4) #define BIT_PARALLEL24_EN BIT(3) #define BIT_DEINTERLACE_EN BIT(2) #define BIT_TVDECODER_IN_EN BIT(1) #define BIT_NTSC_EN BIT(0) #define CSI_MCLK_VF 1 #define CSI_MCLK_ENC 2 #define CSI_MCLK_RAW 4 #define CSI_MCLK_I2C 8 #define CSI_CSICR1 0x0 #define CSI_CSICR2 0x4 #define CSI_CSICR3 0x8 #define CSI_STATFIFO 0xC #define CSI_CSIRXFIFO 0x10 #define CSI_CSIRXCNT 0x14 #define CSI_CSISR 0x18 #define CSI_CSIDBG 0x1C #define CSI_CSIDMASA_STATFIFO 0x20 #define CSI_CSIDMATS_STATFIFO 0x24 #define CSI_CSIDMASA_FB1 0x28 #define CSI_CSIDMASA_FB2 0x2C #define CSI_CSIFBUF_PARA 0x30 #define CSI_CSIIMAG_PARA 0x34 #define CSI_CSICR18 0x48 #define CSI_CSICR19 0x4c struct imx7_csi { struct device *dev; struct v4l2_subdev sd; struct imx_media_video_dev *vdev; struct imx_media_dev *imxmd; struct media_pad pad[IMX7_CSI_PADS_NUM]; /* lock to protect members below */ struct mutex lock; /* lock to protect irq handler when stop streaming */ spinlock_t irqlock; struct v4l2_subdev *src_sd; struct media_entity *sink; struct v4l2_fwnode_endpoint upstream_ep; struct v4l2_mbus_framefmt format_mbus[IMX7_CSI_PADS_NUM]; const struct imx_media_pixfmt *cc[IMX7_CSI_PADS_NUM]; struct v4l2_fract frame_interval[IMX7_CSI_PADS_NUM]; struct v4l2_ctrl_handler ctrl_hdlr; void __iomem *regbase; int irq; struct clk *mclk; /* active vb2 buffers to send to video dev sink */ struct imx_media_buffer *active_vb2_buf[2]; struct imx_media_dma_buf underrun_buf; int buf_num; u32 frame_sequence; bool last_eof; bool is_init; bool is_streaming; bool is_csi2; struct completion last_eof_completion; }; static u32 imx7_csi_reg_read(struct imx7_csi *csi, unsigned int offset) { return readl(csi->regbase + offset); } static void imx7_csi_reg_write(struct imx7_csi *csi, unsigned int value, unsigned int offset) { writel(value, csi->regbase + offset); } static void imx7_csi_hw_reset(struct imx7_csi *csi) { imx7_csi_reg_write(csi, imx7_csi_reg_read(csi, CSI_CSICR3) | BIT_FRMCNT_RST, CSI_CSICR3); imx7_csi_reg_write(csi, CSICR1_RESET_VAL, CSI_CSICR1); imx7_csi_reg_write(csi, CSICR2_RESET_VAL, CSI_CSICR2); imx7_csi_reg_write(csi, CSICR3_RESET_VAL, CSI_CSICR3); } static u32 imx7_csi_irq_clear(struct imx7_csi *csi) { u32 isr; isr = imx7_csi_reg_read(csi, CSI_CSISR); imx7_csi_reg_write(csi, isr, CSI_CSISR); return isr; } static void imx7_csi_init_interface(struct imx7_csi *csi) { unsigned int val = 0; unsigned int imag_para; val = BIT_SOF_POL | BIT_REDGE | BIT_GCLK_MODE | BIT_HSYNC_POL | BIT_FCC | 1 << SHIFT_MCLKDIV | BIT_MCLKEN; imx7_csi_reg_write(csi, val, CSI_CSICR1); imag_para = (800 << 16) | 600; imx7_csi_reg_write(csi, imag_para, CSI_CSIIMAG_PARA); val = BIT_DMA_REFLASH_RFF; imx7_csi_reg_write(csi, val, CSI_CSICR3); } static void imx7_csi_hw_enable_irq(struct imx7_csi *csi) { u32 cr1 = imx7_csi_reg_read(csi, CSI_CSICR1); cr1 |= BIT_SOF_INTEN; cr1 |= BIT_RFF_OR_INT; /* still capture needs DMA interrupt */ cr1 |= BIT_FB1_DMA_DONE_INTEN; cr1 |= BIT_FB2_DMA_DONE_INTEN; cr1 |= BIT_EOF_INT_EN; imx7_csi_reg_write(csi, cr1, CSI_CSICR1); } static void imx7_csi_hw_disable_irq(struct imx7_csi *csi) { u32 cr1 = imx7_csi_reg_read(csi, CSI_CSICR1); cr1 &= ~BIT_SOF_INTEN; cr1 &= ~BIT_RFF_OR_INT; cr1 &= ~BIT_FB1_DMA_DONE_INTEN; cr1 &= ~BIT_FB2_DMA_DONE_INTEN; cr1 &= ~BIT_EOF_INT_EN; imx7_csi_reg_write(csi, cr1, CSI_CSICR1); } static void imx7_csi_hw_enable(struct imx7_csi *csi) { u32 cr = imx7_csi_reg_read(csi, CSI_CSICR18); cr |= BIT_CSI_HW_ENABLE; imx7_csi_reg_write(csi, cr, CSI_CSICR18); } static void imx7_csi_hw_disable(struct imx7_csi *csi) { u32 cr = imx7_csi_reg_read(csi, CSI_CSICR18); cr &= ~BIT_CSI_HW_ENABLE; imx7_csi_reg_write(csi, cr, CSI_CSICR18); } static void imx7_csi_dma_reflash(struct imx7_csi *csi) { u32 cr3 = imx7_csi_reg_read(csi, CSI_CSICR18); cr3 = imx7_csi_reg_read(csi, CSI_CSICR3); cr3 |= BIT_DMA_REFLASH_RFF; imx7_csi_reg_write(csi, cr3, CSI_CSICR3); } static void imx7_csi_rx_fifo_clear(struct imx7_csi *csi) { u32 cr1; cr1 = imx7_csi_reg_read(csi, CSI_CSICR1); imx7_csi_reg_write(csi, cr1 & ~BIT_FCC, CSI_CSICR1); cr1 = imx7_csi_reg_read(csi, CSI_CSICR1); imx7_csi_reg_write(csi, cr1 | BIT_CLR_RXFIFO, CSI_CSICR1); cr1 = imx7_csi_reg_read(csi, CSI_CSICR1); imx7_csi_reg_write(csi, cr1 | BIT_FCC, CSI_CSICR1); } static void imx7_csi_buf_stride_set(struct imx7_csi *csi, u32 stride) { imx7_csi_reg_write(csi, stride, CSI_CSIFBUF_PARA); } static void imx7_csi_deinterlace_enable(struct imx7_csi *csi, bool enable) { u32 cr18 = imx7_csi_reg_read(csi, CSI_CSICR18); if (enable) cr18 |= BIT_DEINTERLACE_EN; else cr18 &= ~BIT_DEINTERLACE_EN; imx7_csi_reg_write(csi, cr18, CSI_CSICR18); } static void imx7_csi_dmareq_rff_enable(struct imx7_csi *csi) { u32 cr3 = imx7_csi_reg_read(csi, CSI_CSICR3); u32 cr2 = imx7_csi_reg_read(csi, CSI_CSICR2); /* Burst Type of DMA Transfer from RxFIFO. INCR16 */ cr2 |= 0xC0000000; cr3 |= BIT_DMA_REQ_EN_RFF; cr3 |= BIT_HRESP_ERR_EN; cr3 &= ~BIT_RXFF_LEVEL; cr3 |= 0x2 << 4; imx7_csi_reg_write(csi, cr3, CSI_CSICR3); imx7_csi_reg_write(csi, cr2, CSI_CSICR2); } static void imx7_csi_dmareq_rff_disable(struct imx7_csi *csi) { u32 cr3 = imx7_csi_reg_read(csi, CSI_CSICR3); cr3 &= ~BIT_DMA_REQ_EN_RFF; cr3 &= ~BIT_HRESP_ERR_EN; imx7_csi_reg_write(csi, cr3, CSI_CSICR3); } static void imx7_csi_set_imagpara(struct imx7_csi *csi, int width, int height) { int imag_para; int rx_count; rx_count = (width * height) >> 2; imx7_csi_reg_write(csi, rx_count, CSI_CSIRXCNT); imag_para = (width << 16) | height; imx7_csi_reg_write(csi, imag_para, CSI_CSIIMAG_PARA); /* reflash the embedded DMA controller */ imx7_csi_dma_reflash(csi); } static void imx7_csi_sw_reset(struct imx7_csi *csi) { imx7_csi_hw_disable(csi); imx7_csi_rx_fifo_clear(csi); imx7_csi_dma_reflash(csi); usleep_range(2000, 3000); imx7_csi_irq_clear(csi); imx7_csi_hw_enable(csi); } static void imx7_csi_error_recovery(struct imx7_csi *csi) { imx7_csi_hw_disable(csi); imx7_csi_rx_fifo_clear(csi); imx7_csi_dma_reflash(csi); imx7_csi_hw_enable(csi); } static int imx7_csi_init(struct imx7_csi *csi) { int ret; if (csi->is_init) return 0; ret = clk_prepare_enable(csi->mclk); if (ret < 0) return ret; imx7_csi_hw_reset(csi); imx7_csi_init_interface(csi); imx7_csi_dmareq_rff_enable(csi); csi->is_init = true; return 0; } static void imx7_csi_deinit(struct imx7_csi *csi) { if (!csi->is_init) return; imx7_csi_hw_reset(csi); imx7_csi_init_interface(csi); imx7_csi_dmareq_rff_disable(csi); clk_disable_unprepare(csi->mclk); csi->is_init = false; } static int imx7_csi_get_upstream_endpoint(struct imx7_csi *csi, struct v4l2_fwnode_endpoint *ep, bool skip_mux) { struct device_node *endpoint, *port; struct media_entity *src; struct v4l2_subdev *sd; struct media_pad *pad; if (!csi->src_sd) return -EPIPE; src = &csi->src_sd->entity; /* * if the source is neither a mux or csi2 get the one directly upstream * from this csi */ if (src->function != MEDIA_ENT_F_VID_IF_BRIDGE && src->function != MEDIA_ENT_F_VID_MUX) src = &csi->sd.entity; skip_video_mux: /* get source pad of entity directly upstream from src */ pad = imx_media_pipeline_pad(src, 0, 0, true); if (!pad) return -ENODEV; sd = media_entity_to_v4l2_subdev(pad->entity); /* To get bus type we may need to skip video mux */ if (skip_mux && src->function == MEDIA_ENT_F_VID_MUX) { src = &sd->entity; goto skip_video_mux; } /* * NOTE: this assumes an OF-graph port id is the same as a * media pad index. */ port = of_graph_get_port_by_id(sd->dev->of_node, pad->index); if (!port) return -ENODEV; endpoint = of_get_next_child(port, NULL); of_node_put(port); if (!endpoint) return -ENODEV; v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint), ep); of_node_put(endpoint); return 0; } static int imx7_csi_link_setup(struct media_entity *entity, const struct media_pad *local, const struct media_pad *remote, u32 flags) { struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity); struct imx7_csi *csi = v4l2_get_subdevdata(sd); struct v4l2_subdev *remote_sd; int ret = 0; dev_dbg(csi->dev, "link setup %s -> %s\n", remote->entity->name, local->entity->name); mutex_lock(&csi->lock); if (local->flags & MEDIA_PAD_FL_SINK) { if (!is_media_entity_v4l2_subdev(remote->entity)) { ret = -EINVAL; goto unlock; } remote_sd = media_entity_to_v4l2_subdev(remote->entity); if (flags & MEDIA_LNK_FL_ENABLED) { if (csi->src_sd) { ret = -EBUSY; goto unlock; } csi->src_sd = remote_sd; } else { csi->src_sd = NULL; } goto init; } /* source pad */ if (flags & MEDIA_LNK_FL_ENABLED) { if (csi->sink) { ret = -EBUSY; goto unlock; } csi->sink = remote->entity; } else { v4l2_ctrl_handler_free(&csi->ctrl_hdlr); v4l2_ctrl_handler_init(&csi->ctrl_hdlr, 0); csi->sink = NULL; } init: if (csi->sink || csi->src_sd) ret = imx7_csi_init(csi); else imx7_csi_deinit(csi); unlock: mutex_unlock(&csi->lock); return ret; } static int imx7_csi_pad_link_validate(struct v4l2_subdev *sd, struct media_link *link, struct v4l2_subdev_format *source_fmt, struct v4l2_subdev_format *sink_fmt) { struct imx7_csi *csi = v4l2_get_subdevdata(sd); struct v4l2_fwnode_endpoint upstream_ep = {}; int ret; ret = v4l2_subdev_link_validate_default(sd, link, source_fmt, sink_fmt); if (ret) return ret; ret = imx7_csi_get_upstream_endpoint(csi, &upstream_ep, true); if (ret) { v4l2_err(&csi->sd, "failed to find upstream endpoint\n"); return ret; } mutex_lock(&csi->lock); csi->upstream_ep = upstream_ep; csi->is_csi2 = (upstream_ep.bus_type == V4L2_MBUS_CSI2_DPHY); mutex_unlock(&csi->lock); return 0; } static void imx7_csi_update_buf(struct imx7_csi *csi, dma_addr_t phys, int buf_num) { if (buf_num == 1) imx7_csi_reg_write(csi, phys, CSI_CSIDMASA_FB2); else imx7_csi_reg_write(csi, phys, CSI_CSIDMASA_FB1); } static void imx7_csi_setup_vb2_buf(struct imx7_csi *csi) { struct imx_media_video_dev *vdev = csi->vdev; struct imx_media_buffer *buf; struct vb2_buffer *vb2_buf; dma_addr_t phys[2]; int i; for (i = 0; i < 2; i++) { buf = imx_media_capture_device_next_buf(vdev); if (buf) { csi->active_vb2_buf[i] = buf; vb2_buf = &buf->vbuf.vb2_buf; phys[i] = vb2_dma_contig_plane_dma_addr(vb2_buf, 0); } else { csi->active_vb2_buf[i] = NULL; phys[i] = csi->underrun_buf.phys; } imx7_csi_update_buf(csi, phys[i], i); } } static void imx7_csi_dma_unsetup_vb2_buf(struct imx7_csi *csi, enum vb2_buffer_state return_status) { struct imx_media_buffer *buf; int i; /* return any remaining active frames with return_status */ for (i = 0; i < 2; i++) { buf = csi->active_vb2_buf[i]; if (buf) { struct vb2_buffer *vb = &buf->vbuf.vb2_buf; vb->timestamp = ktime_get_ns(); vb2_buffer_done(vb, return_status); } } } static void imx7_csi_vb2_buf_done(struct imx7_csi *csi) { struct imx_media_video_dev *vdev = csi->vdev; struct imx_media_buffer *done, *next; struct vb2_buffer *vb; dma_addr_t phys; done = csi->active_vb2_buf[csi->buf_num]; if (done) { done->vbuf.field = vdev->fmt.fmt.pix.field; done->vbuf.sequence = csi->frame_sequence; vb = &done->vbuf.vb2_buf; vb->timestamp = ktime_get_ns(); vb2_buffer_done(vb, VB2_BUF_STATE_DONE); } csi->frame_sequence++; /* get next queued buffer */ next = imx_media_capture_device_next_buf(vdev); if (next) { phys = vb2_dma_contig_plane_dma_addr(&next->vbuf.vb2_buf, 0); csi->active_vb2_buf[csi->buf_num] = next; } else { phys = csi->underrun_buf.phys; csi->active_vb2_buf[csi->buf_num] = NULL; } imx7_csi_update_buf(csi, phys, csi->buf_num); } static irqreturn_t imx7_csi_irq_handler(int irq, void *data) { struct imx7_csi *csi = data; u32 status; spin_lock(&csi->irqlock); status = imx7_csi_irq_clear(csi); if (status & BIT_RFF_OR_INT) { dev_warn(csi->dev, "Rx fifo overflow\n"); imx7_csi_error_recovery(csi); } if (status & BIT_HRESP_ERR_INT) { dev_warn(csi->dev, "Hresponse error detected\n"); imx7_csi_error_recovery(csi); } if (status & BIT_ADDR_CH_ERR_INT) { imx7_csi_hw_disable(csi); imx7_csi_dma_reflash(csi); imx7_csi_hw_enable(csi); } if ((status & BIT_DMA_TSF_DONE_FB1) && (status & BIT_DMA_TSF_DONE_FB2)) { /* * For both FB1 and FB2 interrupter bits set case, * CSI DMA is work in one of FB1 and FB2 buffer, * but software can not know the state. * Skip it to avoid base address updated * when csi work in field0 and field1 will write to * new base address. */ } else if (status & BIT_DMA_TSF_DONE_FB1) { csi->buf_num = 0; } else if (status & BIT_DMA_TSF_DONE_FB2) { csi->buf_num = 1; } if ((status & BIT_DMA_TSF_DONE_FB1) || (status & BIT_DMA_TSF_DONE_FB2)) { imx7_csi_vb2_buf_done(csi); if (csi->last_eof) { complete(&csi->last_eof_completion); csi->last_eof = false; } } spin_unlock(&csi->irqlock); return IRQ_HANDLED; } static int imx7_csi_dma_start(struct imx7_csi *csi) { struct imx_media_video_dev *vdev = csi->vdev; struct v4l2_pix_format *out_pix = &vdev->fmt.fmt.pix; int ret; ret = imx_media_alloc_dma_buf(csi->dev, &csi->underrun_buf, out_pix->sizeimage); if (ret < 0) { v4l2_warn(&csi->sd, "consider increasing the CMA area\n"); return ret; } csi->frame_sequence = 0; csi->last_eof = false; init_completion(&csi->last_eof_completion); imx7_csi_setup_vb2_buf(csi); return 0; } static void imx7_csi_dma_stop(struct imx7_csi *csi) { unsigned long timeout_jiffies; unsigned long flags; int ret; /* mark next EOF interrupt as the last before stream off */ spin_lock_irqsave(&csi->irqlock, flags); csi->last_eof = true; spin_unlock_irqrestore(&csi->irqlock, flags); /* * and then wait for interrupt handler to mark completion. */ timeout_jiffies = msecs_to_jiffies(IMX_MEDIA_EOF_TIMEOUT); ret = wait_for_completion_timeout(&csi->last_eof_completion, timeout_jiffies); if (ret == 0) v4l2_warn(&csi->sd, "wait last EOF timeout\n"); imx7_csi_hw_disable_irq(csi); imx7_csi_dma_unsetup_vb2_buf(csi, VB2_BUF_STATE_ERROR); imx_media_free_dma_buf(csi->dev, &csi->underrun_buf); } static int imx7_csi_configure(struct imx7_csi *csi) { struct imx_media_video_dev *vdev = csi->vdev; struct v4l2_pix_format *out_pix = &vdev->fmt.fmt.pix; __u32 in_code = csi->format_mbus[IMX7_CSI_PAD_SINK].code; u32 cr1, cr18; int width = out_pix->width; if (out_pix->field == V4L2_FIELD_INTERLACED) { imx7_csi_deinterlace_enable(csi, true); imx7_csi_buf_stride_set(csi, out_pix->width); } else { imx7_csi_deinterlace_enable(csi, false); imx7_csi_buf_stride_set(csi, 0); } cr18 = imx7_csi_reg_read(csi, CSI_CSICR18); if (!csi->is_csi2) { if (out_pix->pixelformat == V4L2_PIX_FMT_UYVY || out_pix->pixelformat == V4L2_PIX_FMT_YUYV) width *= 2; imx7_csi_set_imagpara(csi, width, out_pix->height); cr18 |= (BIT_BASEADDR_SWITCH_EN | BIT_BASEADDR_SWITCH_SEL | BIT_BASEADDR_CHG_ERR_EN); imx7_csi_reg_write(csi, cr18, CSI_CSICR18); return 0; } imx7_csi_set_imagpara(csi, width, out_pix->height); cr1 = imx7_csi_reg_read(csi, CSI_CSICR1); cr1 &= ~BIT_GCLK_MODE; cr18 &= BIT_MIPI_DATA_FORMAT_MASK; cr18 |= BIT_DATA_FROM_MIPI; switch (out_pix->pixelformat) { case V4L2_PIX_FMT_UYVY: case V4L2_PIX_FMT_YUYV: cr18 |= BIT_MIPI_DATA_FORMAT_YUV422_8B; break; case V4L2_PIX_FMT_SBGGR8: cr18 |= BIT_MIPI_DATA_FORMAT_RAW8; break; case V4L2_PIX_FMT_SBGGR16: if (in_code == MEDIA_BUS_FMT_SBGGR10_1X10) cr18 |= BIT_MIPI_DATA_FORMAT_RAW10; else if (in_code == MEDIA_BUS_FMT_SBGGR12_1X12) cr18 |= BIT_MIPI_DATA_FORMAT_RAW12; else if (in_code == MEDIA_BUS_FMT_SBGGR14_1X14) cr18 |= BIT_MIPI_DATA_FORMAT_RAW14; cr1 |= BIT_PIXEL_BIT; break; default: return -EINVAL; } imx7_csi_reg_write(csi, cr1, CSI_CSICR1); imx7_csi_reg_write(csi, cr18, CSI_CSICR18); return 0; } static void imx7_csi_enable(struct imx7_csi *csi) { imx7_csi_sw_reset(csi); imx7_csi_dmareq_rff_enable(csi); imx7_csi_hw_enable_irq(csi); imx7_csi_hw_enable(csi); } static void imx7_csi_disable(struct imx7_csi *csi) { imx7_csi_dmareq_rff_disable(csi); imx7_csi_hw_disable_irq(csi); imx7_csi_buf_stride_set(csi, 0); imx7_csi_hw_disable(csi); } static int imx7_csi_streaming_start(struct imx7_csi *csi) { int ret; ret = imx7_csi_dma_start(csi); if (ret < 0) return ret; ret = imx7_csi_configure(csi); if (ret < 0) goto dma_stop; imx7_csi_enable(csi); return 0; dma_stop: imx7_csi_dma_stop(csi); return ret; } static int imx7_csi_streaming_stop(struct imx7_csi *csi) { imx7_csi_dma_stop(csi); imx7_csi_disable(csi); return 0; } static int imx7_csi_s_stream(struct v4l2_subdev *sd, int enable) { struct imx7_csi *csi = v4l2_get_subdevdata(sd); int ret = 0; mutex_lock(&csi->lock); if (!csi->src_sd || !csi->sink) { ret = -EPIPE; goto out_unlock; } if (csi->is_streaming == !!enable) goto out_unlock; if (enable) { ret = v4l2_subdev_call(csi->src_sd, video, s_stream, 1); if (ret < 0) goto out_unlock; ret = imx7_csi_streaming_start(csi); if (ret < 0) { v4l2_subdev_call(csi->src_sd, video, s_stream, 0); goto out_unlock; } } else { imx7_csi_streaming_stop(csi); v4l2_subdev_call(csi->src_sd, video, s_stream, 0); } csi->is_streaming = !!enable; out_unlock: mutex_unlock(&csi->lock); return ret; } static struct v4l2_mbus_framefmt * imx7_csi_get_format(struct imx7_csi *csi, struct v4l2_subdev_pad_config *cfg, unsigned int pad, enum v4l2_subdev_format_whence which) { if (which == V4L2_SUBDEV_FORMAT_TRY) return v4l2_subdev_get_try_format(&csi->sd, cfg, pad); return &csi->format_mbus[pad]; } static int imx7_csi_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_mbus_code_enum *code) { struct imx7_csi *csi = v4l2_get_subdevdata(sd); struct v4l2_mbus_framefmt *in_fmt; int ret = 0; mutex_lock(&csi->lock); in_fmt = imx7_csi_get_format(csi, cfg, IMX7_CSI_PAD_SINK, code->which); switch (code->pad) { case IMX7_CSI_PAD_SINK: ret = imx_media_enum_mbus_format(&code->code, code->index, CS_SEL_ANY, true); break; case IMX7_CSI_PAD_SRC: if (code->index != 0) { ret = -EINVAL; goto out_unlock; } code->code = in_fmt->code; break; default: ret = -EINVAL; } out_unlock: mutex_unlock(&csi->lock); return ret; } static int imx7_csi_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *sdformat) { struct imx7_csi *csi = v4l2_get_subdevdata(sd); struct v4l2_mbus_framefmt *fmt; int ret = 0; mutex_lock(&csi->lock); fmt = imx7_csi_get_format(csi, cfg, sdformat->pad, sdformat->which); if (!fmt) { ret = -EINVAL; goto out_unlock; } sdformat->format = *fmt; out_unlock: mutex_unlock(&csi->lock); return ret; } static int imx7_csi_try_fmt(struct imx7_csi *csi, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *sdformat, const struct imx_media_pixfmt **cc) { const struct imx_media_pixfmt *in_cc; struct v4l2_mbus_framefmt *in_fmt; u32 code; in_fmt = imx7_csi_get_format(csi, cfg, IMX7_CSI_PAD_SINK, sdformat->which); if (!in_fmt) return -EINVAL; switch (sdformat->pad) { case IMX7_CSI_PAD_SRC: in_cc = imx_media_find_mbus_format(in_fmt->code, CS_SEL_ANY, true); sdformat->format.width = in_fmt->width; sdformat->format.height = in_fmt->height; sdformat->format.code = in_fmt->code; *cc = in_cc; sdformat->format.colorspace = in_fmt->colorspace; sdformat->format.xfer_func = in_fmt->xfer_func; break; case IMX7_CSI_PAD_SINK: *cc = imx_media_find_mbus_format(sdformat->format.code, CS_SEL_ANY, true); if (!*cc) { imx_media_enum_mbus_format(&code, 0, CS_SEL_ANY, false); *cc = imx_media_find_mbus_format(code, CS_SEL_ANY, false); sdformat->format.code = (*cc)->codes[0]; } break; default: return -EINVAL; } imx_media_try_colorimetry(&sdformat->format, false); return 0; } static int imx7_csi_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *sdformat) { struct imx7_csi *csi = v4l2_get_subdevdata(sd); const struct imx_media_pixfmt *outcc; struct v4l2_mbus_framefmt *outfmt; const struct imx_media_pixfmt *cc; struct v4l2_mbus_framefmt *fmt; struct v4l2_subdev_format format; int ret = 0; if (sdformat->pad >= IMX7_CSI_PADS_NUM) return -EINVAL; mutex_lock(&csi->lock); if (csi->is_streaming) { ret = -EBUSY; goto out_unlock; } ret = imx7_csi_try_fmt(csi, cfg, sdformat, &cc); if (ret < 0) goto out_unlock; fmt = imx7_csi_get_format(csi, cfg, sdformat->pad, sdformat->which); if (!fmt) { ret = -EINVAL; goto out_unlock; } *fmt = sdformat->format; if (sdformat->pad == IMX7_CSI_PAD_SINK) { /* propagate format to source pads */ format.pad = IMX7_CSI_PAD_SRC; format.which = sdformat->which; format.format = sdformat->format; if (imx7_csi_try_fmt(csi, cfg, &format, &outcc)) { ret = -EINVAL; goto out_unlock; } outfmt = imx7_csi_get_format(csi, cfg, IMX7_CSI_PAD_SRC, sdformat->which); *outfmt = format.format; if (sdformat->which == V4L2_SUBDEV_FORMAT_ACTIVE) csi->cc[IMX7_CSI_PAD_SRC] = outcc; } if (sdformat->which == V4L2_SUBDEV_FORMAT_ACTIVE) csi->cc[sdformat->pad] = cc; out_unlock: mutex_unlock(&csi->lock); return ret; } static int imx7_csi_registered(struct v4l2_subdev *sd) { struct imx7_csi *csi = v4l2_get_subdevdata(sd); int ret; int i; for (i = 0; i < IMX7_CSI_PADS_NUM; i++) { csi->pad[i].flags = (i == IMX7_CSI_PAD_SINK) ? MEDIA_PAD_FL_SINK : MEDIA_PAD_FL_SOURCE; /* set a default mbus format */ ret = imx_media_init_mbus_fmt(&csi->format_mbus[i], 800, 600, 0, V4L2_FIELD_NONE, &csi->cc[i]); if (ret < 0) return ret; /* init default frame interval */ csi->frame_interval[i].numerator = 1; csi->frame_interval[i].denominator = 30; } ret = media_entity_pads_init(&sd->entity, IMX7_CSI_PADS_NUM, csi->pad); if (ret < 0) return ret; return imx_media_capture_device_register(csi->vdev); } static void imx7_csi_unregistered(struct v4l2_subdev *sd) { struct imx7_csi *csi = v4l2_get_subdevdata(sd); imx_media_capture_device_unregister(csi->vdev); } static int imx7_csi_init_cfg(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg) { struct imx7_csi *csi = v4l2_get_subdevdata(sd); struct v4l2_mbus_framefmt *mf; int ret; int i; for (i = 0; i < IMX7_CSI_PADS_NUM; i++) { mf = v4l2_subdev_get_try_format(sd, cfg, i); ret = imx_media_init_mbus_fmt(mf, 800, 600, 0, V4L2_FIELD_NONE, &csi->cc[i]); if (ret < 0) return ret; } return 0; } static const struct media_entity_operations imx7_csi_entity_ops = { .link_setup = imx7_csi_link_setup, .link_validate = v4l2_subdev_link_validate, }; static const struct v4l2_subdev_video_ops imx7_csi_video_ops = { .s_stream = imx7_csi_s_stream, }; static const struct v4l2_subdev_pad_ops imx7_csi_pad_ops = { .init_cfg = imx7_csi_init_cfg, .enum_mbus_code = imx7_csi_enum_mbus_code, .get_fmt = imx7_csi_get_fmt, .set_fmt = imx7_csi_set_fmt, .link_validate = imx7_csi_pad_link_validate, }; static const struct v4l2_subdev_ops imx7_csi_subdev_ops = { .video = &imx7_csi_video_ops, .pad = &imx7_csi_pad_ops, }; static const struct v4l2_subdev_internal_ops imx7_csi_internal_ops = { .registered = imx7_csi_registered, .unregistered = imx7_csi_unregistered, }; static int imx7_csi_parse_endpoint(struct device *dev, struct v4l2_fwnode_endpoint *vep, struct v4l2_async_subdev *asd) { return fwnode_device_is_available(asd->match.fwnode) ? 0 : -EINVAL; } static int imx7_csi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *node = dev->of_node; struct imx_media_dev *imxmd; struct imx7_csi *csi; int ret; csi = devm_kzalloc(&pdev->dev, sizeof(*csi), GFP_KERNEL); if (!csi) return -ENOMEM; csi->dev = dev; csi->mclk = devm_clk_get(&pdev->dev, "mclk"); if (IS_ERR(csi->mclk)) { ret = PTR_ERR(csi->mclk); dev_err(dev, "Failed to get mclk: %d", ret); return ret; } csi->irq = platform_get_irq(pdev, 0); if (csi->irq < 0) return csi->irq; csi->regbase = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(csi->regbase)) return PTR_ERR(csi->regbase); spin_lock_init(&csi->irqlock); mutex_init(&csi->lock); /* install interrupt handler */ ret = devm_request_irq(dev, csi->irq, imx7_csi_irq_handler, 0, "csi", (void *)csi); if (ret < 0) { dev_err(dev, "Request CSI IRQ failed.\n"); goto destroy_mutex; } /* add media device */ imxmd = imx_media_dev_init(dev, NULL); if (IS_ERR(imxmd)) { ret = PTR_ERR(imxmd); goto destroy_mutex; } platform_set_drvdata(pdev, &csi->sd); ret = imx_media_of_add_csi(imxmd, node); if (ret < 0 && ret != -ENODEV && ret != -EEXIST) goto cleanup; ret = imx_media_dev_notifier_register(imxmd, NULL); if (ret < 0) goto cleanup; csi->imxmd = imxmd; v4l2_subdev_init(&csi->sd, &imx7_csi_subdev_ops); v4l2_set_subdevdata(&csi->sd, csi); csi->sd.internal_ops = &imx7_csi_internal_ops; csi->sd.entity.ops = &imx7_csi_entity_ops; csi->sd.entity.function = MEDIA_ENT_F_VID_IF_BRIDGE; csi->sd.dev = &pdev->dev; csi->sd.owner = THIS_MODULE; csi->sd.flags = V4L2_SUBDEV_FL_HAS_DEVNODE; csi->sd.grp_id = IMX_MEDIA_GRP_ID_CSI; snprintf(csi->sd.name, sizeof(csi->sd.name), "csi"); csi->vdev = imx_media_capture_device_init(csi->sd.dev, &csi->sd, IMX7_CSI_PAD_SRC); if (IS_ERR(csi->vdev)) return PTR_ERR(csi->vdev); v4l2_ctrl_handler_init(&csi->ctrl_hdlr, 0); csi->sd.ctrl_handler = &csi->ctrl_hdlr; ret = v4l2_async_register_fwnode_subdev(&csi->sd, sizeof(struct v4l2_async_subdev), NULL, 0, imx7_csi_parse_endpoint); if (ret) goto free; return 0; free: imx_media_capture_device_unregister(csi->vdev); imx_media_capture_device_remove(csi->vdev); v4l2_ctrl_handler_free(&csi->ctrl_hdlr); cleanup: v4l2_async_notifier_cleanup(&imxmd->notifier); v4l2_device_unregister(&imxmd->v4l2_dev); media_device_unregister(&imxmd->md); media_device_cleanup(&imxmd->md); destroy_mutex: mutex_destroy(&csi->lock); return ret; } static int imx7_csi_remove(struct platform_device *pdev) { struct v4l2_subdev *sd = platform_get_drvdata(pdev); struct imx7_csi *csi = v4l2_get_subdevdata(sd); struct imx_media_dev *imxmd = csi->imxmd; v4l2_async_notifier_unregister(&imxmd->notifier); v4l2_async_notifier_cleanup(&imxmd->notifier); media_device_unregister(&imxmd->md); v4l2_device_unregister(&imxmd->v4l2_dev); media_device_cleanup(&imxmd->md); imx_media_capture_device_unregister(csi->vdev); imx_media_capture_device_remove(csi->vdev); v4l2_async_unregister_subdev(sd); v4l2_ctrl_handler_free(&csi->ctrl_hdlr); mutex_destroy(&csi->lock); return 0; } static const struct of_device_id imx7_csi_of_match[] = { { .compatible = "fsl,imx7-csi" }, { .compatible = "fsl,imx6ul-csi" }, { }, }; MODULE_DEVICE_TABLE(of, imx7_csi_of_match); static struct platform_driver imx7_csi_driver = { .probe = imx7_csi_probe, .remove = imx7_csi_remove, .driver = { .of_match_table = imx7_csi_of_match, .name = "imx7-csi", }, }; module_platform_driver(imx7_csi_driver); MODULE_DESCRIPTION("i.MX7 CSI subdev driver"); MODULE_AUTHOR("Rui Miguel Silva <rui.silva@linaro.org>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:imx7-csi");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1