Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Iñaky Pérez-González | 1640 | 93.23% | 1 | 9.09% |
David Vrabel | 103 | 5.86% | 4 | 36.36% |
Joe Perches | 4 | 0.23% | 1 | 9.09% |
Greg Kroah-Hartman | 3 | 0.17% | 1 | 9.09% |
Tejun Heo | 3 | 0.17% | 1 | 9.09% |
Alexey Dobriyan | 3 | 0.17% | 1 | 9.09% |
Thomas Gleixner | 2 | 0.11% | 1 | 9.09% |
Namhyung Kim | 1 | 0.06% | 1 | 9.09% |
Total | 1759 | 11 |
// SPDX-License-Identifier: GPL-2.0-only /* * Wireless Host Controller: Radio Control Interface (WHCI v0.95[2.3]) * Radio Control command/event transport to the UWB stack * * Copyright (C) 2005-2006 Intel Corporation * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com> * * Initialize and hook up the Radio Control interface. * * For each device probed, creates an 'struct whcrc' which contains * just the representation of the UWB Radio Controller, and the logic * for reading notifications and passing them to the UWB Core. * * So we initialize all of those, register the UWB Radio Controller * and setup the notification/event handle to pipe the notifications * to the UWB management Daemon. * * Once uwb_rc_add() is called, the UWB stack takes control, resets * the radio and readies the device to take commands the UWB * API/user-space. * * Note this driver is just a transport driver; the commands are * formed at the UWB stack and given to this driver who will deliver * them to the hw and transfer the replies/notifications back to the * UWB stack through the UWB daemon (UWBD). */ #include <linux/init.h> #include <linux/module.h> #include <linux/pci.h> #include <linux/sched.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/slab.h> #include <linux/workqueue.h> #include "uwb.h" #include "include/whci.h" #include "include/umc.h" #include "uwb-internal.h" /** * Descriptor for an instance of the UWB Radio Control Driver that * attaches to the URC interface of the WHCI PCI card. * * Unless there is a lock specific to the 'data members', all access * is protected by uwb_rc->mutex. */ struct whcrc { struct umc_dev *umc_dev; struct uwb_rc *uwb_rc; /* UWB host controller */ unsigned long area; void __iomem *rc_base; size_t rc_len; spinlock_t irq_lock; void *evt_buf, *cmd_buf; dma_addr_t evt_dma_buf, cmd_dma_buf; wait_queue_head_t cmd_wq; struct work_struct event_work; }; /** * Execute an UWB RC command on WHCI/RC * * @rc: Instance of a Radio Controller that is a whcrc * @cmd: Buffer containing the RCCB and payload to execute * @cmd_size: Size of the command buffer. * * We copy the command into whcrc->cmd_buf (as it is pretty and * aligned`and physically contiguous) and then press the right keys in * the controller's URCCMD register to get it to read it. We might * have to wait for the cmd_sem to be open to us. * * NOTE: rc's mutex has to be locked */ static int whcrc_cmd(struct uwb_rc *uwb_rc, const struct uwb_rccb *cmd, size_t cmd_size) { int result = 0; struct whcrc *whcrc = uwb_rc->priv; struct device *dev = &whcrc->umc_dev->dev; u32 urccmd; if (cmd_size >= 4096) return -EINVAL; /* * If the URC is halted, then the hardware has reset itself. * Attempt to recover by restarting the device and then return * an error as it's likely that the current command isn't * valid for a newly started RC. */ if (le_readl(whcrc->rc_base + URCSTS) & URCSTS_HALTED) { dev_err(dev, "requesting reset of halted radio controller\n"); uwb_rc_reset_all(uwb_rc); return -EIO; } result = wait_event_timeout(whcrc->cmd_wq, !(le_readl(whcrc->rc_base + URCCMD) & URCCMD_ACTIVE), HZ/2); if (result == 0) { dev_err(dev, "device is not ready to execute commands\n"); return -ETIMEDOUT; } memmove(whcrc->cmd_buf, cmd, cmd_size); le_writeq(whcrc->cmd_dma_buf, whcrc->rc_base + URCCMDADDR); spin_lock(&whcrc->irq_lock); urccmd = le_readl(whcrc->rc_base + URCCMD); urccmd &= ~(URCCMD_EARV | URCCMD_SIZE_MASK); le_writel(urccmd | URCCMD_ACTIVE | URCCMD_IWR | cmd_size, whcrc->rc_base + URCCMD); spin_unlock(&whcrc->irq_lock); return 0; } static int whcrc_reset(struct uwb_rc *rc) { struct whcrc *whcrc = rc->priv; return umc_controller_reset(whcrc->umc_dev); } /** * Reset event reception mechanism and tell hw we are ready to get more * * We have read all the events in the event buffer, so we are ready to * reset it to the beginning. * * This is only called during initialization or after an event buffer * has been retired. This means we can be sure that event processing * is disabled and it's safe to update the URCEVTADDR register. * * There's no need to wait for the event processing to start as the * URC will not clear URCCMD_ACTIVE until (internal) event buffer * space is available. */ static void whcrc_enable_events(struct whcrc *whcrc) { u32 urccmd; le_writeq(whcrc->evt_dma_buf, whcrc->rc_base + URCEVTADDR); spin_lock(&whcrc->irq_lock); urccmd = le_readl(whcrc->rc_base + URCCMD) & ~URCCMD_ACTIVE; le_writel(urccmd | URCCMD_EARV, whcrc->rc_base + URCCMD); spin_unlock(&whcrc->irq_lock); } static void whcrc_event_work(struct work_struct *work) { struct whcrc *whcrc = container_of(work, struct whcrc, event_work); size_t size; u64 urcevtaddr; urcevtaddr = le_readq(whcrc->rc_base + URCEVTADDR); size = urcevtaddr & URCEVTADDR_OFFSET_MASK; uwb_rc_neh_grok(whcrc->uwb_rc, whcrc->evt_buf, size); whcrc_enable_events(whcrc); } /** * Catch interrupts? * * We ack inmediately (and expect the hw to do the right thing and * raise another IRQ if things have changed :) */ static irqreturn_t whcrc_irq_cb(int irq, void *_whcrc) { struct whcrc *whcrc = _whcrc; struct device *dev = &whcrc->umc_dev->dev; u32 urcsts; urcsts = le_readl(whcrc->rc_base + URCSTS); if (!(urcsts & URCSTS_INT_MASK)) return IRQ_NONE; le_writel(urcsts & URCSTS_INT_MASK, whcrc->rc_base + URCSTS); if (urcsts & URCSTS_HSE) { dev_err(dev, "host system error -- hardware halted\n"); /* FIXME: do something sensible here */ goto out; } if (urcsts & URCSTS_ER) schedule_work(&whcrc->event_work); if (urcsts & URCSTS_RCI) wake_up_all(&whcrc->cmd_wq); out: return IRQ_HANDLED; } /** * Initialize a UMC RC interface: map regions, get (shared) IRQ */ static int whcrc_setup_rc_umc(struct whcrc *whcrc) { int result = 0; struct device *dev = &whcrc->umc_dev->dev; struct umc_dev *umc_dev = whcrc->umc_dev; whcrc->area = umc_dev->resource.start; whcrc->rc_len = resource_size(&umc_dev->resource); result = -EBUSY; if (request_mem_region(whcrc->area, whcrc->rc_len, KBUILD_MODNAME) == NULL) { dev_err(dev, "can't request URC region (%zu bytes @ 0x%lx): %d\n", whcrc->rc_len, whcrc->area, result); goto error_request_region; } whcrc->rc_base = ioremap_nocache(whcrc->area, whcrc->rc_len); if (whcrc->rc_base == NULL) { dev_err(dev, "can't ioremap registers (%zu bytes @ 0x%lx): %d\n", whcrc->rc_len, whcrc->area, result); goto error_ioremap_nocache; } result = request_irq(umc_dev->irq, whcrc_irq_cb, IRQF_SHARED, KBUILD_MODNAME, whcrc); if (result < 0) { dev_err(dev, "can't allocate IRQ %d: %d\n", umc_dev->irq, result); goto error_request_irq; } result = -ENOMEM; whcrc->cmd_buf = dma_alloc_coherent(&umc_dev->dev, PAGE_SIZE, &whcrc->cmd_dma_buf, GFP_KERNEL); if (whcrc->cmd_buf == NULL) { dev_err(dev, "Can't allocate cmd transfer buffer\n"); goto error_cmd_buffer; } whcrc->evt_buf = dma_alloc_coherent(&umc_dev->dev, PAGE_SIZE, &whcrc->evt_dma_buf, GFP_KERNEL); if (whcrc->evt_buf == NULL) { dev_err(dev, "Can't allocate evt transfer buffer\n"); goto error_evt_buffer; } return 0; error_evt_buffer: dma_free_coherent(&umc_dev->dev, PAGE_SIZE, whcrc->cmd_buf, whcrc->cmd_dma_buf); error_cmd_buffer: free_irq(umc_dev->irq, whcrc); error_request_irq: iounmap(whcrc->rc_base); error_ioremap_nocache: release_mem_region(whcrc->area, whcrc->rc_len); error_request_region: return result; } /** * Release RC's UMC resources */ static void whcrc_release_rc_umc(struct whcrc *whcrc) { struct umc_dev *umc_dev = whcrc->umc_dev; dma_free_coherent(&umc_dev->dev, PAGE_SIZE, whcrc->evt_buf, whcrc->evt_dma_buf); dma_free_coherent(&umc_dev->dev, PAGE_SIZE, whcrc->cmd_buf, whcrc->cmd_dma_buf); free_irq(umc_dev->irq, whcrc); iounmap(whcrc->rc_base); release_mem_region(whcrc->area, whcrc->rc_len); } /** * whcrc_start_rc - start a WHCI radio controller * @whcrc: the radio controller to start * * Reset the UMC device, start the radio controller, enable events and * finally enable interrupts. */ static int whcrc_start_rc(struct uwb_rc *rc) { struct whcrc *whcrc = rc->priv; struct device *dev = &whcrc->umc_dev->dev; /* Reset the thing */ le_writel(URCCMD_RESET, whcrc->rc_base + URCCMD); if (whci_wait_for(dev, whcrc->rc_base + URCCMD, URCCMD_RESET, 0, 5000, "hardware reset") < 0) return -EBUSY; /* Set the event buffer, start the controller (enable IRQs later) */ le_writel(0, whcrc->rc_base + URCINTR); le_writel(URCCMD_RS, whcrc->rc_base + URCCMD); if (whci_wait_for(dev, whcrc->rc_base + URCSTS, URCSTS_HALTED, 0, 5000, "radio controller start") < 0) return -ETIMEDOUT; whcrc_enable_events(whcrc); le_writel(URCINTR_EN_ALL, whcrc->rc_base + URCINTR); return 0; } /** * whcrc_stop_rc - stop a WHCI radio controller * @whcrc: the radio controller to stop * * Disable interrupts and cancel any pending event processing work * before clearing the Run/Stop bit. */ static void whcrc_stop_rc(struct uwb_rc *rc) { struct whcrc *whcrc = rc->priv; struct umc_dev *umc_dev = whcrc->umc_dev; le_writel(0, whcrc->rc_base + URCINTR); cancel_work_sync(&whcrc->event_work); le_writel(0, whcrc->rc_base + URCCMD); whci_wait_for(&umc_dev->dev, whcrc->rc_base + URCSTS, URCSTS_HALTED, URCSTS_HALTED, 100, "radio controller stop"); } static void whcrc_init(struct whcrc *whcrc) { spin_lock_init(&whcrc->irq_lock); init_waitqueue_head(&whcrc->cmd_wq); INIT_WORK(&whcrc->event_work, whcrc_event_work); } /** * Initialize the radio controller. * * NOTE: we setup whcrc->uwb_rc before calling uwb_rc_add(); in the * IRQ handler we use that to determine if the hw is ready to * handle events. Looks like a race condition, but it really is * not. */ static int whcrc_probe(struct umc_dev *umc_dev) { int result; struct uwb_rc *uwb_rc; struct whcrc *whcrc; struct device *dev = &umc_dev->dev; result = -ENOMEM; uwb_rc = uwb_rc_alloc(); if (uwb_rc == NULL) { dev_err(dev, "unable to allocate RC instance\n"); goto error_rc_alloc; } whcrc = kzalloc(sizeof(*whcrc), GFP_KERNEL); if (whcrc == NULL) { dev_err(dev, "unable to allocate WHC-RC instance\n"); goto error_alloc; } whcrc_init(whcrc); whcrc->umc_dev = umc_dev; result = whcrc_setup_rc_umc(whcrc); if (result < 0) { dev_err(dev, "Can't setup RC UMC interface: %d\n", result); goto error_setup_rc_umc; } whcrc->uwb_rc = uwb_rc; uwb_rc->owner = THIS_MODULE; uwb_rc->cmd = whcrc_cmd; uwb_rc->reset = whcrc_reset; uwb_rc->start = whcrc_start_rc; uwb_rc->stop = whcrc_stop_rc; result = uwb_rc_add(uwb_rc, dev, whcrc); if (result < 0) goto error_rc_add; umc_set_drvdata(umc_dev, whcrc); return 0; error_rc_add: whcrc_release_rc_umc(whcrc); error_setup_rc_umc: kfree(whcrc); error_alloc: uwb_rc_put(uwb_rc); error_rc_alloc: return result; } /** * Clean up the radio control resources * * When we up the command semaphore, everybody possibly held trying to * execute a command should be granted entry and then they'll see the * host is quiescing and up it (so it will chain to the next waiter). * This should not happen (in any case), as we can only remove when * there are no handles open... */ static void whcrc_remove(struct umc_dev *umc_dev) { struct whcrc *whcrc = umc_get_drvdata(umc_dev); struct uwb_rc *uwb_rc = whcrc->uwb_rc; umc_set_drvdata(umc_dev, NULL); uwb_rc_rm(uwb_rc); whcrc_release_rc_umc(whcrc); kfree(whcrc); uwb_rc_put(uwb_rc); } static int whcrc_pre_reset(struct umc_dev *umc) { struct whcrc *whcrc = umc_get_drvdata(umc); struct uwb_rc *uwb_rc = whcrc->uwb_rc; uwb_rc_pre_reset(uwb_rc); return 0; } static int whcrc_post_reset(struct umc_dev *umc) { struct whcrc *whcrc = umc_get_drvdata(umc); struct uwb_rc *uwb_rc = whcrc->uwb_rc; return uwb_rc_post_reset(uwb_rc); } /* PCI device ID's that we handle [so it gets loaded] */ static struct pci_device_id __used whcrc_id_table[] = { { PCI_DEVICE_CLASS(PCI_CLASS_WIRELESS_WHCI, ~0) }, { /* empty last entry */ } }; MODULE_DEVICE_TABLE(pci, whcrc_id_table); static struct umc_driver whcrc_driver = { .name = "whc-rc", .cap_id = UMC_CAP_ID_WHCI_RC, .probe = whcrc_probe, .remove = whcrc_remove, .pre_reset = whcrc_pre_reset, .post_reset = whcrc_post_reset, }; static int __init whcrc_driver_init(void) { return umc_driver_register(&whcrc_driver); } module_init(whcrc_driver_init); static void __exit whcrc_driver_exit(void) { umc_driver_unregister(&whcrc_driver); } module_exit(whcrc_driver_exit); MODULE_AUTHOR("Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>"); MODULE_DESCRIPTION("Wireless Host Controller Radio Control Driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1