Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Srinivas Pandruvada | 2209 | 66.76% | 12 | 48.00% |
Rui Zhang | 949 | 28.68% | 2 | 8.00% |
Amy Wiles | 53 | 1.60% | 1 | 4.00% |
Aaron Hill | 46 | 1.39% | 1 | 4.00% |
Rafael J. Wysocki | 16 | 0.48% | 1 | 4.00% |
Sumeet Pawnikar | 15 | 0.45% | 2 | 8.00% |
Brian Bian | 12 | 0.36% | 1 | 4.00% |
Dan Carpenter | 3 | 0.09% | 1 | 4.00% |
Sascha Hauer | 2 | 0.06% | 1 | 4.00% |
Thomas Gleixner | 2 | 0.06% | 1 | 4.00% |
Arvind Yadav | 1 | 0.03% | 1 | 4.00% |
Lad Prabhakar | 1 | 0.03% | 1 | 4.00% |
Total | 3309 | 25 |
// SPDX-License-Identifier: GPL-2.0-only /* * processor_thermal_device.c * Copyright (c) 2014, Intel Corporation. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/acpi.h> #include <linux/thermal.h> #include <linux/cpuhotplug.h> #include <linux/intel_rapl.h> #include "int340x_thermal_zone.h" #include "../intel_soc_dts_iosf.h" /* Broadwell-U/HSB thermal reporting device */ #define PCI_DEVICE_ID_PROC_BDW_THERMAL 0x1603 #define PCI_DEVICE_ID_PROC_HSB_THERMAL 0x0A03 /* Skylake thermal reporting device */ #define PCI_DEVICE_ID_PROC_SKL_THERMAL 0x1903 /* CannonLake thermal reporting device */ #define PCI_DEVICE_ID_PROC_CNL_THERMAL 0x5a03 #define PCI_DEVICE_ID_PROC_CFL_THERMAL 0x3E83 /* Braswell thermal reporting device */ #define PCI_DEVICE_ID_PROC_BSW_THERMAL 0x22DC /* Broxton thermal reporting device */ #define PCI_DEVICE_ID_PROC_BXT0_THERMAL 0x0A8C #define PCI_DEVICE_ID_PROC_BXT1_THERMAL 0x1A8C #define PCI_DEVICE_ID_PROC_BXTX_THERMAL 0x4A8C #define PCI_DEVICE_ID_PROC_BXTP_THERMAL 0x5A8C /* GeminiLake thermal reporting device */ #define PCI_DEVICE_ID_PROC_GLK_THERMAL 0x318C /* IceLake thermal reporting device */ #define PCI_DEVICE_ID_PROC_ICL_THERMAL 0x8a03 #define DRV_NAME "proc_thermal" struct power_config { u32 index; u32 min_uw; u32 max_uw; u32 tmin_us; u32 tmax_us; u32 step_uw; }; struct proc_thermal_device { struct device *dev; struct acpi_device *adev; struct power_config power_limits[2]; struct int34x_thermal_zone *int340x_zone; struct intel_soc_dts_sensors *soc_dts; void __iomem *mmio_base; }; enum proc_thermal_emum_mode_type { PROC_THERMAL_NONE, PROC_THERMAL_PCI, PROC_THERMAL_PLATFORM_DEV }; struct rapl_mmio_regs { u64 reg_unit; u64 regs[RAPL_DOMAIN_MAX][RAPL_DOMAIN_REG_MAX]; int limits[RAPL_DOMAIN_MAX]; }; /* * We can have only one type of enumeration, PCI or Platform, * not both. So we don't need instance specific data. */ static enum proc_thermal_emum_mode_type proc_thermal_emum_mode = PROC_THERMAL_NONE; #define POWER_LIMIT_SHOW(index, suffix) \ static ssize_t power_limit_##index##_##suffix##_show(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ struct proc_thermal_device *proc_dev = dev_get_drvdata(dev); \ \ if (proc_thermal_emum_mode == PROC_THERMAL_NONE) { \ dev_warn(dev, "Attempted to get power limit before device was initialized!\n"); \ return 0; \ } \ \ return sprintf(buf, "%lu\n",\ (unsigned long)proc_dev->power_limits[index].suffix * 1000); \ } POWER_LIMIT_SHOW(0, min_uw) POWER_LIMIT_SHOW(0, max_uw) POWER_LIMIT_SHOW(0, step_uw) POWER_LIMIT_SHOW(0, tmin_us) POWER_LIMIT_SHOW(0, tmax_us) POWER_LIMIT_SHOW(1, min_uw) POWER_LIMIT_SHOW(1, max_uw) POWER_LIMIT_SHOW(1, step_uw) POWER_LIMIT_SHOW(1, tmin_us) POWER_LIMIT_SHOW(1, tmax_us) static DEVICE_ATTR_RO(power_limit_0_min_uw); static DEVICE_ATTR_RO(power_limit_0_max_uw); static DEVICE_ATTR_RO(power_limit_0_step_uw); static DEVICE_ATTR_RO(power_limit_0_tmin_us); static DEVICE_ATTR_RO(power_limit_0_tmax_us); static DEVICE_ATTR_RO(power_limit_1_min_uw); static DEVICE_ATTR_RO(power_limit_1_max_uw); static DEVICE_ATTR_RO(power_limit_1_step_uw); static DEVICE_ATTR_RO(power_limit_1_tmin_us); static DEVICE_ATTR_RO(power_limit_1_tmax_us); static struct attribute *power_limit_attrs[] = { &dev_attr_power_limit_0_min_uw.attr, &dev_attr_power_limit_1_min_uw.attr, &dev_attr_power_limit_0_max_uw.attr, &dev_attr_power_limit_1_max_uw.attr, &dev_attr_power_limit_0_step_uw.attr, &dev_attr_power_limit_1_step_uw.attr, &dev_attr_power_limit_0_tmin_us.attr, &dev_attr_power_limit_1_tmin_us.attr, &dev_attr_power_limit_0_tmax_us.attr, &dev_attr_power_limit_1_tmax_us.attr, NULL }; static const struct attribute_group power_limit_attribute_group = { .attrs = power_limit_attrs, .name = "power_limits" }; static ssize_t tcc_offset_degree_celsius_show(struct device *dev, struct device_attribute *attr, char *buf) { u64 val; int err; err = rdmsrl_safe(MSR_IA32_TEMPERATURE_TARGET, &val); if (err) return err; val = (val >> 24) & 0xff; return sprintf(buf, "%d\n", (int)val); } static int tcc_offset_update(int tcc) { u64 val; int err; if (!tcc) return -EINVAL; err = rdmsrl_safe(MSR_IA32_TEMPERATURE_TARGET, &val); if (err) return err; val &= ~GENMASK_ULL(31, 24); val |= (tcc & 0xff) << 24; err = wrmsrl_safe(MSR_IA32_TEMPERATURE_TARGET, val); if (err) return err; return 0; } static int tcc_offset_save; static ssize_t tcc_offset_degree_celsius_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { u64 val; int tcc, err; err = rdmsrl_safe(MSR_PLATFORM_INFO, &val); if (err) return err; if (!(val & BIT(30))) return -EACCES; if (kstrtoint(buf, 0, &tcc)) return -EINVAL; err = tcc_offset_update(tcc); if (err) return err; tcc_offset_save = tcc; return count; } static DEVICE_ATTR_RW(tcc_offset_degree_celsius); static int stored_tjmax; /* since it is fixed, we can have local storage */ static int get_tjmax(void) { u32 eax, edx; u32 val; int err; err = rdmsr_safe(MSR_IA32_TEMPERATURE_TARGET, &eax, &edx); if (err) return err; val = (eax >> 16) & 0xff; if (val) return val; return -EINVAL; } static int read_temp_msr(int *temp) { int cpu; u32 eax, edx; int err; unsigned long curr_temp_off = 0; *temp = 0; for_each_online_cpu(cpu) { err = rdmsr_safe_on_cpu(cpu, MSR_IA32_THERM_STATUS, &eax, &edx); if (err) goto err_ret; else { if (eax & 0x80000000) { curr_temp_off = (eax >> 16) & 0x7f; if (!*temp || curr_temp_off < *temp) *temp = curr_temp_off; } else { err = -EINVAL; goto err_ret; } } } return 0; err_ret: return err; } static int proc_thermal_get_zone_temp(struct thermal_zone_device *zone, int *temp) { int ret; ret = read_temp_msr(temp); if (!ret) *temp = (stored_tjmax - *temp) * 1000; return ret; } static struct thermal_zone_device_ops proc_thermal_local_ops = { .get_temp = proc_thermal_get_zone_temp, }; static int proc_thermal_read_ppcc(struct proc_thermal_device *proc_priv) { int i; acpi_status status; struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *elements, *ppcc; union acpi_object *p; int ret = 0; status = acpi_evaluate_object(proc_priv->adev->handle, "PPCC", NULL, &buf); if (ACPI_FAILURE(status)) return -ENODEV; p = buf.pointer; if (!p || (p->type != ACPI_TYPE_PACKAGE)) { dev_err(proc_priv->dev, "Invalid PPCC data\n"); ret = -EFAULT; goto free_buffer; } if (!p->package.count) { dev_err(proc_priv->dev, "Invalid PPCC package size\n"); ret = -EFAULT; goto free_buffer; } for (i = 0; i < min((int)p->package.count - 1, 2); ++i) { elements = &(p->package.elements[i+1]); if (elements->type != ACPI_TYPE_PACKAGE || elements->package.count != 6) { ret = -EFAULT; goto free_buffer; } ppcc = elements->package.elements; proc_priv->power_limits[i].index = ppcc[0].integer.value; proc_priv->power_limits[i].min_uw = ppcc[1].integer.value; proc_priv->power_limits[i].max_uw = ppcc[2].integer.value; proc_priv->power_limits[i].tmin_us = ppcc[3].integer.value; proc_priv->power_limits[i].tmax_us = ppcc[4].integer.value; proc_priv->power_limits[i].step_uw = ppcc[5].integer.value; } free_buffer: kfree(buf.pointer); return ret; } #define PROC_POWER_CAPABILITY_CHANGED 0x83 static void proc_thermal_notify(acpi_handle handle, u32 event, void *data) { struct proc_thermal_device *proc_priv = data; if (!proc_priv) return; switch (event) { case PROC_POWER_CAPABILITY_CHANGED: proc_thermal_read_ppcc(proc_priv); int340x_thermal_zone_device_update(proc_priv->int340x_zone, THERMAL_DEVICE_POWER_CAPABILITY_CHANGED); break; default: dev_dbg(proc_priv->dev, "Unsupported event [0x%x]\n", event); break; } } static int proc_thermal_add(struct device *dev, struct proc_thermal_device **priv) { struct proc_thermal_device *proc_priv; struct acpi_device *adev; acpi_status status; unsigned long long tmp; struct thermal_zone_device_ops *ops = NULL; int ret; adev = ACPI_COMPANION(dev); if (!adev) return -ENODEV; proc_priv = devm_kzalloc(dev, sizeof(*proc_priv), GFP_KERNEL); if (!proc_priv) return -ENOMEM; proc_priv->dev = dev; proc_priv->adev = adev; *priv = proc_priv; ret = proc_thermal_read_ppcc(proc_priv); if (ret) return ret; status = acpi_evaluate_integer(adev->handle, "_TMP", NULL, &tmp); if (ACPI_FAILURE(status)) { /* there is no _TMP method, add local method */ stored_tjmax = get_tjmax(); if (stored_tjmax > 0) ops = &proc_thermal_local_ops; } proc_priv->int340x_zone = int340x_thermal_zone_add(adev, ops); if (IS_ERR(proc_priv->int340x_zone)) { return PTR_ERR(proc_priv->int340x_zone); } else ret = 0; ret = acpi_install_notify_handler(adev->handle, ACPI_DEVICE_NOTIFY, proc_thermal_notify, (void *)proc_priv); if (ret) goto remove_zone; return 0; remove_zone: int340x_thermal_zone_remove(proc_priv->int340x_zone); return ret; } static void proc_thermal_remove(struct proc_thermal_device *proc_priv) { acpi_remove_notify_handler(proc_priv->adev->handle, ACPI_DEVICE_NOTIFY, proc_thermal_notify); int340x_thermal_zone_remove(proc_priv->int340x_zone); sysfs_remove_file(&proc_priv->dev->kobj, &dev_attr_tcc_offset_degree_celsius.attr); sysfs_remove_group(&proc_priv->dev->kobj, &power_limit_attribute_group); } static int int3401_add(struct platform_device *pdev) { struct proc_thermal_device *proc_priv; int ret; if (proc_thermal_emum_mode == PROC_THERMAL_PCI) { dev_err(&pdev->dev, "error: enumerated as PCI dev\n"); return -ENODEV; } ret = proc_thermal_add(&pdev->dev, &proc_priv); if (ret) return ret; platform_set_drvdata(pdev, proc_priv); proc_thermal_emum_mode = PROC_THERMAL_PLATFORM_DEV; dev_info(&pdev->dev, "Creating sysfs group for PROC_THERMAL_PLATFORM_DEV\n"); ret = sysfs_create_file(&pdev->dev.kobj, &dev_attr_tcc_offset_degree_celsius.attr); if (ret) return ret; ret = sysfs_create_group(&pdev->dev.kobj, &power_limit_attribute_group); if (ret) sysfs_remove_file(&pdev->dev.kobj, &dev_attr_tcc_offset_degree_celsius.attr); return ret; } static int int3401_remove(struct platform_device *pdev) { proc_thermal_remove(platform_get_drvdata(pdev)); return 0; } static irqreturn_t proc_thermal_pci_msi_irq(int irq, void *devid) { struct proc_thermal_device *proc_priv; struct pci_dev *pdev = devid; proc_priv = pci_get_drvdata(pdev); intel_soc_dts_iosf_interrupt_handler(proc_priv->soc_dts); return IRQ_HANDLED; } #ifdef CONFIG_PROC_THERMAL_MMIO_RAPL #define MCHBAR 0 /* RAPL Support via MMIO interface */ static struct rapl_if_priv rapl_mmio_priv; static int rapl_mmio_cpu_online(unsigned int cpu) { struct rapl_package *rp; /* mmio rapl supports package 0 only for now */ if (topology_physical_package_id(cpu)) return 0; rp = rapl_find_package_domain(cpu, &rapl_mmio_priv); if (!rp) { rp = rapl_add_package(cpu, &rapl_mmio_priv); if (IS_ERR(rp)) return PTR_ERR(rp); } cpumask_set_cpu(cpu, &rp->cpumask); return 0; } static int rapl_mmio_cpu_down_prep(unsigned int cpu) { struct rapl_package *rp; int lead_cpu; rp = rapl_find_package_domain(cpu, &rapl_mmio_priv); if (!rp) return 0; cpumask_clear_cpu(cpu, &rp->cpumask); lead_cpu = cpumask_first(&rp->cpumask); if (lead_cpu >= nr_cpu_ids) rapl_remove_package(rp); else if (rp->lead_cpu == cpu) rp->lead_cpu = lead_cpu; return 0; } static int rapl_mmio_read_raw(int cpu, struct reg_action *ra) { if (!ra->reg) return -EINVAL; ra->value = readq((void __iomem *)ra->reg); ra->value &= ra->mask; return 0; } static int rapl_mmio_write_raw(int cpu, struct reg_action *ra) { u64 val; if (!ra->reg) return -EINVAL; val = readq((void __iomem *)ra->reg); val &= ~ra->mask; val |= ra->value; writeq(val, (void __iomem *)ra->reg); return 0; } static int proc_thermal_rapl_add(struct pci_dev *pdev, struct proc_thermal_device *proc_priv, struct rapl_mmio_regs *rapl_regs) { enum rapl_domain_reg_id reg; enum rapl_domain_type domain; int ret; if (!rapl_regs) return 0; ret = pcim_iomap_regions(pdev, 1 << MCHBAR, DRV_NAME); if (ret) { dev_err(&pdev->dev, "cannot reserve PCI memory region\n"); return -ENOMEM; } proc_priv->mmio_base = pcim_iomap_table(pdev)[MCHBAR]; for (domain = RAPL_DOMAIN_PACKAGE; domain < RAPL_DOMAIN_MAX; domain++) { for (reg = RAPL_DOMAIN_REG_LIMIT; reg < RAPL_DOMAIN_REG_MAX; reg++) if (rapl_regs->regs[domain][reg]) rapl_mmio_priv.regs[domain][reg] = (u64)proc_priv->mmio_base + rapl_regs->regs[domain][reg]; rapl_mmio_priv.limits[domain] = rapl_regs->limits[domain]; } rapl_mmio_priv.reg_unit = (u64)proc_priv->mmio_base + rapl_regs->reg_unit; rapl_mmio_priv.read_raw = rapl_mmio_read_raw; rapl_mmio_priv.write_raw = rapl_mmio_write_raw; rapl_mmio_priv.control_type = powercap_register_control_type(NULL, "intel-rapl-mmio", NULL); if (IS_ERR(rapl_mmio_priv.control_type)) { pr_debug("failed to register powercap control_type.\n"); return PTR_ERR(rapl_mmio_priv.control_type); } ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powercap/rapl:online", rapl_mmio_cpu_online, rapl_mmio_cpu_down_prep); if (ret < 0) { powercap_unregister_control_type(rapl_mmio_priv.control_type); rapl_mmio_priv.control_type = NULL; return ret; } rapl_mmio_priv.pcap_rapl_online = ret; return 0; } static void proc_thermal_rapl_remove(void) { if (IS_ERR_OR_NULL(rapl_mmio_priv.control_type)) return; cpuhp_remove_state(rapl_mmio_priv.pcap_rapl_online); powercap_unregister_control_type(rapl_mmio_priv.control_type); } static const struct rapl_mmio_regs rapl_mmio_hsw = { .reg_unit = 0x5938, .regs[RAPL_DOMAIN_PACKAGE] = { 0x59a0, 0x593c, 0x58f0, 0, 0x5930}, .regs[RAPL_DOMAIN_DRAM] = { 0x58e0, 0x58e8, 0x58ec, 0, 0}, .limits[RAPL_DOMAIN_PACKAGE] = 2, .limits[RAPL_DOMAIN_DRAM] = 2, }; #else static int proc_thermal_rapl_add(struct pci_dev *pdev, struct proc_thermal_device *proc_priv, struct rapl_mmio_regs *rapl_regs) { return 0; } static void proc_thermal_rapl_remove(void) {} static const struct rapl_mmio_regs rapl_mmio_hsw; #endif /* CONFIG_MMIO_RAPL */ static int proc_thermal_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct proc_thermal_device *proc_priv; int ret; if (proc_thermal_emum_mode == PROC_THERMAL_PLATFORM_DEV) { dev_err(&pdev->dev, "error: enumerated as platform dev\n"); return -ENODEV; } ret = pcim_enable_device(pdev); if (ret < 0) { dev_err(&pdev->dev, "error: could not enable device\n"); return ret; } ret = proc_thermal_add(&pdev->dev, &proc_priv); if (ret) return ret; ret = proc_thermal_rapl_add(pdev, proc_priv, (struct rapl_mmio_regs *)id->driver_data); if (ret) { dev_err(&pdev->dev, "failed to add RAPL MMIO interface\n"); proc_thermal_remove(proc_priv); return ret; } pci_set_drvdata(pdev, proc_priv); proc_thermal_emum_mode = PROC_THERMAL_PCI; if (pdev->device == PCI_DEVICE_ID_PROC_BSW_THERMAL) { /* * Enumerate additional DTS sensors available via IOSF. * But we are not treating as a failure condition, if * there are no aux DTSs enabled or fails. This driver * already exposes sensors, which can be accessed via * ACPI/MSR. So we don't want to fail for auxiliary DTSs. */ proc_priv->soc_dts = intel_soc_dts_iosf_init( INTEL_SOC_DTS_INTERRUPT_MSI, 2, 0); if (!IS_ERR(proc_priv->soc_dts) && pdev->irq) { ret = pci_enable_msi(pdev); if (!ret) { ret = request_threaded_irq(pdev->irq, NULL, proc_thermal_pci_msi_irq, IRQF_ONESHOT, "proc_thermal", pdev); if (ret) { intel_soc_dts_iosf_exit( proc_priv->soc_dts); pci_disable_msi(pdev); proc_priv->soc_dts = NULL; } } } else dev_err(&pdev->dev, "No auxiliary DTSs enabled\n"); } dev_info(&pdev->dev, "Creating sysfs group for PROC_THERMAL_PCI\n"); ret = sysfs_create_file(&pdev->dev.kobj, &dev_attr_tcc_offset_degree_celsius.attr); if (ret) return ret; ret = sysfs_create_group(&pdev->dev.kobj, &power_limit_attribute_group); if (ret) sysfs_remove_file(&pdev->dev.kobj, &dev_attr_tcc_offset_degree_celsius.attr); return ret; } static void proc_thermal_pci_remove(struct pci_dev *pdev) { struct proc_thermal_device *proc_priv = pci_get_drvdata(pdev); if (proc_priv->soc_dts) { intel_soc_dts_iosf_exit(proc_priv->soc_dts); if (pdev->irq) { free_irq(pdev->irq, pdev); pci_disable_msi(pdev); } } proc_thermal_rapl_remove(); proc_thermal_remove(proc_priv); } #ifdef CONFIG_PM_SLEEP static int proc_thermal_resume(struct device *dev) { struct proc_thermal_device *proc_dev; proc_dev = dev_get_drvdata(dev); proc_thermal_read_ppcc(proc_dev); tcc_offset_update(tcc_offset_save); return 0; } #else #define proc_thermal_resume NULL #endif static SIMPLE_DEV_PM_OPS(proc_thermal_pm, NULL, proc_thermal_resume); static const struct pci_device_id proc_thermal_pci_ids[] = { { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_PROC_BDW_THERMAL)}, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_PROC_HSB_THERMAL)}, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_PROC_SKL_THERMAL), .driver_data = (kernel_ulong_t)&rapl_mmio_hsw, }, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_PROC_BSW_THERMAL)}, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_PROC_BXT0_THERMAL)}, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_PROC_BXT1_THERMAL)}, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_PROC_BXTX_THERMAL)}, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_PROC_BXTP_THERMAL)}, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_PROC_CNL_THERMAL)}, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_PROC_CFL_THERMAL)}, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_PROC_GLK_THERMAL)}, { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_PROC_ICL_THERMAL), .driver_data = (kernel_ulong_t)&rapl_mmio_hsw, }, { 0, }, }; MODULE_DEVICE_TABLE(pci, proc_thermal_pci_ids); static struct pci_driver proc_thermal_pci_driver = { .name = DRV_NAME, .probe = proc_thermal_pci_probe, .remove = proc_thermal_pci_remove, .id_table = proc_thermal_pci_ids, .driver.pm = &proc_thermal_pm, }; static const struct acpi_device_id int3401_device_ids[] = { {"INT3401", 0}, {"", 0}, }; MODULE_DEVICE_TABLE(acpi, int3401_device_ids); static struct platform_driver int3401_driver = { .probe = int3401_add, .remove = int3401_remove, .driver = { .name = "int3401 thermal", .acpi_match_table = int3401_device_ids, .pm = &proc_thermal_pm, }, }; static int __init proc_thermal_init(void) { int ret; ret = platform_driver_register(&int3401_driver); if (ret) return ret; ret = pci_register_driver(&proc_thermal_pci_driver); return ret; } static void __exit proc_thermal_exit(void) { platform_driver_unregister(&int3401_driver); pci_unregister_driver(&proc_thermal_pci_driver); } module_init(proc_thermal_init); module_exit(proc_thermal_exit); MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>"); MODULE_DESCRIPTION("Processor Thermal Reporting Device Driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1