Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jacob jun Pan | 2229 | 78.68% | 5 | 20.83% |
Petr Mladek | 431 | 15.21% | 3 | 12.50% |
Sebastian Andrzej Siewior | 85 | 3.00% | 1 | 4.17% |
Durgadoss R | 46 | 1.62% | 1 | 4.17% |
Yuxuan Shui | 13 | 0.46% | 1 | 4.17% |
Andrew Lutomirski | 6 | 0.21% | 2 | 8.33% |
Ingo Molnar | 3 | 0.11% | 1 | 4.17% |
Linus Torvalds | 3 | 0.11% | 1 | 4.17% |
Yangtao Li | 3 | 0.11% | 1 | 4.17% |
Mathias Krause | 3 | 0.11% | 1 | 4.17% |
Luis R. Rodriguez | 2 | 0.07% | 1 | 4.17% |
Thomas Gleixner | 2 | 0.07% | 1 | 4.17% |
Arvind Yadav | 2 | 0.07% | 1 | 4.17% |
Dan Carpenter | 2 | 0.07% | 1 | 4.17% |
Daniel Lezcano | 1 | 0.04% | 1 | 4.17% |
Luc Van Oostenryck | 1 | 0.04% | 1 | 4.17% |
Rui Zhang | 1 | 0.04% | 1 | 4.17% |
Total | 2833 | 24 |
// SPDX-License-Identifier: GPL-2.0-only /* * intel_powerclamp.c - package c-state idle injection * * Copyright (c) 2012, Intel Corporation. * * Authors: * Arjan van de Ven <arjan@linux.intel.com> * Jacob Pan <jacob.jun.pan@linux.intel.com> * * TODO: * 1. better handle wakeup from external interrupts, currently a fixed * compensation is added to clamping duration when excessive amount * of wakeups are observed during idle time. the reason is that in * case of external interrupts without need for ack, clamping down * cpu in non-irq context does not reduce irq. for majority of the * cases, clamping down cpu does help reduce irq as well, we should * be able to differentiate the two cases and give a quantitative * solution for the irqs that we can control. perhaps based on * get_cpu_iowait_time_us() * * 2. synchronization with other hw blocks */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/module.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/kthread.h> #include <linux/cpu.h> #include <linux/thermal.h> #include <linux/slab.h> #include <linux/tick.h> #include <linux/debugfs.h> #include <linux/seq_file.h> #include <linux/sched/rt.h> #include <uapi/linux/sched/types.h> #include <asm/nmi.h> #include <asm/msr.h> #include <asm/mwait.h> #include <asm/cpu_device_id.h> #include <asm/hardirq.h> #define MAX_TARGET_RATIO (50U) /* For each undisturbed clamping period (no extra wake ups during idle time), * we increment the confidence counter for the given target ratio. * CONFIDENCE_OK defines the level where runtime calibration results are * valid. */ #define CONFIDENCE_OK (3) /* Default idle injection duration, driver adjust sleep time to meet target * idle ratio. Similar to frequency modulation. */ #define DEFAULT_DURATION_JIFFIES (6) static unsigned int target_mwait; static struct dentry *debug_dir; /* user selected target */ static unsigned int set_target_ratio; static unsigned int current_ratio; static bool should_skip; static bool reduce_irq; static atomic_t idle_wakeup_counter; static unsigned int control_cpu; /* The cpu assigned to collect stat and update * control parameters. default to BSP but BSP * can be offlined. */ static bool clamping; static const struct sched_param sparam = { .sched_priority = MAX_USER_RT_PRIO / 2, }; struct powerclamp_worker_data { struct kthread_worker *worker; struct kthread_work balancing_work; struct kthread_delayed_work idle_injection_work; unsigned int cpu; unsigned int count; unsigned int guard; unsigned int window_size_now; unsigned int target_ratio; unsigned int duration_jiffies; bool clamping; }; static struct powerclamp_worker_data __percpu *worker_data; static struct thermal_cooling_device *cooling_dev; static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu * clamping kthread worker */ static unsigned int duration; static unsigned int pkg_cstate_ratio_cur; static unsigned int window_size; static int duration_set(const char *arg, const struct kernel_param *kp) { int ret = 0; unsigned long new_duration; ret = kstrtoul(arg, 10, &new_duration); if (ret) goto exit; if (new_duration > 25 || new_duration < 6) { pr_err("Out of recommended range %lu, between 6-25ms\n", new_duration); ret = -EINVAL; } duration = clamp(new_duration, 6ul, 25ul); smp_mb(); exit: return ret; } static const struct kernel_param_ops duration_ops = { .set = duration_set, .get = param_get_int, }; module_param_cb(duration, &duration_ops, &duration, 0644); MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec."); struct powerclamp_calibration_data { unsigned long confidence; /* used for calibration, basically a counter * gets incremented each time a clamping * period is completed without extra wakeups * once that counter is reached given level, * compensation is deemed usable. */ unsigned long steady_comp; /* steady state compensation used when * no extra wakeups occurred. */ unsigned long dynamic_comp; /* compensate excessive wakeup from idle * mostly from external interrupts. */ }; static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO]; static int window_size_set(const char *arg, const struct kernel_param *kp) { int ret = 0; unsigned long new_window_size; ret = kstrtoul(arg, 10, &new_window_size); if (ret) goto exit_win; if (new_window_size > 10 || new_window_size < 2) { pr_err("Out of recommended window size %lu, between 2-10\n", new_window_size); ret = -EINVAL; } window_size = clamp(new_window_size, 2ul, 10ul); smp_mb(); exit_win: return ret; } static const struct kernel_param_ops window_size_ops = { .set = window_size_set, .get = param_get_int, }; module_param_cb(window_size, &window_size_ops, &window_size, 0644); MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n" "\tpowerclamp controls idle ratio within this window. larger\n" "\twindow size results in slower response time but more smooth\n" "\tclamping results. default to 2."); static void find_target_mwait(void) { unsigned int eax, ebx, ecx, edx; unsigned int highest_cstate = 0; unsigned int highest_subcstate = 0; int i; if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF) return; cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx); if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) || !(ecx & CPUID5_ECX_INTERRUPT_BREAK)) return; edx >>= MWAIT_SUBSTATE_SIZE; for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) { if (edx & MWAIT_SUBSTATE_MASK) { highest_cstate = i; highest_subcstate = edx & MWAIT_SUBSTATE_MASK; } } target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) | (highest_subcstate - 1); } struct pkg_cstate_info { bool skip; int msr_index; int cstate_id; }; #define PKG_CSTATE_INIT(id) { \ .msr_index = MSR_PKG_C##id##_RESIDENCY, \ .cstate_id = id \ } static struct pkg_cstate_info pkg_cstates[] = { PKG_CSTATE_INIT(2), PKG_CSTATE_INIT(3), PKG_CSTATE_INIT(6), PKG_CSTATE_INIT(7), PKG_CSTATE_INIT(8), PKG_CSTATE_INIT(9), PKG_CSTATE_INIT(10), {NULL}, }; static bool has_pkg_state_counter(void) { u64 val; struct pkg_cstate_info *info = pkg_cstates; /* check if any one of the counter msrs exists */ while (info->msr_index) { if (!rdmsrl_safe(info->msr_index, &val)) return true; info++; } return false; } static u64 pkg_state_counter(void) { u64 val; u64 count = 0; struct pkg_cstate_info *info = pkg_cstates; while (info->msr_index) { if (!info->skip) { if (!rdmsrl_safe(info->msr_index, &val)) count += val; else info->skip = true; } info++; } return count; } static unsigned int get_compensation(int ratio) { unsigned int comp = 0; /* we only use compensation if all adjacent ones are good */ if (ratio == 1 && cal_data[ratio].confidence >= CONFIDENCE_OK && cal_data[ratio + 1].confidence >= CONFIDENCE_OK && cal_data[ratio + 2].confidence >= CONFIDENCE_OK) { comp = (cal_data[ratio].steady_comp + cal_data[ratio + 1].steady_comp + cal_data[ratio + 2].steady_comp) / 3; } else if (ratio == MAX_TARGET_RATIO - 1 && cal_data[ratio].confidence >= CONFIDENCE_OK && cal_data[ratio - 1].confidence >= CONFIDENCE_OK && cal_data[ratio - 2].confidence >= CONFIDENCE_OK) { comp = (cal_data[ratio].steady_comp + cal_data[ratio - 1].steady_comp + cal_data[ratio - 2].steady_comp) / 3; } else if (cal_data[ratio].confidence >= CONFIDENCE_OK && cal_data[ratio - 1].confidence >= CONFIDENCE_OK && cal_data[ratio + 1].confidence >= CONFIDENCE_OK) { comp = (cal_data[ratio].steady_comp + cal_data[ratio - 1].steady_comp + cal_data[ratio + 1].steady_comp) / 3; } /* REVISIT: simple penalty of double idle injection */ if (reduce_irq) comp = ratio; /* do not exceed limit */ if (comp + ratio >= MAX_TARGET_RATIO) comp = MAX_TARGET_RATIO - ratio - 1; return comp; } static void adjust_compensation(int target_ratio, unsigned int win) { int delta; struct powerclamp_calibration_data *d = &cal_data[target_ratio]; /* * adjust compensations if confidence level has not been reached or * there are too many wakeups during the last idle injection period, we * cannot trust the data for compensation. */ if (d->confidence >= CONFIDENCE_OK || atomic_read(&idle_wakeup_counter) > win * num_online_cpus()) return; delta = set_target_ratio - current_ratio; /* filter out bad data */ if (delta >= 0 && delta <= (1+target_ratio/10)) { if (d->steady_comp) d->steady_comp = roundup(delta+d->steady_comp, 2)/2; else d->steady_comp = delta; d->confidence++; } } static bool powerclamp_adjust_controls(unsigned int target_ratio, unsigned int guard, unsigned int win) { static u64 msr_last, tsc_last; u64 msr_now, tsc_now; u64 val64; /* check result for the last window */ msr_now = pkg_state_counter(); tsc_now = rdtsc(); /* calculate pkg cstate vs tsc ratio */ if (!msr_last || !tsc_last) current_ratio = 1; else if (tsc_now-tsc_last) { val64 = 100*(msr_now-msr_last); do_div(val64, (tsc_now-tsc_last)); current_ratio = val64; } /* update record */ msr_last = msr_now; tsc_last = tsc_now; adjust_compensation(target_ratio, win); /* * too many external interrupts, set flag such * that we can take measure later. */ reduce_irq = atomic_read(&idle_wakeup_counter) >= 2 * win * num_online_cpus(); atomic_set(&idle_wakeup_counter, 0); /* if we are above target+guard, skip */ return set_target_ratio + guard <= current_ratio; } static void clamp_balancing_func(struct kthread_work *work) { struct powerclamp_worker_data *w_data; int sleeptime; unsigned long target_jiffies; unsigned int compensated_ratio; int interval; /* jiffies to sleep for each attempt */ w_data = container_of(work, struct powerclamp_worker_data, balancing_work); /* * make sure user selected ratio does not take effect until * the next round. adjust target_ratio if user has changed * target such that we can converge quickly. */ w_data->target_ratio = READ_ONCE(set_target_ratio); w_data->guard = 1 + w_data->target_ratio / 20; w_data->window_size_now = window_size; w_data->duration_jiffies = msecs_to_jiffies(duration); w_data->count++; /* * systems may have different ability to enter package level * c-states, thus we need to compensate the injected idle ratio * to achieve the actual target reported by the HW. */ compensated_ratio = w_data->target_ratio + get_compensation(w_data->target_ratio); if (compensated_ratio <= 0) compensated_ratio = 1; interval = w_data->duration_jiffies * 100 / compensated_ratio; /* align idle time */ target_jiffies = roundup(jiffies, interval); sleeptime = target_jiffies - jiffies; if (sleeptime <= 0) sleeptime = 1; if (clamping && w_data->clamping && cpu_online(w_data->cpu)) kthread_queue_delayed_work(w_data->worker, &w_data->idle_injection_work, sleeptime); } static void clamp_idle_injection_func(struct kthread_work *work) { struct powerclamp_worker_data *w_data; w_data = container_of(work, struct powerclamp_worker_data, idle_injection_work.work); /* * only elected controlling cpu can collect stats and update * control parameters. */ if (w_data->cpu == control_cpu && !(w_data->count % w_data->window_size_now)) { should_skip = powerclamp_adjust_controls(w_data->target_ratio, w_data->guard, w_data->window_size_now); smp_mb(); } if (should_skip) goto balance; play_idle(jiffies_to_usecs(w_data->duration_jiffies)); balance: if (clamping && w_data->clamping && cpu_online(w_data->cpu)) kthread_queue_work(w_data->worker, &w_data->balancing_work); } /* * 1 HZ polling while clamping is active, useful for userspace * to monitor actual idle ratio. */ static void poll_pkg_cstate(struct work_struct *dummy); static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate); static void poll_pkg_cstate(struct work_struct *dummy) { static u64 msr_last; static u64 tsc_last; u64 msr_now; u64 tsc_now; u64 val64; msr_now = pkg_state_counter(); tsc_now = rdtsc(); /* calculate pkg cstate vs tsc ratio */ if (!msr_last || !tsc_last) pkg_cstate_ratio_cur = 1; else { if (tsc_now - tsc_last) { val64 = 100 * (msr_now - msr_last); do_div(val64, (tsc_now - tsc_last)); pkg_cstate_ratio_cur = val64; } } /* update record */ msr_last = msr_now; tsc_last = tsc_now; if (true == clamping) schedule_delayed_work(&poll_pkg_cstate_work, HZ); } static void start_power_clamp_worker(unsigned long cpu) { struct powerclamp_worker_data *w_data = per_cpu_ptr(worker_data, cpu); struct kthread_worker *worker; worker = kthread_create_worker_on_cpu(cpu, 0, "kidle_inj/%ld", cpu); if (IS_ERR(worker)) return; w_data->worker = worker; w_data->count = 0; w_data->cpu = cpu; w_data->clamping = true; set_bit(cpu, cpu_clamping_mask); sched_setscheduler(worker->task, SCHED_FIFO, &sparam); kthread_init_work(&w_data->balancing_work, clamp_balancing_func); kthread_init_delayed_work(&w_data->idle_injection_work, clamp_idle_injection_func); kthread_queue_work(w_data->worker, &w_data->balancing_work); } static void stop_power_clamp_worker(unsigned long cpu) { struct powerclamp_worker_data *w_data = per_cpu_ptr(worker_data, cpu); if (!w_data->worker) return; w_data->clamping = false; /* * Make sure that all works that get queued after this point see * the clamping disabled. The counter part is not needed because * there is an implicit memory barrier when the queued work * is proceed. */ smp_wmb(); kthread_cancel_work_sync(&w_data->balancing_work); kthread_cancel_delayed_work_sync(&w_data->idle_injection_work); /* * The balancing work still might be queued here because * the handling of the "clapming" variable, cancel, and queue * operations are not synchronized via a lock. But it is not * a big deal. The balancing work is fast and destroy kthread * will wait for it. */ clear_bit(w_data->cpu, cpu_clamping_mask); kthread_destroy_worker(w_data->worker); w_data->worker = NULL; } static int start_power_clamp(void) { unsigned long cpu; set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1); /* prevent cpu hotplug */ get_online_cpus(); /* prefer BSP */ control_cpu = 0; if (!cpu_online(control_cpu)) control_cpu = smp_processor_id(); clamping = true; schedule_delayed_work(&poll_pkg_cstate_work, 0); /* start one kthread worker per online cpu */ for_each_online_cpu(cpu) { start_power_clamp_worker(cpu); } put_online_cpus(); return 0; } static void end_power_clamp(void) { int i; /* * Block requeuing in all the kthread workers. They will flush and * stop faster. */ clamping = false; if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) { for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) { pr_debug("clamping worker for cpu %d alive, destroy\n", i); stop_power_clamp_worker(i); } } } static int powerclamp_cpu_online(unsigned int cpu) { if (clamping == false) return 0; start_power_clamp_worker(cpu); /* prefer BSP as controlling CPU */ if (cpu == 0) { control_cpu = 0; smp_mb(); } return 0; } static int powerclamp_cpu_predown(unsigned int cpu) { if (clamping == false) return 0; stop_power_clamp_worker(cpu); if (cpu != control_cpu) return 0; control_cpu = cpumask_first(cpu_online_mask); if (control_cpu == cpu) control_cpu = cpumask_next(cpu, cpu_online_mask); smp_mb(); return 0; } static int powerclamp_get_max_state(struct thermal_cooling_device *cdev, unsigned long *state) { *state = MAX_TARGET_RATIO; return 0; } static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev, unsigned long *state) { if (true == clamping) *state = pkg_cstate_ratio_cur; else /* to save power, do not poll idle ratio while not clamping */ *state = -1; /* indicates invalid state */ return 0; } static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev, unsigned long new_target_ratio) { int ret = 0; new_target_ratio = clamp(new_target_ratio, 0UL, (unsigned long) (MAX_TARGET_RATIO-1)); if (set_target_ratio == 0 && new_target_ratio > 0) { pr_info("Start idle injection to reduce power\n"); set_target_ratio = new_target_ratio; ret = start_power_clamp(); goto exit_set; } else if (set_target_ratio > 0 && new_target_ratio == 0) { pr_info("Stop forced idle injection\n"); end_power_clamp(); set_target_ratio = 0; } else /* adjust currently running */ { set_target_ratio = new_target_ratio; /* make new set_target_ratio visible to other cpus */ smp_mb(); } exit_set: return ret; } /* bind to generic thermal layer as cooling device*/ static struct thermal_cooling_device_ops powerclamp_cooling_ops = { .get_max_state = powerclamp_get_max_state, .get_cur_state = powerclamp_get_cur_state, .set_cur_state = powerclamp_set_cur_state, }; static const struct x86_cpu_id __initconst intel_powerclamp_ids[] = { { X86_VENDOR_INTEL, X86_FAMILY_ANY, X86_MODEL_ANY, X86_FEATURE_MWAIT }, {} }; MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids); static int __init powerclamp_probe(void) { if (!x86_match_cpu(intel_powerclamp_ids)) { pr_err("CPU does not support MWAIT\n"); return -ENODEV; } /* The goal for idle time alignment is to achieve package cstate. */ if (!has_pkg_state_counter()) { pr_info("No package C-state available\n"); return -ENODEV; } /* find the deepest mwait value */ find_target_mwait(); return 0; } static int powerclamp_debug_show(struct seq_file *m, void *unused) { int i = 0; seq_printf(m, "controlling cpu: %d\n", control_cpu); seq_printf(m, "pct confidence steady dynamic (compensation)\n"); for (i = 0; i < MAX_TARGET_RATIO; i++) { seq_printf(m, "%d\t%lu\t%lu\t%lu\n", i, cal_data[i].confidence, cal_data[i].steady_comp, cal_data[i].dynamic_comp); } return 0; } DEFINE_SHOW_ATTRIBUTE(powerclamp_debug); static inline void powerclamp_create_debug_files(void) { debug_dir = debugfs_create_dir("intel_powerclamp", NULL); debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir, cal_data, &powerclamp_debug_fops); } static enum cpuhp_state hp_state; static int __init powerclamp_init(void) { int retval; int bitmap_size; bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long); cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL); if (!cpu_clamping_mask) return -ENOMEM; /* probe cpu features and ids here */ retval = powerclamp_probe(); if (retval) goto exit_free; /* set default limit, maybe adjusted during runtime based on feedback */ window_size = 2; retval = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "thermal/intel_powerclamp:online", powerclamp_cpu_online, powerclamp_cpu_predown); if (retval < 0) goto exit_free; hp_state = retval; worker_data = alloc_percpu(struct powerclamp_worker_data); if (!worker_data) { retval = -ENOMEM; goto exit_unregister; } cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL, &powerclamp_cooling_ops); if (IS_ERR(cooling_dev)) { retval = -ENODEV; goto exit_free_thread; } if (!duration) duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES); powerclamp_create_debug_files(); return 0; exit_free_thread: free_percpu(worker_data); exit_unregister: cpuhp_remove_state_nocalls(hp_state); exit_free: kfree(cpu_clamping_mask); return retval; } module_init(powerclamp_init); static void __exit powerclamp_exit(void) { end_power_clamp(); cpuhp_remove_state_nocalls(hp_state); free_percpu(worker_data); thermal_cooling_device_unregister(cooling_dev); kfree(cpu_clamping_mask); cancel_delayed_work_sync(&poll_pkg_cstate_work); debugfs_remove_recursive(debug_dir); } module_exit(powerclamp_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>"); MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>"); MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1