Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Amit Kucheria | 719 | 56.70% | 14 | 77.78% |
Rajendra Nayak | 454 | 35.80% | 1 | 5.56% |
Hao Peng | 54 | 4.26% | 1 | 5.56% |
Srinivas Kandagatla | 34 | 2.68% | 1 | 5.56% |
Wei Yongjun | 7 | 0.55% | 1 | 5.56% |
Total | 1268 | 18 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2015, The Linux Foundation. All rights reserved. */ #include <linux/err.h> #include <linux/io.h> #include <linux/nvmem-consumer.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include "tsens.h" char *qfprom_read(struct device *dev, const char *cname) { struct nvmem_cell *cell; ssize_t data; char *ret; cell = nvmem_cell_get(dev, cname); if (IS_ERR(cell)) return ERR_CAST(cell); ret = nvmem_cell_read(cell, &data); nvmem_cell_put(cell); return ret; } /* * Use this function on devices where slope and offset calculations * depend on calibration data read from qfprom. On others the slope * and offset values are derived from tz->tzp->slope and tz->tzp->offset * resp. */ void compute_intercept_slope(struct tsens_priv *priv, u32 *p1, u32 *p2, u32 mode) { int i; int num, den; for (i = 0; i < priv->num_sensors; i++) { dev_dbg(priv->dev, "sensor%d - data_point1:%#x data_point2:%#x\n", i, p1[i], p2[i]); priv->sensor[i].slope = SLOPE_DEFAULT; if (mode == TWO_PT_CALIB) { /* * slope (m) = adc_code2 - adc_code1 (y2 - y1)/ * temp_120_degc - temp_30_degc (x2 - x1) */ num = p2[i] - p1[i]; num *= SLOPE_FACTOR; den = CAL_DEGC_PT2 - CAL_DEGC_PT1; priv->sensor[i].slope = num / den; } priv->sensor[i].offset = (p1[i] * SLOPE_FACTOR) - (CAL_DEGC_PT1 * priv->sensor[i].slope); dev_dbg(priv->dev, "offset:%d\n", priv->sensor[i].offset); } } static inline int code_to_degc(u32 adc_code, const struct tsens_sensor *s) { int degc, num, den; num = (adc_code * SLOPE_FACTOR) - s->offset; den = s->slope; if (num > 0) degc = num + (den / 2); else if (num < 0) degc = num - (den / 2); else degc = num; degc /= den; return degc; } int get_temp_tsens_valid(struct tsens_priv *priv, int i, int *temp) { struct tsens_sensor *s = &priv->sensor[i]; u32 temp_idx = LAST_TEMP_0 + s->hw_id; u32 valid_idx = VALID_0 + s->hw_id; u32 last_temp = 0, valid, mask; int ret; ret = regmap_field_read(priv->rf[valid_idx], &valid); if (ret) return ret; while (!valid) { /* Valid bit is 0 for 6 AHB clock cycles. * At 19.2MHz, 1 AHB clock is ~60ns. * We should enter this loop very, very rarely. */ ndelay(400); ret = regmap_field_read(priv->rf[valid_idx], &valid); if (ret) return ret; } /* Valid bit is set, OK to read the temperature */ ret = regmap_field_read(priv->rf[temp_idx], &last_temp); if (ret) return ret; if (priv->feat->adc) { /* Convert temperature from ADC code to milliCelsius */ *temp = code_to_degc(last_temp, s) * 1000; } else { mask = GENMASK(priv->fields[LAST_TEMP_0].msb, priv->fields[LAST_TEMP_0].lsb); /* Convert temperature from deciCelsius to milliCelsius */ *temp = sign_extend32(last_temp, fls(mask) - 1) * 100; } return 0; } int get_temp_common(struct tsens_priv *priv, int i, int *temp) { struct tsens_sensor *s = &priv->sensor[i]; int last_temp = 0, ret; ret = regmap_field_read(priv->rf[LAST_TEMP_0 + s->hw_id], &last_temp); if (ret) return ret; *temp = code_to_degc(last_temp, s) * 1000; return 0; } static const struct regmap_config tsens_config = { .name = "tm", .reg_bits = 32, .val_bits = 32, .reg_stride = 4, }; static const struct regmap_config tsens_srot_config = { .name = "srot", .reg_bits = 32, .val_bits = 32, .reg_stride = 4, }; int __init init_common(struct tsens_priv *priv) { void __iomem *tm_base, *srot_base; struct device *dev = priv->dev; struct resource *res; u32 enabled; int ret, i, j; struct platform_device *op = of_find_device_by_node(priv->dev->of_node); if (!op) return -EINVAL; if (op->num_resources > 1) { /* DT with separate SROT and TM address space */ priv->tm_offset = 0; res = platform_get_resource(op, IORESOURCE_MEM, 1); srot_base = devm_ioremap_resource(&op->dev, res); if (IS_ERR(srot_base)) { ret = PTR_ERR(srot_base); goto err_put_device; } priv->srot_map = devm_regmap_init_mmio(dev, srot_base, &tsens_srot_config); if (IS_ERR(priv->srot_map)) { ret = PTR_ERR(priv->srot_map); goto err_put_device; } } else { /* old DTs where SROT and TM were in a contiguous 2K block */ priv->tm_offset = 0x1000; } res = platform_get_resource(op, IORESOURCE_MEM, 0); tm_base = devm_ioremap_resource(&op->dev, res); if (IS_ERR(tm_base)) { ret = PTR_ERR(tm_base); goto err_put_device; } priv->tm_map = devm_regmap_init_mmio(dev, tm_base, &tsens_config); if (IS_ERR(priv->tm_map)) { ret = PTR_ERR(priv->tm_map); goto err_put_device; } priv->rf[TSENS_EN] = devm_regmap_field_alloc(dev, priv->srot_map, priv->fields[TSENS_EN]); if (IS_ERR(priv->rf[TSENS_EN])) { ret = PTR_ERR(priv->rf[TSENS_EN]); goto err_put_device; } ret = regmap_field_read(priv->rf[TSENS_EN], &enabled); if (ret) goto err_put_device; if (!enabled) { dev_err(dev, "tsens device is not enabled\n"); ret = -ENODEV; goto err_put_device; } priv->rf[SENSOR_EN] = devm_regmap_field_alloc(dev, priv->srot_map, priv->fields[SENSOR_EN]); if (IS_ERR(priv->rf[SENSOR_EN])) { ret = PTR_ERR(priv->rf[SENSOR_EN]); goto err_put_device; } /* now alloc regmap_fields in tm_map */ for (i = 0, j = LAST_TEMP_0; i < priv->feat->max_sensors; i++, j++) { priv->rf[j] = devm_regmap_field_alloc(dev, priv->tm_map, priv->fields[j]); if (IS_ERR(priv->rf[j])) { ret = PTR_ERR(priv->rf[j]); goto err_put_device; } } for (i = 0, j = VALID_0; i < priv->feat->max_sensors; i++, j++) { priv->rf[j] = devm_regmap_field_alloc(dev, priv->tm_map, priv->fields[j]); if (IS_ERR(priv->rf[j])) { ret = PTR_ERR(priv->rf[j]); goto err_put_device; } } return 0; err_put_device: put_device(&op->dev); return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1