Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Antonino A. Daplas | 11253 | 96.00% | 4 | 36.36% |
Benjamin Herrenschmidt | 340 | 2.90% | 1 | 9.09% |
Wink Saville | 40 | 0.34% | 1 | 9.09% |
Michal Piotrowski | 33 | 0.28% | 1 | 9.09% |
Sinan Kaya | 27 | 0.23% | 1 | 9.09% |
Alan Cox | 24 | 0.20% | 1 | 9.09% |
Adrian Bunk | 3 | 0.03% | 1 | 9.09% |
Alexey Dobriyan | 2 | 0.02% | 1 | 9.09% |
Total | 11722 | 11 |
/***************************************************************************\ |* *| |* Copyright 1993-2003 NVIDIA, Corporation. All rights reserved. *| |* *| |* NOTICE TO USER: The source code is copyrighted under U.S. and *| |* international laws. Users and possessors of this source code are *| |* hereby granted a nonexclusive, royalty-free copyright license to *| |* use this code in individual and commercial software. *| |* *| |* Any use of this source code must include, in the user documenta- *| |* tion and internal comments to the code, notices to the end user *| |* as follows: *| |* *| |* Copyright 1993-2003 NVIDIA, Corporation. All rights reserved. *| |* *| |* NVIDIA, CORPORATION MAKES NO REPRESENTATION ABOUT THE SUITABILITY *| |* OF THIS SOURCE CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" *| |* WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND. NVIDIA, CORPOR- *| |* ATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOURCE CODE, *| |* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGE- *| |* MENT, AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL *| |* NVIDIA, CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT, INCI- *| |* DENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RE- *| |* SULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION *| |* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF *| |* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOURCE CODE. *| |* *| |* U.S. Government End Users. This source code is a "commercial *| |* item," as that term is defined at 48 C.F.R. 2.101 (OCT 1995), *| |* consisting of "commercial computer software" and "commercial *| |* computer software documentation," as such terms are used in *| |* 48 C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Govern- *| |* ment only as a commercial end item. Consistent with 48 C.F.R. *| |* 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), *| |* all U.S. Government End Users acquire the source code with only *| |* those rights set forth herein. *| |* *| \***************************************************************************/ /* * GPL Licensing Note - According to Mark Vojkovich, author of the Xorg/ * XFree86 'nv' driver, this source code is provided under MIT-style licensing * where the source code is provided "as is" without warranty of any kind. * The only usage restriction is for the copyright notices to be retained * whenever code is used. * * Antonino Daplas <adaplas@pol.net> 2005-03-11 */ /* $XFree86: xc/programs/Xserver/hw/xfree86/drivers/nv/nv_hw.c,v 1.4 2003/11/03 05:11:25 tsi Exp $ */ #include <linux/pci.h> #include "nv_type.h" #include "nv_local.h" #include "nv_proto.h" void NVLockUnlock(struct nvidia_par *par, int Lock) { u8 cr11; VGA_WR08(par->PCIO, 0x3D4, 0x1F); VGA_WR08(par->PCIO, 0x3D5, Lock ? 0x99 : 0x57); VGA_WR08(par->PCIO, 0x3D4, 0x11); cr11 = VGA_RD08(par->PCIO, 0x3D5); if (Lock) cr11 |= 0x80; else cr11 &= ~0x80; VGA_WR08(par->PCIO, 0x3D5, cr11); } int NVShowHideCursor(struct nvidia_par *par, int ShowHide) { int cur = par->CurrentState->cursor1; par->CurrentState->cursor1 = (par->CurrentState->cursor1 & 0xFE) | (ShowHide & 0x01); VGA_WR08(par->PCIO, 0x3D4, 0x31); VGA_WR08(par->PCIO, 0x3D5, par->CurrentState->cursor1); if (par->Architecture == NV_ARCH_40) NV_WR32(par->PRAMDAC, 0x0300, NV_RD32(par->PRAMDAC, 0x0300)); return (cur & 0x01); } /****************************************************************************\ * * * The video arbitration routines calculate some "magic" numbers. Fixes * * the snow seen when accessing the framebuffer without it. * * It just works (I hope). * * * \****************************************************************************/ typedef struct { int graphics_lwm; int video_lwm; int graphics_burst_size; int video_burst_size; int valid; } nv4_fifo_info; typedef struct { int pclk_khz; int mclk_khz; int nvclk_khz; char mem_page_miss; char mem_latency; int memory_width; char enable_video; char gr_during_vid; char pix_bpp; char mem_aligned; char enable_mp; } nv4_sim_state; typedef struct { int graphics_lwm; int video_lwm; int graphics_burst_size; int video_burst_size; int valid; } nv10_fifo_info; typedef struct { int pclk_khz; int mclk_khz; int nvclk_khz; char mem_page_miss; char mem_latency; u32 memory_type; int memory_width; char enable_video; char gr_during_vid; char pix_bpp; char mem_aligned; char enable_mp; } nv10_sim_state; static void nvGetClocks(struct nvidia_par *par, unsigned int *MClk, unsigned int *NVClk) { unsigned int pll, N, M, MB, NB, P; if (par->Architecture >= NV_ARCH_40) { pll = NV_RD32(par->PMC, 0x4020); P = (pll >> 16) & 0x07; pll = NV_RD32(par->PMC, 0x4024); M = pll & 0xFF; N = (pll >> 8) & 0xFF; if (((par->Chipset & 0xfff0) == 0x0290) || ((par->Chipset & 0xfff0) == 0x0390)) { MB = 1; NB = 1; } else { MB = (pll >> 16) & 0xFF; NB = (pll >> 24) & 0xFF; } *MClk = ((N * NB * par->CrystalFreqKHz) / (M * MB)) >> P; pll = NV_RD32(par->PMC, 0x4000); P = (pll >> 16) & 0x07; pll = NV_RD32(par->PMC, 0x4004); M = pll & 0xFF; N = (pll >> 8) & 0xFF; MB = (pll >> 16) & 0xFF; NB = (pll >> 24) & 0xFF; *NVClk = ((N * NB * par->CrystalFreqKHz) / (M * MB)) >> P; } else if (par->twoStagePLL) { pll = NV_RD32(par->PRAMDAC0, 0x0504); M = pll & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; pll = NV_RD32(par->PRAMDAC0, 0x0574); if (pll & 0x80000000) { MB = pll & 0xFF; NB = (pll >> 8) & 0xFF; } else { MB = 1; NB = 1; } *MClk = ((N * NB * par->CrystalFreqKHz) / (M * MB)) >> P; pll = NV_RD32(par->PRAMDAC0, 0x0500); M = pll & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; pll = NV_RD32(par->PRAMDAC0, 0x0570); if (pll & 0x80000000) { MB = pll & 0xFF; NB = (pll >> 8) & 0xFF; } else { MB = 1; NB = 1; } *NVClk = ((N * NB * par->CrystalFreqKHz) / (M * MB)) >> P; } else if (((par->Chipset & 0x0ff0) == 0x0300) || ((par->Chipset & 0x0ff0) == 0x0330)) { pll = NV_RD32(par->PRAMDAC0, 0x0504); M = pll & 0x0F; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x07; if (pll & 0x00000080) { MB = (pll >> 4) & 0x07; NB = (pll >> 19) & 0x1f; } else { MB = 1; NB = 1; } *MClk = ((N * NB * par->CrystalFreqKHz) / (M * MB)) >> P; pll = NV_RD32(par->PRAMDAC0, 0x0500); M = pll & 0x0F; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x07; if (pll & 0x00000080) { MB = (pll >> 4) & 0x07; NB = (pll >> 19) & 0x1f; } else { MB = 1; NB = 1; } *NVClk = ((N * NB * par->CrystalFreqKHz) / (M * MB)) >> P; } else { pll = NV_RD32(par->PRAMDAC0, 0x0504); M = pll & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; *MClk = (N * par->CrystalFreqKHz / M) >> P; pll = NV_RD32(par->PRAMDAC0, 0x0500); M = pll & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; *NVClk = (N * par->CrystalFreqKHz / M) >> P; } } static void nv4CalcArbitration(nv4_fifo_info * fifo, nv4_sim_state * arb) { int data, pagemiss, cas, width, video_enable, bpp; int nvclks, mclks, pclks, vpagemiss, crtpagemiss, vbs; int found, mclk_extra, mclk_loop, cbs, m1, p1; int mclk_freq, pclk_freq, nvclk_freq, mp_enable; int us_m, us_n, us_p, video_drain_rate, crtc_drain_rate; int vpm_us, us_video, vlwm, video_fill_us, cpm_us, us_crt, clwm; fifo->valid = 1; pclk_freq = arb->pclk_khz; mclk_freq = arb->mclk_khz; nvclk_freq = arb->nvclk_khz; pagemiss = arb->mem_page_miss; cas = arb->mem_latency; width = arb->memory_width >> 6; video_enable = arb->enable_video; bpp = arb->pix_bpp; mp_enable = arb->enable_mp; clwm = 0; vlwm = 0; cbs = 128; pclks = 2; nvclks = 2; nvclks += 2; nvclks += 1; mclks = 5; mclks += 3; mclks += 1; mclks += cas; mclks += 1; mclks += 1; mclks += 1; mclks += 1; mclk_extra = 3; nvclks += 2; nvclks += 1; nvclks += 1; nvclks += 1; if (mp_enable) mclks += 4; nvclks += 0; pclks += 0; found = 0; vbs = 0; while (found != 1) { fifo->valid = 1; found = 1; mclk_loop = mclks + mclk_extra; us_m = mclk_loop * 1000 * 1000 / mclk_freq; us_n = nvclks * 1000 * 1000 / nvclk_freq; us_p = nvclks * 1000 * 1000 / pclk_freq; if (video_enable) { video_drain_rate = pclk_freq * 2; crtc_drain_rate = pclk_freq * bpp / 8; vpagemiss = 2; vpagemiss += 1; crtpagemiss = 2; vpm_us = (vpagemiss * pagemiss) * 1000 * 1000 / mclk_freq; if (nvclk_freq * 2 > mclk_freq * width) video_fill_us = cbs * 1000 * 1000 / 16 / nvclk_freq; else video_fill_us = cbs * 1000 * 1000 / (8 * width) / mclk_freq; us_video = vpm_us + us_m + us_n + us_p + video_fill_us; vlwm = us_video * video_drain_rate / (1000 * 1000); vlwm++; vbs = 128; if (vlwm > 128) vbs = 64; if (vlwm > (256 - 64)) vbs = 32; if (nvclk_freq * 2 > mclk_freq * width) video_fill_us = vbs * 1000 * 1000 / 16 / nvclk_freq; else video_fill_us = vbs * 1000 * 1000 / (8 * width) / mclk_freq; cpm_us = crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq; us_crt = us_video + video_fill_us + cpm_us + us_m + us_n + us_p; clwm = us_crt * crtc_drain_rate / (1000 * 1000); clwm++; } else { crtc_drain_rate = pclk_freq * bpp / 8; crtpagemiss = 2; crtpagemiss += 1; cpm_us = crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq; us_crt = cpm_us + us_m + us_n + us_p; clwm = us_crt * crtc_drain_rate / (1000 * 1000); clwm++; } m1 = clwm + cbs - 512; p1 = m1 * pclk_freq / mclk_freq; p1 = p1 * bpp / 8; if ((p1 < m1) && (m1 > 0)) { fifo->valid = 0; found = 0; if (mclk_extra == 0) found = 1; mclk_extra--; } else if (video_enable) { if ((clwm > 511) || (vlwm > 255)) { fifo->valid = 0; found = 0; if (mclk_extra == 0) found = 1; mclk_extra--; } } else { if (clwm > 519) { fifo->valid = 0; found = 0; if (mclk_extra == 0) found = 1; mclk_extra--; } } if (clwm < 384) clwm = 384; if (vlwm < 128) vlwm = 128; data = (int)(clwm); fifo->graphics_lwm = data; fifo->graphics_burst_size = 128; data = (int)((vlwm + 15)); fifo->video_lwm = data; fifo->video_burst_size = vbs; } } static void nv4UpdateArbitrationSettings(unsigned VClk, unsigned pixelDepth, unsigned *burst, unsigned *lwm, struct nvidia_par *par) { nv4_fifo_info fifo_data; nv4_sim_state sim_data; unsigned int MClk, NVClk, cfg1; nvGetClocks(par, &MClk, &NVClk); cfg1 = NV_RD32(par->PFB, 0x00000204); sim_data.pix_bpp = (char)pixelDepth; sim_data.enable_video = 0; sim_data.enable_mp = 0; sim_data.memory_width = (NV_RD32(par->PEXTDEV, 0x0000) & 0x10) ? 128 : 64; sim_data.mem_latency = (char)cfg1 & 0x0F; sim_data.mem_aligned = 1; sim_data.mem_page_miss = (char)(((cfg1 >> 4) & 0x0F) + ((cfg1 >> 31) & 0x01)); sim_data.gr_during_vid = 0; sim_data.pclk_khz = VClk; sim_data.mclk_khz = MClk; sim_data.nvclk_khz = NVClk; nv4CalcArbitration(&fifo_data, &sim_data); if (fifo_data.valid) { int b = fifo_data.graphics_burst_size >> 4; *burst = 0; while (b >>= 1) (*burst)++; *lwm = fifo_data.graphics_lwm >> 3; } } static void nv10CalcArbitration(nv10_fifo_info * fifo, nv10_sim_state * arb) { int data, pagemiss, width, video_enable, bpp; int nvclks, mclks, pclks, vpagemiss, crtpagemiss; int nvclk_fill; int found, mclk_extra, mclk_loop, cbs, m1; int mclk_freq, pclk_freq, nvclk_freq, mp_enable; int us_m, us_m_min, us_n, us_p, crtc_drain_rate; int vus_m; int vpm_us, us_video, cpm_us, us_crt, clwm; int clwm_rnd_down; int m2us, us_pipe_min, p1clk, p2; int min_mclk_extra; int us_min_mclk_extra; fifo->valid = 1; pclk_freq = arb->pclk_khz; /* freq in KHz */ mclk_freq = arb->mclk_khz; nvclk_freq = arb->nvclk_khz; pagemiss = arb->mem_page_miss; width = arb->memory_width / 64; video_enable = arb->enable_video; bpp = arb->pix_bpp; mp_enable = arb->enable_mp; clwm = 0; cbs = 512; pclks = 4; /* lwm detect. */ nvclks = 3; /* lwm -> sync. */ nvclks += 2; /* fbi bus cycles (1 req + 1 busy) */ /* 2 edge sync. may be very close to edge so just put one. */ mclks = 1; mclks += 1; /* arb_hp_req */ mclks += 5; /* ap_hp_req tiling pipeline */ mclks += 2; /* tc_req latency fifo */ mclks += 2; /* fb_cas_n_ memory request to fbio block */ mclks += 7; /* sm_d_rdv data returned from fbio block */ /* fb.rd.d.Put_gc need to accumulate 256 bits for read */ if (arb->memory_type == 0) if (arb->memory_width == 64) /* 64 bit bus */ mclks += 4; else mclks += 2; else if (arb->memory_width == 64) /* 64 bit bus */ mclks += 2; else mclks += 1; if ((!video_enable) && (arb->memory_width == 128)) { mclk_extra = (bpp == 32) ? 31 : 42; /* Margin of error */ min_mclk_extra = 17; } else { mclk_extra = (bpp == 32) ? 8 : 4; /* Margin of error */ /* mclk_extra = 4; *//* Margin of error */ min_mclk_extra = 18; } /* 2 edge sync. may be very close to edge so just put one. */ nvclks += 1; nvclks += 1; /* fbi_d_rdv_n */ nvclks += 1; /* Fbi_d_rdata */ nvclks += 1; /* crtfifo load */ if (mp_enable) mclks += 4; /* Mp can get in with a burst of 8. */ /* Extra clocks determined by heuristics */ nvclks += 0; pclks += 0; found = 0; while (found != 1) { fifo->valid = 1; found = 1; mclk_loop = mclks + mclk_extra; /* Mclk latency in us */ us_m = mclk_loop * 1000 * 1000 / mclk_freq; /* Minimum Mclk latency in us */ us_m_min = mclks * 1000 * 1000 / mclk_freq; us_min_mclk_extra = min_mclk_extra * 1000 * 1000 / mclk_freq; /* nvclk latency in us */ us_n = nvclks * 1000 * 1000 / nvclk_freq; /* nvclk latency in us */ us_p = pclks * 1000 * 1000 / pclk_freq; us_pipe_min = us_m_min + us_n + us_p; /* Mclk latency in us */ vus_m = mclk_loop * 1000 * 1000 / mclk_freq; if (video_enable) { crtc_drain_rate = pclk_freq * bpp / 8; /* MB/s */ vpagemiss = 1; /* self generating page miss */ vpagemiss += 1; /* One higher priority before */ crtpagemiss = 2; /* self generating page miss */ if (mp_enable) crtpagemiss += 1; /* if MA0 conflict */ vpm_us = (vpagemiss * pagemiss) * 1000 * 1000 / mclk_freq; /* Video has separate read return path */ us_video = vpm_us + vus_m; cpm_us = crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq; /* Wait for video */ us_crt = us_video + cpm_us /* CRT Page miss */ + us_m + us_n + us_p /* other latency */ ; clwm = us_crt * crtc_drain_rate / (1000 * 1000); /* fixed point <= float_point - 1. Fixes that */ clwm++; } else { /* bpp * pclk/8 */ crtc_drain_rate = pclk_freq * bpp / 8; crtpagemiss = 1; /* self generating page miss */ crtpagemiss += 1; /* MA0 page miss */ if (mp_enable) crtpagemiss += 1; /* if MA0 conflict */ cpm_us = crtpagemiss * pagemiss * 1000 * 1000 / mclk_freq; us_crt = cpm_us + us_m + us_n + us_p; clwm = us_crt * crtc_drain_rate / (1000 * 1000); /* fixed point <= float_point - 1. Fixes that */ clwm++; /* Finally, a heuristic check when width == 64 bits */ if (width == 1) { nvclk_fill = nvclk_freq * 8; if (crtc_drain_rate * 100 >= nvclk_fill * 102) /*Large number to fail */ clwm = 0xfff; else if (crtc_drain_rate * 100 >= nvclk_fill * 98) { clwm = 1024; cbs = 512; } } } /* Overfill check: */ clwm_rnd_down = ((int)clwm / 8) * 8; if (clwm_rnd_down < clwm) clwm += 8; m1 = clwm + cbs - 1024; /* Amount of overfill */ m2us = us_pipe_min + us_min_mclk_extra; /* pclk cycles to drain */ p1clk = m2us * pclk_freq / (1000 * 1000); p2 = p1clk * bpp / 8; /* bytes drained. */ if ((p2 < m1) && (m1 > 0)) { fifo->valid = 0; found = 0; if (min_mclk_extra == 0) { if (cbs <= 32) { /* Can't adjust anymore! */ found = 1; } else { /* reduce the burst size */ cbs = cbs / 2; } } else { min_mclk_extra--; } } else { if (clwm > 1023) { /* Have some margin */ fifo->valid = 0; found = 0; if (min_mclk_extra == 0) /* Can't adjust anymore! */ found = 1; else min_mclk_extra--; } } if (clwm < (1024 - cbs + 8)) clwm = 1024 - cbs + 8; data = (int)(clwm); /* printf("CRT LWM: %f bytes, prog: 0x%x, bs: 256\n", clwm, data ); */ fifo->graphics_lwm = data; fifo->graphics_burst_size = cbs; fifo->video_lwm = 1024; fifo->video_burst_size = 512; } } static void nv10UpdateArbitrationSettings(unsigned VClk, unsigned pixelDepth, unsigned *burst, unsigned *lwm, struct nvidia_par *par) { nv10_fifo_info fifo_data; nv10_sim_state sim_data; unsigned int MClk, NVClk, cfg1; nvGetClocks(par, &MClk, &NVClk); cfg1 = NV_RD32(par->PFB, 0x0204); sim_data.pix_bpp = (char)pixelDepth; sim_data.enable_video = 1; sim_data.enable_mp = 0; sim_data.memory_type = (NV_RD32(par->PFB, 0x0200) & 0x01) ? 1 : 0; sim_data.memory_width = (NV_RD32(par->PEXTDEV, 0x0000) & 0x10) ? 128 : 64; sim_data.mem_latency = (char)cfg1 & 0x0F; sim_data.mem_aligned = 1; sim_data.mem_page_miss = (char)(((cfg1 >> 4) & 0x0F) + ((cfg1 >> 31) & 0x01)); sim_data.gr_during_vid = 0; sim_data.pclk_khz = VClk; sim_data.mclk_khz = MClk; sim_data.nvclk_khz = NVClk; nv10CalcArbitration(&fifo_data, &sim_data); if (fifo_data.valid) { int b = fifo_data.graphics_burst_size >> 4; *burst = 0; while (b >>= 1) (*burst)++; *lwm = fifo_data.graphics_lwm >> 3; } } static void nv30UpdateArbitrationSettings ( struct nvidia_par *par, unsigned int *burst, unsigned int *lwm ) { unsigned int MClk, NVClk; unsigned int fifo_size, burst_size, graphics_lwm; fifo_size = 2048; burst_size = 512; graphics_lwm = fifo_size - burst_size; nvGetClocks(par, &MClk, &NVClk); *burst = 0; burst_size >>= 5; while(burst_size >>= 1) (*burst)++; *lwm = graphics_lwm >> 3; } static void nForceUpdateArbitrationSettings(unsigned VClk, unsigned pixelDepth, unsigned *burst, unsigned *lwm, struct nvidia_par *par) { nv10_fifo_info fifo_data; nv10_sim_state sim_data; unsigned int M, N, P, pll, MClk, NVClk, memctrl; struct pci_dev *dev; int domain = pci_domain_nr(par->pci_dev->bus); if ((par->Chipset & 0x0FF0) == 0x01A0) { unsigned int uMClkPostDiv; dev = pci_get_domain_bus_and_slot(domain, 0, 3); pci_read_config_dword(dev, 0x6C, &uMClkPostDiv); uMClkPostDiv = (uMClkPostDiv >> 8) & 0xf; if (!uMClkPostDiv) uMClkPostDiv = 4; MClk = 400000 / uMClkPostDiv; } else { dev = pci_get_domain_bus_and_slot(domain, 0, 5); pci_read_config_dword(dev, 0x4c, &MClk); MClk /= 1000; } pci_dev_put(dev); pll = NV_RD32(par->PRAMDAC0, 0x0500); M = (pll >> 0) & 0xFF; N = (pll >> 8) & 0xFF; P = (pll >> 16) & 0x0F; NVClk = (N * par->CrystalFreqKHz / M) >> P; sim_data.pix_bpp = (char)pixelDepth; sim_data.enable_video = 0; sim_data.enable_mp = 0; dev = pci_get_domain_bus_and_slot(domain, 0, 1); pci_read_config_dword(dev, 0x7C, &sim_data.memory_type); pci_dev_put(dev); sim_data.memory_type = (sim_data.memory_type >> 12) & 1; sim_data.memory_width = 64; dev = pci_get_domain_bus_and_slot(domain, 0, 3); pci_read_config_dword(dev, 0, &memctrl); pci_dev_put(dev); memctrl >>= 16; if ((memctrl == 0x1A9) || (memctrl == 0x1AB) || (memctrl == 0x1ED)) { u32 dimm[3]; dev = pci_get_domain_bus_and_slot(domain, 0, 2); pci_read_config_dword(dev, 0x40, &dimm[0]); dimm[0] = (dimm[0] >> 8) & 0x4f; pci_read_config_dword(dev, 0x44, &dimm[1]); dimm[1] = (dimm[1] >> 8) & 0x4f; pci_read_config_dword(dev, 0x48, &dimm[2]); dimm[2] = (dimm[2] >> 8) & 0x4f; if ((dimm[0] + dimm[1]) != dimm[2]) { printk("nvidiafb: your nForce DIMMs are not arranged " "in optimal banks!\n"); } pci_dev_put(dev); } sim_data.mem_latency = 3; sim_data.mem_aligned = 1; sim_data.mem_page_miss = 10; sim_data.gr_during_vid = 0; sim_data.pclk_khz = VClk; sim_data.mclk_khz = MClk; sim_data.nvclk_khz = NVClk; nv10CalcArbitration(&fifo_data, &sim_data); if (fifo_data.valid) { int b = fifo_data.graphics_burst_size >> 4; *burst = 0; while (b >>= 1) (*burst)++; *lwm = fifo_data.graphics_lwm >> 3; } } /****************************************************************************\ * * * RIVA Mode State Routines * * * \****************************************************************************/ /* * Calculate the Video Clock parameters for the PLL. */ static void CalcVClock(int clockIn, int *clockOut, u32 * pllOut, struct nvidia_par *par) { unsigned lowM, highM; unsigned DeltaNew, DeltaOld; unsigned VClk, Freq; unsigned M, N, P; DeltaOld = 0xFFFFFFFF; VClk = (unsigned)clockIn; if (par->CrystalFreqKHz == 13500) { lowM = 7; highM = 13; } else { lowM = 8; highM = 14; } for (P = 0; P <= 4; P++) { Freq = VClk << P; if ((Freq >= 128000) && (Freq <= 350000)) { for (M = lowM; M <= highM; M++) { N = ((VClk << P) * M) / par->CrystalFreqKHz; if (N <= 255) { Freq = ((par->CrystalFreqKHz * N) / M) >> P; if (Freq > VClk) DeltaNew = Freq - VClk; else DeltaNew = VClk - Freq; if (DeltaNew < DeltaOld) { *pllOut = (P << 16) | (N << 8) | M; *clockOut = Freq; DeltaOld = DeltaNew; } } } } } } static void CalcVClock2Stage(int clockIn, int *clockOut, u32 * pllOut, u32 * pllBOut, struct nvidia_par *par) { unsigned DeltaNew, DeltaOld; unsigned VClk, Freq; unsigned M, N, P; DeltaOld = 0xFFFFFFFF; *pllBOut = 0x80000401; /* fixed at x4 for now */ VClk = (unsigned)clockIn; for (P = 0; P <= 6; P++) { Freq = VClk << P; if ((Freq >= 400000) && (Freq <= 1000000)) { for (M = 1; M <= 13; M++) { N = ((VClk << P) * M) / (par->CrystalFreqKHz << 2); if ((N >= 5) && (N <= 255)) { Freq = (((par->CrystalFreqKHz << 2) * N) / M) >> P; if (Freq > VClk) DeltaNew = Freq - VClk; else DeltaNew = VClk - Freq; if (DeltaNew < DeltaOld) { *pllOut = (P << 16) | (N << 8) | M; *clockOut = Freq; DeltaOld = DeltaNew; } } } } } } /* * Calculate extended mode parameters (SVGA) and save in a * mode state structure. */ void NVCalcStateExt(struct nvidia_par *par, RIVA_HW_STATE * state, int bpp, int width, int hDisplaySize, int height, int dotClock, int flags) { int pixelDepth, VClk = 0; /* * Save mode parameters. */ state->bpp = bpp; /* this is not bitsPerPixel, it's 8,15,16,32 */ state->width = width; state->height = height; /* * Extended RIVA registers. */ pixelDepth = (bpp + 1) / 8; if (par->twoStagePLL) CalcVClock2Stage(dotClock, &VClk, &state->pll, &state->pllB, par); else CalcVClock(dotClock, &VClk, &state->pll, par); switch (par->Architecture) { case NV_ARCH_04: nv4UpdateArbitrationSettings(VClk, pixelDepth * 8, &(state->arbitration0), &(state->arbitration1), par); state->cursor0 = 0x00; state->cursor1 = 0xbC; if (flags & FB_VMODE_DOUBLE) state->cursor1 |= 2; state->cursor2 = 0x00000000; state->pllsel = 0x10000700; state->config = 0x00001114; state->general = bpp == 16 ? 0x00101100 : 0x00100100; state->repaint1 = hDisplaySize < 1280 ? 0x04 : 0x00; break; case NV_ARCH_40: if (!par->FlatPanel) state->control = NV_RD32(par->PRAMDAC0, 0x0580) & 0xeffffeff; /* fallthrough */ case NV_ARCH_10: case NV_ARCH_20: case NV_ARCH_30: default: if ((par->Chipset & 0xfff0) == 0x0240 || (par->Chipset & 0xfff0) == 0x03d0) { state->arbitration0 = 256; state->arbitration1 = 0x0480; } else if (((par->Chipset & 0xffff) == 0x01A0) || ((par->Chipset & 0xffff) == 0x01f0)) { nForceUpdateArbitrationSettings(VClk, pixelDepth * 8, &(state->arbitration0), &(state->arbitration1), par); } else if (par->Architecture < NV_ARCH_30) { nv10UpdateArbitrationSettings(VClk, pixelDepth * 8, &(state->arbitration0), &(state->arbitration1), par); } else { nv30UpdateArbitrationSettings(par, &(state->arbitration0), &(state->arbitration1)); } state->cursor0 = 0x80 | (par->CursorStart >> 17); state->cursor1 = (par->CursorStart >> 11) << 2; state->cursor2 = par->CursorStart >> 24; if (flags & FB_VMODE_DOUBLE) state->cursor1 |= 2; state->pllsel = 0x10000700; state->config = NV_RD32(par->PFB, 0x00000200); state->general = bpp == 16 ? 0x00101100 : 0x00100100; state->repaint1 = hDisplaySize < 1280 ? 0x04 : 0x00; break; } if (bpp != 8) /* DirectColor */ state->general |= 0x00000030; state->repaint0 = (((width / 8) * pixelDepth) & 0x700) >> 3; state->pixel = (pixelDepth > 2) ? 3 : pixelDepth; } void NVLoadStateExt(struct nvidia_par *par, RIVA_HW_STATE * state) { int i, j; NV_WR32(par->PMC, 0x0140, 0x00000000); NV_WR32(par->PMC, 0x0200, 0xFFFF00FF); NV_WR32(par->PMC, 0x0200, 0xFFFFFFFF); NV_WR32(par->PTIMER, 0x0200 * 4, 0x00000008); NV_WR32(par->PTIMER, 0x0210 * 4, 0x00000003); NV_WR32(par->PTIMER, 0x0140 * 4, 0x00000000); NV_WR32(par->PTIMER, 0x0100 * 4, 0xFFFFFFFF); if (par->Architecture == NV_ARCH_04) { if (state) NV_WR32(par->PFB, 0x0200, state->config); } else if ((par->Architecture < NV_ARCH_40) || (par->Chipset & 0xfff0) == 0x0040) { for (i = 0; i < 8; i++) { NV_WR32(par->PFB, 0x0240 + (i * 0x10), 0); NV_WR32(par->PFB, 0x0244 + (i * 0x10), par->FbMapSize - 1); } } else { int regions = 12; if (((par->Chipset & 0xfff0) == 0x0090) || ((par->Chipset & 0xfff0) == 0x01D0) || ((par->Chipset & 0xfff0) == 0x0290) || ((par->Chipset & 0xfff0) == 0x0390) || ((par->Chipset & 0xfff0) == 0x03D0)) regions = 15; for(i = 0; i < regions; i++) { NV_WR32(par->PFB, 0x0600 + (i * 0x10), 0); NV_WR32(par->PFB, 0x0604 + (i * 0x10), par->FbMapSize - 1); } } if (par->Architecture >= NV_ARCH_40) { NV_WR32(par->PRAMIN, 0x0000 * 4, 0x80000010); NV_WR32(par->PRAMIN, 0x0001 * 4, 0x00101202); NV_WR32(par->PRAMIN, 0x0002 * 4, 0x80000011); NV_WR32(par->PRAMIN, 0x0003 * 4, 0x00101204); NV_WR32(par->PRAMIN, 0x0004 * 4, 0x80000012); NV_WR32(par->PRAMIN, 0x0005 * 4, 0x00101206); NV_WR32(par->PRAMIN, 0x0006 * 4, 0x80000013); NV_WR32(par->PRAMIN, 0x0007 * 4, 0x00101208); NV_WR32(par->PRAMIN, 0x0008 * 4, 0x80000014); NV_WR32(par->PRAMIN, 0x0009 * 4, 0x0010120A); NV_WR32(par->PRAMIN, 0x000A * 4, 0x80000015); NV_WR32(par->PRAMIN, 0x000B * 4, 0x0010120C); NV_WR32(par->PRAMIN, 0x000C * 4, 0x80000016); NV_WR32(par->PRAMIN, 0x000D * 4, 0x0010120E); NV_WR32(par->PRAMIN, 0x000E * 4, 0x80000017); NV_WR32(par->PRAMIN, 0x000F * 4, 0x00101210); NV_WR32(par->PRAMIN, 0x0800 * 4, 0x00003000); NV_WR32(par->PRAMIN, 0x0801 * 4, par->FbMapSize - 1); NV_WR32(par->PRAMIN, 0x0802 * 4, 0x00000002); NV_WR32(par->PRAMIN, 0x0808 * 4, 0x02080062); NV_WR32(par->PRAMIN, 0x0809 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x080A * 4, 0x00001200); NV_WR32(par->PRAMIN, 0x080B * 4, 0x00001200); NV_WR32(par->PRAMIN, 0x080C * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x080D * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0810 * 4, 0x02080043); NV_WR32(par->PRAMIN, 0x0811 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0812 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0813 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0814 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0815 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0818 * 4, 0x02080044); NV_WR32(par->PRAMIN, 0x0819 * 4, 0x02000000); NV_WR32(par->PRAMIN, 0x081A * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x081B * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x081C * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x081D * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0820 * 4, 0x02080019); NV_WR32(par->PRAMIN, 0x0821 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0822 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0823 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0824 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0825 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0828 * 4, 0x020A005C); NV_WR32(par->PRAMIN, 0x0829 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x082A * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x082B * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x082C * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x082D * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0830 * 4, 0x0208009F); NV_WR32(par->PRAMIN, 0x0831 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0832 * 4, 0x00001200); NV_WR32(par->PRAMIN, 0x0833 * 4, 0x00001200); NV_WR32(par->PRAMIN, 0x0834 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0835 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0838 * 4, 0x0208004A); NV_WR32(par->PRAMIN, 0x0839 * 4, 0x02000000); NV_WR32(par->PRAMIN, 0x083A * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x083B * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x083C * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x083D * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0840 * 4, 0x02080077); NV_WR32(par->PRAMIN, 0x0841 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0842 * 4, 0x00001200); NV_WR32(par->PRAMIN, 0x0843 * 4, 0x00001200); NV_WR32(par->PRAMIN, 0x0844 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0845 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x084C * 4, 0x00003002); NV_WR32(par->PRAMIN, 0x084D * 4, 0x00007FFF); NV_WR32(par->PRAMIN, 0x084E * 4, par->FbUsableSize | 0x00000002); #ifdef __BIG_ENDIAN NV_WR32(par->PRAMIN, 0x080A * 4, NV_RD32(par->PRAMIN, 0x080A * 4) | 0x01000000); NV_WR32(par->PRAMIN, 0x0812 * 4, NV_RD32(par->PRAMIN, 0x0812 * 4) | 0x01000000); NV_WR32(par->PRAMIN, 0x081A * 4, NV_RD32(par->PRAMIN, 0x081A * 4) | 0x01000000); NV_WR32(par->PRAMIN, 0x0822 * 4, NV_RD32(par->PRAMIN, 0x0822 * 4) | 0x01000000); NV_WR32(par->PRAMIN, 0x082A * 4, NV_RD32(par->PRAMIN, 0x082A * 4) | 0x01000000); NV_WR32(par->PRAMIN, 0x0832 * 4, NV_RD32(par->PRAMIN, 0x0832 * 4) | 0x01000000); NV_WR32(par->PRAMIN, 0x083A * 4, NV_RD32(par->PRAMIN, 0x083A * 4) | 0x01000000); NV_WR32(par->PRAMIN, 0x0842 * 4, NV_RD32(par->PRAMIN, 0x0842 * 4) | 0x01000000); NV_WR32(par->PRAMIN, 0x0819 * 4, 0x01000000); NV_WR32(par->PRAMIN, 0x0839 * 4, 0x01000000); #endif } else { NV_WR32(par->PRAMIN, 0x0000 * 4, 0x80000010); NV_WR32(par->PRAMIN, 0x0001 * 4, 0x80011201); NV_WR32(par->PRAMIN, 0x0002 * 4, 0x80000011); NV_WR32(par->PRAMIN, 0x0003 * 4, 0x80011202); NV_WR32(par->PRAMIN, 0x0004 * 4, 0x80000012); NV_WR32(par->PRAMIN, 0x0005 * 4, 0x80011203); NV_WR32(par->PRAMIN, 0x0006 * 4, 0x80000013); NV_WR32(par->PRAMIN, 0x0007 * 4, 0x80011204); NV_WR32(par->PRAMIN, 0x0008 * 4, 0x80000014); NV_WR32(par->PRAMIN, 0x0009 * 4, 0x80011205); NV_WR32(par->PRAMIN, 0x000A * 4, 0x80000015); NV_WR32(par->PRAMIN, 0x000B * 4, 0x80011206); NV_WR32(par->PRAMIN, 0x000C * 4, 0x80000016); NV_WR32(par->PRAMIN, 0x000D * 4, 0x80011207); NV_WR32(par->PRAMIN, 0x000E * 4, 0x80000017); NV_WR32(par->PRAMIN, 0x000F * 4, 0x80011208); NV_WR32(par->PRAMIN, 0x0800 * 4, 0x00003000); NV_WR32(par->PRAMIN, 0x0801 * 4, par->FbMapSize - 1); NV_WR32(par->PRAMIN, 0x0802 * 4, 0x00000002); NV_WR32(par->PRAMIN, 0x0803 * 4, 0x00000002); if (par->Architecture >= NV_ARCH_10) NV_WR32(par->PRAMIN, 0x0804 * 4, 0x01008062); else NV_WR32(par->PRAMIN, 0x0804 * 4, 0x01008042); NV_WR32(par->PRAMIN, 0x0805 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0806 * 4, 0x12001200); NV_WR32(par->PRAMIN, 0x0807 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0808 * 4, 0x01008043); NV_WR32(par->PRAMIN, 0x0809 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x080A * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x080B * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x080C * 4, 0x01008044); NV_WR32(par->PRAMIN, 0x080D * 4, 0x00000002); NV_WR32(par->PRAMIN, 0x080E * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x080F * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0810 * 4, 0x01008019); NV_WR32(par->PRAMIN, 0x0811 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0812 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0813 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0814 * 4, 0x0100A05C); NV_WR32(par->PRAMIN, 0x0815 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0816 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0817 * 4, 0x00000000); if (par->WaitVSyncPossible) NV_WR32(par->PRAMIN, 0x0818 * 4, 0x0100809F); else NV_WR32(par->PRAMIN, 0x0818 * 4, 0x0100805F); NV_WR32(par->PRAMIN, 0x0819 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x081A * 4, 0x12001200); NV_WR32(par->PRAMIN, 0x081B * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x081C * 4, 0x0100804A); NV_WR32(par->PRAMIN, 0x081D * 4, 0x00000002); NV_WR32(par->PRAMIN, 0x081E * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x081F * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0820 * 4, 0x01018077); NV_WR32(par->PRAMIN, 0x0821 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0822 * 4, 0x12001200); NV_WR32(par->PRAMIN, 0x0823 * 4, 0x00000000); NV_WR32(par->PRAMIN, 0x0824 * 4, 0x00003002); NV_WR32(par->PRAMIN, 0x0825 * 4, 0x00007FFF); NV_WR32(par->PRAMIN, 0x0826 * 4, par->FbUsableSize | 0x00000002); NV_WR32(par->PRAMIN, 0x0827 * 4, 0x00000002); #ifdef __BIG_ENDIAN NV_WR32(par->PRAMIN, 0x0804 * 4, NV_RD32(par->PRAMIN, 0x0804 * 4) | 0x00080000); NV_WR32(par->PRAMIN, 0x0808 * 4, NV_RD32(par->PRAMIN, 0x0808 * 4) | 0x00080000); NV_WR32(par->PRAMIN, 0x080C * 4, NV_RD32(par->PRAMIN, 0x080C * 4) | 0x00080000); NV_WR32(par->PRAMIN, 0x0810 * 4, NV_RD32(par->PRAMIN, 0x0810 * 4) | 0x00080000); NV_WR32(par->PRAMIN, 0x0814 * 4, NV_RD32(par->PRAMIN, 0x0814 * 4) | 0x00080000); NV_WR32(par->PRAMIN, 0x0818 * 4, NV_RD32(par->PRAMIN, 0x0818 * 4) | 0x00080000); NV_WR32(par->PRAMIN, 0x081C * 4, NV_RD32(par->PRAMIN, 0x081C * 4) | 0x00080000); NV_WR32(par->PRAMIN, 0x0820 * 4, NV_RD32(par->PRAMIN, 0x0820 * 4) | 0x00080000); NV_WR32(par->PRAMIN, 0x080D * 4, 0x00000001); NV_WR32(par->PRAMIN, 0x081D * 4, 0x00000001); #endif } if (par->Architecture < NV_ARCH_10) { if ((par->Chipset & 0x0fff) == 0x0020) { NV_WR32(par->PRAMIN, 0x0824 * 4, NV_RD32(par->PRAMIN, 0x0824 * 4) | 0x00020000); NV_WR32(par->PRAMIN, 0x0826 * 4, NV_RD32(par->PRAMIN, 0x0826 * 4) + par->FbAddress); } NV_WR32(par->PGRAPH, 0x0080, 0x000001FF); NV_WR32(par->PGRAPH, 0x0080, 0x1230C000); NV_WR32(par->PGRAPH, 0x0084, 0x72111101); NV_WR32(par->PGRAPH, 0x0088, 0x11D5F071); NV_WR32(par->PGRAPH, 0x008C, 0x0004FF31); NV_WR32(par->PGRAPH, 0x008C, 0x4004FF31); NV_WR32(par->PGRAPH, 0x0140, 0x00000000); NV_WR32(par->PGRAPH, 0x0100, 0xFFFFFFFF); NV_WR32(par->PGRAPH, 0x0170, 0x10010100); NV_WR32(par->PGRAPH, 0x0710, 0xFFFFFFFF); NV_WR32(par->PGRAPH, 0x0720, 0x00000001); NV_WR32(par->PGRAPH, 0x0810, 0x00000000); NV_WR32(par->PGRAPH, 0x0608, 0xFFFFFFFF); } else { NV_WR32(par->PGRAPH, 0x0080, 0xFFFFFFFF); NV_WR32(par->PGRAPH, 0x0080, 0x00000000); NV_WR32(par->PGRAPH, 0x0140, 0x00000000); NV_WR32(par->PGRAPH, 0x0100, 0xFFFFFFFF); NV_WR32(par->PGRAPH, 0x0144, 0x10010100); NV_WR32(par->PGRAPH, 0x0714, 0xFFFFFFFF); NV_WR32(par->PGRAPH, 0x0720, 0x00000001); NV_WR32(par->PGRAPH, 0x0710, NV_RD32(par->PGRAPH, 0x0710) & 0x0007ff00); NV_WR32(par->PGRAPH, 0x0710, NV_RD32(par->PGRAPH, 0x0710) | 0x00020100); if (par->Architecture == NV_ARCH_10) { NV_WR32(par->PGRAPH, 0x0084, 0x00118700); NV_WR32(par->PGRAPH, 0x0088, 0x24E00810); NV_WR32(par->PGRAPH, 0x008C, 0x55DE0030); for (i = 0; i < 32; i++) NV_WR32(&par->PGRAPH[(0x0B00 / 4) + i], 0, NV_RD32(&par->PFB[(0x0240 / 4) + i], 0)); NV_WR32(par->PGRAPH, 0x640, 0); NV_WR32(par->PGRAPH, 0x644, 0); NV_WR32(par->PGRAPH, 0x684, par->FbMapSize - 1); NV_WR32(par->PGRAPH, 0x688, par->FbMapSize - 1); NV_WR32(par->PGRAPH, 0x0810, 0x00000000); NV_WR32(par->PGRAPH, 0x0608, 0xFFFFFFFF); } else { if (par->Architecture >= NV_ARCH_40) { NV_WR32(par->PGRAPH, 0x0084, 0x401287c0); NV_WR32(par->PGRAPH, 0x008C, 0x60de8051); NV_WR32(par->PGRAPH, 0x0090, 0x00008000); NV_WR32(par->PGRAPH, 0x0610, 0x00be3c5f); NV_WR32(par->PGRAPH, 0x0bc4, NV_RD32(par->PGRAPH, 0x0bc4) | 0x00008000); j = NV_RD32(par->REGS, 0x1540) & 0xff; if (j) { for (i = 0; !(j & 1); j >>= 1, i++); NV_WR32(par->PGRAPH, 0x5000, i); } if ((par->Chipset & 0xfff0) == 0x0040) { NV_WR32(par->PGRAPH, 0x09b0, 0x83280fff); NV_WR32(par->PGRAPH, 0x09b4, 0x000000a0); } else { NV_WR32(par->PGRAPH, 0x0820, 0x83280eff); NV_WR32(par->PGRAPH, 0x0824, 0x000000a0); } switch (par->Chipset & 0xfff0) { case 0x0040: case 0x0210: NV_WR32(par->PGRAPH, 0x09b8, 0x0078e366); NV_WR32(par->PGRAPH, 0x09bc, 0x0000014c); NV_WR32(par->PFB, 0x033C, NV_RD32(par->PFB, 0x33C) & 0xffff7fff); break; case 0x00C0: case 0x0120: NV_WR32(par->PGRAPH, 0x0828, 0x007596ff); NV_WR32(par->PGRAPH, 0x082C, 0x00000108); break; case 0x0160: case 0x01D0: case 0x0240: case 0x03D0: NV_WR32(par->PMC, 0x1700, NV_RD32(par->PFB, 0x020C)); NV_WR32(par->PMC, 0x1704, 0); NV_WR32(par->PMC, 0x1708, 0); NV_WR32(par->PMC, 0x170C, NV_RD32(par->PFB, 0x020C)); NV_WR32(par->PGRAPH, 0x0860, 0); NV_WR32(par->PGRAPH, 0x0864, 0); NV_WR32(par->PRAMDAC, 0x0608, NV_RD32(par->PRAMDAC, 0x0608) | 0x00100000); break; case 0x0140: NV_WR32(par->PGRAPH, 0x0828, 0x0072cb77); NV_WR32(par->PGRAPH, 0x082C, 0x00000108); break; case 0x0220: NV_WR32(par->PGRAPH, 0x0860, 0); NV_WR32(par->PGRAPH, 0x0864, 0); NV_WR32(par->PRAMDAC, 0x0608, NV_RD32(par->PRAMDAC, 0x0608) | 0x00100000); break; case 0x0090: case 0x0290: case 0x0390: NV_WR32(par->PRAMDAC, 0x0608, NV_RD32(par->PRAMDAC, 0x0608) | 0x00100000); NV_WR32(par->PGRAPH, 0x0828, 0x07830610); NV_WR32(par->PGRAPH, 0x082C, 0x0000016A); break; default: break; } NV_WR32(par->PGRAPH, 0x0b38, 0x2ffff800); NV_WR32(par->PGRAPH, 0x0b3c, 0x00006000); NV_WR32(par->PGRAPH, 0x032C, 0x01000000); NV_WR32(par->PGRAPH, 0x0220, 0x00001200); } else if (par->Architecture == NV_ARCH_30) { NV_WR32(par->PGRAPH, 0x0084, 0x40108700); NV_WR32(par->PGRAPH, 0x0890, 0x00140000); NV_WR32(par->PGRAPH, 0x008C, 0xf00e0431); NV_WR32(par->PGRAPH, 0x0090, 0x00008000); NV_WR32(par->PGRAPH, 0x0610, 0xf04b1f36); NV_WR32(par->PGRAPH, 0x0B80, 0x1002d888); NV_WR32(par->PGRAPH, 0x0B88, 0x62ff007f); } else { NV_WR32(par->PGRAPH, 0x0084, 0x00118700); NV_WR32(par->PGRAPH, 0x008C, 0xF20E0431); NV_WR32(par->PGRAPH, 0x0090, 0x00000000); NV_WR32(par->PGRAPH, 0x009C, 0x00000040); if ((par->Chipset & 0x0ff0) >= 0x0250) { NV_WR32(par->PGRAPH, 0x0890, 0x00080000); NV_WR32(par->PGRAPH, 0x0610, 0x304B1FB6); NV_WR32(par->PGRAPH, 0x0B80, 0x18B82880); NV_WR32(par->PGRAPH, 0x0B84, 0x44000000); NV_WR32(par->PGRAPH, 0x0098, 0x40000080); NV_WR32(par->PGRAPH, 0x0B88, 0x000000ff); } else { NV_WR32(par->PGRAPH, 0x0880, 0x00080000); NV_WR32(par->PGRAPH, 0x0094, 0x00000005); NV_WR32(par->PGRAPH, 0x0B80, 0x45CAA208); NV_WR32(par->PGRAPH, 0x0B84, 0x24000000); NV_WR32(par->PGRAPH, 0x0098, 0x00000040); NV_WR32(par->PGRAPH, 0x0750, 0x00E00038); NV_WR32(par->PGRAPH, 0x0754, 0x00000030); NV_WR32(par->PGRAPH, 0x0750, 0x00E10038); NV_WR32(par->PGRAPH, 0x0754, 0x00000030); } } if ((par->Architecture < NV_ARCH_40) || ((par->Chipset & 0xfff0) == 0x0040)) { for (i = 0; i < 32; i++) { NV_WR32(par->PGRAPH, 0x0900 + i*4, NV_RD32(par->PFB, 0x0240 +i*4)); NV_WR32(par->PGRAPH, 0x6900 + i*4, NV_RD32(par->PFB, 0x0240 +i*4)); } } else { if (((par->Chipset & 0xfff0) == 0x0090) || ((par->Chipset & 0xfff0) == 0x01D0) || ((par->Chipset & 0xfff0) == 0x0290) || ((par->Chipset & 0xfff0) == 0x0390) || ((par->Chipset & 0xfff0) == 0x03D0)) { for (i = 0; i < 60; i++) { NV_WR32(par->PGRAPH, 0x0D00 + i*4, NV_RD32(par->PFB, 0x0600 + i*4)); NV_WR32(par->PGRAPH, 0x6900 + i*4, NV_RD32(par->PFB, 0x0600 + i*4)); } } else { for (i = 0; i < 48; i++) { NV_WR32(par->PGRAPH, 0x0900 + i*4, NV_RD32(par->PFB, 0x0600 + i*4)); if(((par->Chipset & 0xfff0) != 0x0160) && ((par->Chipset & 0xfff0) != 0x0220) && ((par->Chipset & 0xfff0) != 0x240)) NV_WR32(par->PGRAPH, 0x6900 + i*4, NV_RD32(par->PFB, 0x0600 + i*4)); } } } if (par->Architecture >= NV_ARCH_40) { if ((par->Chipset & 0xfff0) == 0x0040) { NV_WR32(par->PGRAPH, 0x09A4, NV_RD32(par->PFB, 0x0200)); NV_WR32(par->PGRAPH, 0x09A8, NV_RD32(par->PFB, 0x0204)); NV_WR32(par->PGRAPH, 0x69A4, NV_RD32(par->PFB, 0x0200)); NV_WR32(par->PGRAPH, 0x69A8, NV_RD32(par->PFB, 0x0204)); NV_WR32(par->PGRAPH, 0x0820, 0); NV_WR32(par->PGRAPH, 0x0824, 0); NV_WR32(par->PGRAPH, 0x0864, par->FbMapSize - 1); NV_WR32(par->PGRAPH, 0x0868, par->FbMapSize - 1); } else { if ((par->Chipset & 0xfff0) == 0x0090 || (par->Chipset & 0xfff0) == 0x01D0 || (par->Chipset & 0xfff0) == 0x0290 || (par->Chipset & 0xfff0) == 0x0390) { NV_WR32(par->PGRAPH, 0x0DF0, NV_RD32(par->PFB, 0x0200)); NV_WR32(par->PGRAPH, 0x0DF4, NV_RD32(par->PFB, 0x0204)); } else { NV_WR32(par->PGRAPH, 0x09F0, NV_RD32(par->PFB, 0x0200)); NV_WR32(par->PGRAPH, 0x09F4, NV_RD32(par->PFB, 0x0204)); } NV_WR32(par->PGRAPH, 0x69F0, NV_RD32(par->PFB, 0x0200)); NV_WR32(par->PGRAPH, 0x69F4, NV_RD32(par->PFB, 0x0204)); NV_WR32(par->PGRAPH, 0x0840, 0); NV_WR32(par->PGRAPH, 0x0844, 0); NV_WR32(par->PGRAPH, 0x08a0, par->FbMapSize - 1); NV_WR32(par->PGRAPH, 0x08a4, par->FbMapSize - 1); } } else { NV_WR32(par->PGRAPH, 0x09A4, NV_RD32(par->PFB, 0x0200)); NV_WR32(par->PGRAPH, 0x09A8, NV_RD32(par->PFB, 0x0204)); NV_WR32(par->PGRAPH, 0x0750, 0x00EA0000); NV_WR32(par->PGRAPH, 0x0754, NV_RD32(par->PFB, 0x0200)); NV_WR32(par->PGRAPH, 0x0750, 0x00EA0004); NV_WR32(par->PGRAPH, 0x0754, NV_RD32(par->PFB, 0x0204)); NV_WR32(par->PGRAPH, 0x0820, 0); NV_WR32(par->PGRAPH, 0x0824, 0); NV_WR32(par->PGRAPH, 0x0864, par->FbMapSize - 1); NV_WR32(par->PGRAPH, 0x0868, par->FbMapSize - 1); } NV_WR32(par->PGRAPH, 0x0B20, 0x00000000); NV_WR32(par->PGRAPH, 0x0B04, 0xFFFFFFFF); } } NV_WR32(par->PGRAPH, 0x053C, 0); NV_WR32(par->PGRAPH, 0x0540, 0); NV_WR32(par->PGRAPH, 0x0544, 0x00007FFF); NV_WR32(par->PGRAPH, 0x0548, 0x00007FFF); NV_WR32(par->PFIFO, 0x0140 * 4, 0x00000000); NV_WR32(par->PFIFO, 0x0141 * 4, 0x00000001); NV_WR32(par->PFIFO, 0x0480 * 4, 0x00000000); NV_WR32(par->PFIFO, 0x0494 * 4, 0x00000000); if (par->Architecture >= NV_ARCH_40) NV_WR32(par->PFIFO, 0x0481 * 4, 0x00010000); else NV_WR32(par->PFIFO, 0x0481 * 4, 0x00000100); NV_WR32(par->PFIFO, 0x0490 * 4, 0x00000000); NV_WR32(par->PFIFO, 0x0491 * 4, 0x00000000); if (par->Architecture >= NV_ARCH_40) NV_WR32(par->PFIFO, 0x048B * 4, 0x00001213); else NV_WR32(par->PFIFO, 0x048B * 4, 0x00001209); NV_WR32(par->PFIFO, 0x0400 * 4, 0x00000000); NV_WR32(par->PFIFO, 0x0414 * 4, 0x00000000); NV_WR32(par->PFIFO, 0x0084 * 4, 0x03000100); NV_WR32(par->PFIFO, 0x0085 * 4, 0x00000110); NV_WR32(par->PFIFO, 0x0086 * 4, 0x00000112); NV_WR32(par->PFIFO, 0x0143 * 4, 0x0000FFFF); NV_WR32(par->PFIFO, 0x0496 * 4, 0x0000FFFF); NV_WR32(par->PFIFO, 0x0050 * 4, 0x00000000); NV_WR32(par->PFIFO, 0x0040 * 4, 0xFFFFFFFF); NV_WR32(par->PFIFO, 0x0415 * 4, 0x00000001); NV_WR32(par->PFIFO, 0x048C * 4, 0x00000000); NV_WR32(par->PFIFO, 0x04A0 * 4, 0x00000000); #ifdef __BIG_ENDIAN NV_WR32(par->PFIFO, 0x0489 * 4, 0x800F0078); #else NV_WR32(par->PFIFO, 0x0489 * 4, 0x000F0078); #endif NV_WR32(par->PFIFO, 0x0488 * 4, 0x00000001); NV_WR32(par->PFIFO, 0x0480 * 4, 0x00000001); NV_WR32(par->PFIFO, 0x0494 * 4, 0x00000001); NV_WR32(par->PFIFO, 0x0495 * 4, 0x00000001); NV_WR32(par->PFIFO, 0x0140 * 4, 0x00000001); if (!state) { par->CurrentState = NULL; return; } if (par->Architecture >= NV_ARCH_10) { if (par->twoHeads) { NV_WR32(par->PCRTC0, 0x0860, state->head); NV_WR32(par->PCRTC0, 0x2860, state->head2); } NV_WR32(par->PRAMDAC, 0x0404, NV_RD32(par->PRAMDAC, 0x0404) | (1 << 25)); NV_WR32(par->PMC, 0x8704, 1); NV_WR32(par->PMC, 0x8140, 0); NV_WR32(par->PMC, 0x8920, 0); NV_WR32(par->PMC, 0x8924, 0); NV_WR32(par->PMC, 0x8908, par->FbMapSize - 1); NV_WR32(par->PMC, 0x890C, par->FbMapSize - 1); NV_WR32(par->PMC, 0x1588, 0); NV_WR32(par->PCRTC, 0x0810, state->cursorConfig); NV_WR32(par->PCRTC, 0x0830, state->displayV - 3); NV_WR32(par->PCRTC, 0x0834, state->displayV - 1); if (par->FlatPanel) { if ((par->Chipset & 0x0ff0) == 0x0110) { NV_WR32(par->PRAMDAC, 0x0528, state->dither); } else if (par->twoHeads) { NV_WR32(par->PRAMDAC, 0x083C, state->dither); } VGA_WR08(par->PCIO, 0x03D4, 0x53); VGA_WR08(par->PCIO, 0x03D5, state->timingH); VGA_WR08(par->PCIO, 0x03D4, 0x54); VGA_WR08(par->PCIO, 0x03D5, state->timingV); VGA_WR08(par->PCIO, 0x03D4, 0x21); VGA_WR08(par->PCIO, 0x03D5, 0xfa); } VGA_WR08(par->PCIO, 0x03D4, 0x41); VGA_WR08(par->PCIO, 0x03D5, state->extra); } VGA_WR08(par->PCIO, 0x03D4, 0x19); VGA_WR08(par->PCIO, 0x03D5, state->repaint0); VGA_WR08(par->PCIO, 0x03D4, 0x1A); VGA_WR08(par->PCIO, 0x03D5, state->repaint1); VGA_WR08(par->PCIO, 0x03D4, 0x25); VGA_WR08(par->PCIO, 0x03D5, state->screen); VGA_WR08(par->PCIO, 0x03D4, 0x28); VGA_WR08(par->PCIO, 0x03D5, state->pixel); VGA_WR08(par->PCIO, 0x03D4, 0x2D); VGA_WR08(par->PCIO, 0x03D5, state->horiz); VGA_WR08(par->PCIO, 0x03D4, 0x1C); VGA_WR08(par->PCIO, 0x03D5, state->fifo); VGA_WR08(par->PCIO, 0x03D4, 0x1B); VGA_WR08(par->PCIO, 0x03D5, state->arbitration0); VGA_WR08(par->PCIO, 0x03D4, 0x20); VGA_WR08(par->PCIO, 0x03D5, state->arbitration1); if(par->Architecture >= NV_ARCH_30) { VGA_WR08(par->PCIO, 0x03D4, 0x47); VGA_WR08(par->PCIO, 0x03D5, state->arbitration1 >> 8); } VGA_WR08(par->PCIO, 0x03D4, 0x30); VGA_WR08(par->PCIO, 0x03D5, state->cursor0); VGA_WR08(par->PCIO, 0x03D4, 0x31); VGA_WR08(par->PCIO, 0x03D5, state->cursor1); VGA_WR08(par->PCIO, 0x03D4, 0x2F); VGA_WR08(par->PCIO, 0x03D5, state->cursor2); VGA_WR08(par->PCIO, 0x03D4, 0x39); VGA_WR08(par->PCIO, 0x03D5, state->interlace); if (!par->FlatPanel) { if (par->Architecture >= NV_ARCH_40) NV_WR32(par->PRAMDAC0, 0x0580, state->control); NV_WR32(par->PRAMDAC0, 0x050C, state->pllsel); NV_WR32(par->PRAMDAC0, 0x0508, state->vpll); if (par->twoHeads) NV_WR32(par->PRAMDAC0, 0x0520, state->vpll2); if (par->twoStagePLL) { NV_WR32(par->PRAMDAC0, 0x0578, state->vpllB); NV_WR32(par->PRAMDAC0, 0x057C, state->vpll2B); } } else { NV_WR32(par->PRAMDAC, 0x0848, state->scale); NV_WR32(par->PRAMDAC, 0x0828, state->crtcSync + par->PanelTweak); } NV_WR32(par->PRAMDAC, 0x0600, state->general); NV_WR32(par->PCRTC, 0x0140, 0); NV_WR32(par->PCRTC, 0x0100, 1); par->CurrentState = state; } void NVUnloadStateExt(struct nvidia_par *par, RIVA_HW_STATE * state) { VGA_WR08(par->PCIO, 0x03D4, 0x19); state->repaint0 = VGA_RD08(par->PCIO, 0x03D5); VGA_WR08(par->PCIO, 0x03D4, 0x1A); state->repaint1 = VGA_RD08(par->PCIO, 0x03D5); VGA_WR08(par->PCIO, 0x03D4, 0x25); state->screen = VGA_RD08(par->PCIO, 0x03D5); VGA_WR08(par->PCIO, 0x03D4, 0x28); state->pixel = VGA_RD08(par->PCIO, 0x03D5); VGA_WR08(par->PCIO, 0x03D4, 0x2D); state->horiz = VGA_RD08(par->PCIO, 0x03D5); VGA_WR08(par->PCIO, 0x03D4, 0x1C); state->fifo = VGA_RD08(par->PCIO, 0x03D5); VGA_WR08(par->PCIO, 0x03D4, 0x1B); state->arbitration0 = VGA_RD08(par->PCIO, 0x03D5); VGA_WR08(par->PCIO, 0x03D4, 0x20); state->arbitration1 = VGA_RD08(par->PCIO, 0x03D5); if(par->Architecture >= NV_ARCH_30) { VGA_WR08(par->PCIO, 0x03D4, 0x47); state->arbitration1 |= (VGA_RD08(par->PCIO, 0x03D5) & 1) << 8; } VGA_WR08(par->PCIO, 0x03D4, 0x30); state->cursor0 = VGA_RD08(par->PCIO, 0x03D5); VGA_WR08(par->PCIO, 0x03D4, 0x31); state->cursor1 = VGA_RD08(par->PCIO, 0x03D5); VGA_WR08(par->PCIO, 0x03D4, 0x2F); state->cursor2 = VGA_RD08(par->PCIO, 0x03D5); VGA_WR08(par->PCIO, 0x03D4, 0x39); state->interlace = VGA_RD08(par->PCIO, 0x03D5); state->vpll = NV_RD32(par->PRAMDAC0, 0x0508); if (par->twoHeads) state->vpll2 = NV_RD32(par->PRAMDAC0, 0x0520); if (par->twoStagePLL) { state->vpllB = NV_RD32(par->PRAMDAC0, 0x0578); state->vpll2B = NV_RD32(par->PRAMDAC0, 0x057C); } state->pllsel = NV_RD32(par->PRAMDAC0, 0x050C); state->general = NV_RD32(par->PRAMDAC, 0x0600); state->scale = NV_RD32(par->PRAMDAC, 0x0848); state->config = NV_RD32(par->PFB, 0x0200); if (par->Architecture >= NV_ARCH_40 && !par->FlatPanel) state->control = NV_RD32(par->PRAMDAC0, 0x0580); if (par->Architecture >= NV_ARCH_10) { if (par->twoHeads) { state->head = NV_RD32(par->PCRTC0, 0x0860); state->head2 = NV_RD32(par->PCRTC0, 0x2860); VGA_WR08(par->PCIO, 0x03D4, 0x44); state->crtcOwner = VGA_RD08(par->PCIO, 0x03D5); } VGA_WR08(par->PCIO, 0x03D4, 0x41); state->extra = VGA_RD08(par->PCIO, 0x03D5); state->cursorConfig = NV_RD32(par->PCRTC, 0x0810); if ((par->Chipset & 0x0ff0) == 0x0110) { state->dither = NV_RD32(par->PRAMDAC, 0x0528); } else if (par->twoHeads) { state->dither = NV_RD32(par->PRAMDAC, 0x083C); } if (par->FlatPanel) { VGA_WR08(par->PCIO, 0x03D4, 0x53); state->timingH = VGA_RD08(par->PCIO, 0x03D5); VGA_WR08(par->PCIO, 0x03D4, 0x54); state->timingV = VGA_RD08(par->PCIO, 0x03D5); } } } void NVSetStartAddress(struct nvidia_par *par, u32 start) { NV_WR32(par->PCRTC, 0x800, start); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1