Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Martyn Welch | 5446 | 79.24% | 18 | 32.73% |
Manohar Vanga | 639 | 9.30% | 8 | 14.55% |
Dmitry Kalinkin | 512 | 7.45% | 6 | 10.91% |
SF Markus Elfring | 99 | 1.44% | 5 | 9.09% |
Aaron Sierra | 80 | 1.16% | 4 | 7.27% |
Stefano Babic | 51 | 0.74% | 1 | 1.82% |
Emilio G. Cota | 15 | 0.22% | 4 | 7.27% |
Dan Carpenter | 13 | 0.19% | 1 | 1.82% |
Greg Kroah-Hartman | 6 | 0.09% | 2 | 3.64% |
Julia Lawall | 3 | 0.04% | 1 | 1.82% |
Tejun Heo | 3 | 0.04% | 1 | 1.82% |
Thomas Gleixner | 2 | 0.03% | 1 | 1.82% |
Paul Gortmaker | 2 | 0.03% | 1 | 1.82% |
Bill Pemberton | 1 | 0.01% | 1 | 1.82% |
Jia-Ju Bai | 1 | 0.01% | 1 | 1.82% |
Total | 6873 | 55 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * VME Bridge Framework * * Author: Martyn Welch <martyn.welch@ge.com> * Copyright 2008 GE Intelligent Platforms Embedded Systems, Inc. * * Based on work by Tom Armistead and Ajit Prem * Copyright 2004 Motorola Inc. */ #include <linux/init.h> #include <linux/export.h> #include <linux/mm.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/pci.h> #include <linux/poll.h> #include <linux/highmem.h> #include <linux/interrupt.h> #include <linux/pagemap.h> #include <linux/device.h> #include <linux/dma-mapping.h> #include <linux/syscalls.h> #include <linux/mutex.h> #include <linux/spinlock.h> #include <linux/slab.h> #include <linux/vme.h> #include "vme_bridge.h" /* Bitmask and list of registered buses both protected by common mutex */ static unsigned int vme_bus_numbers; static LIST_HEAD(vme_bus_list); static DEFINE_MUTEX(vme_buses_lock); static int __init vme_init(void); static struct vme_dev *dev_to_vme_dev(struct device *dev) { return container_of(dev, struct vme_dev, dev); } /* * Find the bridge that the resource is associated with. */ static struct vme_bridge *find_bridge(struct vme_resource *resource) { /* Get list to search */ switch (resource->type) { case VME_MASTER: return list_entry(resource->entry, struct vme_master_resource, list)->parent; break; case VME_SLAVE: return list_entry(resource->entry, struct vme_slave_resource, list)->parent; break; case VME_DMA: return list_entry(resource->entry, struct vme_dma_resource, list)->parent; break; case VME_LM: return list_entry(resource->entry, struct vme_lm_resource, list)->parent; break; default: printk(KERN_ERR "Unknown resource type\n"); return NULL; break; } } /** * vme_free_consistent - Allocate contiguous memory. * @resource: Pointer to VME resource. * @size: Size of allocation required. * @dma: Pointer to variable to store physical address of allocation. * * Allocate a contiguous block of memory for use by the driver. This is used to * create the buffers for the slave windows. * * Return: Virtual address of allocation on success, NULL on failure. */ void *vme_alloc_consistent(struct vme_resource *resource, size_t size, dma_addr_t *dma) { struct vme_bridge *bridge; if (!resource) { printk(KERN_ERR "No resource\n"); return NULL; } bridge = find_bridge(resource); if (!bridge) { printk(KERN_ERR "Can't find bridge\n"); return NULL; } if (!bridge->parent) { printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name); return NULL; } if (!bridge->alloc_consistent) { printk(KERN_ERR "alloc_consistent not supported by bridge %s\n", bridge->name); return NULL; } return bridge->alloc_consistent(bridge->parent, size, dma); } EXPORT_SYMBOL(vme_alloc_consistent); /** * vme_free_consistent - Free previously allocated memory. * @resource: Pointer to VME resource. * @size: Size of allocation to free. * @vaddr: Virtual address of allocation. * @dma: Physical address of allocation. * * Free previously allocated block of contiguous memory. */ void vme_free_consistent(struct vme_resource *resource, size_t size, void *vaddr, dma_addr_t dma) { struct vme_bridge *bridge; if (!resource) { printk(KERN_ERR "No resource\n"); return; } bridge = find_bridge(resource); if (!bridge) { printk(KERN_ERR "Can't find bridge\n"); return; } if (!bridge->parent) { printk(KERN_ERR "Dev entry NULL for bridge %s\n", bridge->name); return; } if (!bridge->free_consistent) { printk(KERN_ERR "free_consistent not supported by bridge %s\n", bridge->name); return; } bridge->free_consistent(bridge->parent, size, vaddr, dma); } EXPORT_SYMBOL(vme_free_consistent); /** * vme_get_size - Helper function returning size of a VME window * @resource: Pointer to VME slave or master resource. * * Determine the size of the VME window provided. This is a helper * function, wrappering the call to vme_master_get or vme_slave_get * depending on the type of window resource handed to it. * * Return: Size of the window on success, zero on failure. */ size_t vme_get_size(struct vme_resource *resource) { int enabled, retval; unsigned long long base, size; dma_addr_t buf_base; u32 aspace, cycle, dwidth; switch (resource->type) { case VME_MASTER: retval = vme_master_get(resource, &enabled, &base, &size, &aspace, &cycle, &dwidth); if (retval) return 0; return size; break; case VME_SLAVE: retval = vme_slave_get(resource, &enabled, &base, &size, &buf_base, &aspace, &cycle); if (retval) return 0; return size; break; case VME_DMA: return 0; break; default: printk(KERN_ERR "Unknown resource type\n"); return 0; break; } } EXPORT_SYMBOL(vme_get_size); int vme_check_window(u32 aspace, unsigned long long vme_base, unsigned long long size) { int retval = 0; if (vme_base + size < size) return -EINVAL; switch (aspace) { case VME_A16: if (vme_base + size > VME_A16_MAX) retval = -EFAULT; break; case VME_A24: if (vme_base + size > VME_A24_MAX) retval = -EFAULT; break; case VME_A32: if (vme_base + size > VME_A32_MAX) retval = -EFAULT; break; case VME_A64: /* The VME_A64_MAX limit is actually U64_MAX + 1 */ break; case VME_CRCSR: if (vme_base + size > VME_CRCSR_MAX) retval = -EFAULT; break; case VME_USER1: case VME_USER2: case VME_USER3: case VME_USER4: /* User Defined */ break; default: printk(KERN_ERR "Invalid address space\n"); retval = -EINVAL; break; } return retval; } EXPORT_SYMBOL(vme_check_window); static u32 vme_get_aspace(int am) { switch (am) { case 0x29: case 0x2D: return VME_A16; case 0x38: case 0x39: case 0x3A: case 0x3B: case 0x3C: case 0x3D: case 0x3E: case 0x3F: return VME_A24; case 0x8: case 0x9: case 0xA: case 0xB: case 0xC: case 0xD: case 0xE: case 0xF: return VME_A32; case 0x0: case 0x1: case 0x3: return VME_A64; } return 0; } /** * vme_slave_request - Request a VME slave window resource. * @vdev: Pointer to VME device struct vme_dev assigned to driver instance. * @address: Required VME address space. * @cycle: Required VME data transfer cycle type. * * Request use of a VME window resource capable of being set for the requested * address space and data transfer cycle. * * Return: Pointer to VME resource on success, NULL on failure. */ struct vme_resource *vme_slave_request(struct vme_dev *vdev, u32 address, u32 cycle) { struct vme_bridge *bridge; struct list_head *slave_pos = NULL; struct vme_slave_resource *allocated_image = NULL; struct vme_slave_resource *slave_image = NULL; struct vme_resource *resource = NULL; bridge = vdev->bridge; if (!bridge) { printk(KERN_ERR "Can't find VME bus\n"); goto err_bus; } /* Loop through slave resources */ list_for_each(slave_pos, &bridge->slave_resources) { slave_image = list_entry(slave_pos, struct vme_slave_resource, list); if (!slave_image) { printk(KERN_ERR "Registered NULL Slave resource\n"); continue; } /* Find an unlocked and compatible image */ mutex_lock(&slave_image->mtx); if (((slave_image->address_attr & address) == address) && ((slave_image->cycle_attr & cycle) == cycle) && (slave_image->locked == 0)) { slave_image->locked = 1; mutex_unlock(&slave_image->mtx); allocated_image = slave_image; break; } mutex_unlock(&slave_image->mtx); } /* No free image */ if (!allocated_image) goto err_image; resource = kmalloc(sizeof(*resource), GFP_KERNEL); if (!resource) goto err_alloc; resource->type = VME_SLAVE; resource->entry = &allocated_image->list; return resource; err_alloc: /* Unlock image */ mutex_lock(&slave_image->mtx); slave_image->locked = 0; mutex_unlock(&slave_image->mtx); err_image: err_bus: return NULL; } EXPORT_SYMBOL(vme_slave_request); /** * vme_slave_set - Set VME slave window configuration. * @resource: Pointer to VME slave resource. * @enabled: State to which the window should be configured. * @vme_base: Base address for the window. * @size: Size of the VME window. * @buf_base: Based address of buffer used to provide VME slave window storage. * @aspace: VME address space for the VME window. * @cycle: VME data transfer cycle type for the VME window. * * Set configuration for provided VME slave window. * * Return: Zero on success, -EINVAL if operation is not supported on this * device, if an invalid resource has been provided or invalid * attributes are provided. Hardware specific errors may also be * returned. */ int vme_slave_set(struct vme_resource *resource, int enabled, unsigned long long vme_base, unsigned long long size, dma_addr_t buf_base, u32 aspace, u32 cycle) { struct vme_bridge *bridge = find_bridge(resource); struct vme_slave_resource *image; int retval; if (resource->type != VME_SLAVE) { printk(KERN_ERR "Not a slave resource\n"); return -EINVAL; } image = list_entry(resource->entry, struct vme_slave_resource, list); if (!bridge->slave_set) { printk(KERN_ERR "Function not supported\n"); return -ENOSYS; } if (!(((image->address_attr & aspace) == aspace) && ((image->cycle_attr & cycle) == cycle))) { printk(KERN_ERR "Invalid attributes\n"); return -EINVAL; } retval = vme_check_window(aspace, vme_base, size); if (retval) return retval; return bridge->slave_set(image, enabled, vme_base, size, buf_base, aspace, cycle); } EXPORT_SYMBOL(vme_slave_set); /** * vme_slave_get - Retrieve VME slave window configuration. * @resource: Pointer to VME slave resource. * @enabled: Pointer to variable for storing state. * @vme_base: Pointer to variable for storing window base address. * @size: Pointer to variable for storing window size. * @buf_base: Pointer to variable for storing slave buffer base address. * @aspace: Pointer to variable for storing VME address space. * @cycle: Pointer to variable for storing VME data transfer cycle type. * * Return configuration for provided VME slave window. * * Return: Zero on success, -EINVAL if operation is not supported on this * device or if an invalid resource has been provided. */ int vme_slave_get(struct vme_resource *resource, int *enabled, unsigned long long *vme_base, unsigned long long *size, dma_addr_t *buf_base, u32 *aspace, u32 *cycle) { struct vme_bridge *bridge = find_bridge(resource); struct vme_slave_resource *image; if (resource->type != VME_SLAVE) { printk(KERN_ERR "Not a slave resource\n"); return -EINVAL; } image = list_entry(resource->entry, struct vme_slave_resource, list); if (!bridge->slave_get) { printk(KERN_ERR "vme_slave_get not supported\n"); return -EINVAL; } return bridge->slave_get(image, enabled, vme_base, size, buf_base, aspace, cycle); } EXPORT_SYMBOL(vme_slave_get); /** * vme_slave_free - Free VME slave window * @resource: Pointer to VME slave resource. * * Free the provided slave resource so that it may be reallocated. */ void vme_slave_free(struct vme_resource *resource) { struct vme_slave_resource *slave_image; if (resource->type != VME_SLAVE) { printk(KERN_ERR "Not a slave resource\n"); return; } slave_image = list_entry(resource->entry, struct vme_slave_resource, list); if (!slave_image) { printk(KERN_ERR "Can't find slave resource\n"); return; } /* Unlock image */ mutex_lock(&slave_image->mtx); if (slave_image->locked == 0) printk(KERN_ERR "Image is already free\n"); slave_image->locked = 0; mutex_unlock(&slave_image->mtx); /* Free up resource memory */ kfree(resource); } EXPORT_SYMBOL(vme_slave_free); /** * vme_master_request - Request a VME master window resource. * @vdev: Pointer to VME device struct vme_dev assigned to driver instance. * @address: Required VME address space. * @cycle: Required VME data transfer cycle type. * @dwidth: Required VME data transfer width. * * Request use of a VME window resource capable of being set for the requested * address space, data transfer cycle and width. * * Return: Pointer to VME resource on success, NULL on failure. */ struct vme_resource *vme_master_request(struct vme_dev *vdev, u32 address, u32 cycle, u32 dwidth) { struct vme_bridge *bridge; struct list_head *master_pos = NULL; struct vme_master_resource *allocated_image = NULL; struct vme_master_resource *master_image = NULL; struct vme_resource *resource = NULL; bridge = vdev->bridge; if (!bridge) { printk(KERN_ERR "Can't find VME bus\n"); goto err_bus; } /* Loop through master resources */ list_for_each(master_pos, &bridge->master_resources) { master_image = list_entry(master_pos, struct vme_master_resource, list); if (!master_image) { printk(KERN_WARNING "Registered NULL master resource\n"); continue; } /* Find an unlocked and compatible image */ spin_lock(&master_image->lock); if (((master_image->address_attr & address) == address) && ((master_image->cycle_attr & cycle) == cycle) && ((master_image->width_attr & dwidth) == dwidth) && (master_image->locked == 0)) { master_image->locked = 1; spin_unlock(&master_image->lock); allocated_image = master_image; break; } spin_unlock(&master_image->lock); } /* Check to see if we found a resource */ if (!allocated_image) { printk(KERN_ERR "Can't find a suitable resource\n"); goto err_image; } resource = kmalloc(sizeof(*resource), GFP_KERNEL); if (!resource) goto err_alloc; resource->type = VME_MASTER; resource->entry = &allocated_image->list; return resource; err_alloc: /* Unlock image */ spin_lock(&master_image->lock); master_image->locked = 0; spin_unlock(&master_image->lock); err_image: err_bus: return NULL; } EXPORT_SYMBOL(vme_master_request); /** * vme_master_set - Set VME master window configuration. * @resource: Pointer to VME master resource. * @enabled: State to which the window should be configured. * @vme_base: Base address for the window. * @size: Size of the VME window. * @aspace: VME address space for the VME window. * @cycle: VME data transfer cycle type for the VME window. * @dwidth: VME data transfer width for the VME window. * * Set configuration for provided VME master window. * * Return: Zero on success, -EINVAL if operation is not supported on this * device, if an invalid resource has been provided or invalid * attributes are provided. Hardware specific errors may also be * returned. */ int vme_master_set(struct vme_resource *resource, int enabled, unsigned long long vme_base, unsigned long long size, u32 aspace, u32 cycle, u32 dwidth) { struct vme_bridge *bridge = find_bridge(resource); struct vme_master_resource *image; int retval; if (resource->type != VME_MASTER) { printk(KERN_ERR "Not a master resource\n"); return -EINVAL; } image = list_entry(resource->entry, struct vme_master_resource, list); if (!bridge->master_set) { printk(KERN_WARNING "vme_master_set not supported\n"); return -EINVAL; } if (!(((image->address_attr & aspace) == aspace) && ((image->cycle_attr & cycle) == cycle) && ((image->width_attr & dwidth) == dwidth))) { printk(KERN_WARNING "Invalid attributes\n"); return -EINVAL; } retval = vme_check_window(aspace, vme_base, size); if (retval) return retval; return bridge->master_set(image, enabled, vme_base, size, aspace, cycle, dwidth); } EXPORT_SYMBOL(vme_master_set); /** * vme_master_get - Retrieve VME master window configuration. * @resource: Pointer to VME master resource. * @enabled: Pointer to variable for storing state. * @vme_base: Pointer to variable for storing window base address. * @size: Pointer to variable for storing window size. * @aspace: Pointer to variable for storing VME address space. * @cycle: Pointer to variable for storing VME data transfer cycle type. * @dwidth: Pointer to variable for storing VME data transfer width. * * Return configuration for provided VME master window. * * Return: Zero on success, -EINVAL if operation is not supported on this * device or if an invalid resource has been provided. */ int vme_master_get(struct vme_resource *resource, int *enabled, unsigned long long *vme_base, unsigned long long *size, u32 *aspace, u32 *cycle, u32 *dwidth) { struct vme_bridge *bridge = find_bridge(resource); struct vme_master_resource *image; if (resource->type != VME_MASTER) { printk(KERN_ERR "Not a master resource\n"); return -EINVAL; } image = list_entry(resource->entry, struct vme_master_resource, list); if (!bridge->master_get) { printk(KERN_WARNING "%s not supported\n", __func__); return -EINVAL; } return bridge->master_get(image, enabled, vme_base, size, aspace, cycle, dwidth); } EXPORT_SYMBOL(vme_master_get); /** * vme_master_write - Read data from VME space into a buffer. * @resource: Pointer to VME master resource. * @buf: Pointer to buffer where data should be transferred. * @count: Number of bytes to transfer. * @offset: Offset into VME master window at which to start transfer. * * Perform read of count bytes of data from location on VME bus which maps into * the VME master window at offset to buf. * * Return: Number of bytes read, -EINVAL if resource is not a VME master * resource or read operation is not supported. -EFAULT returned if * invalid offset is provided. Hardware specific errors may also be * returned. */ ssize_t vme_master_read(struct vme_resource *resource, void *buf, size_t count, loff_t offset) { struct vme_bridge *bridge = find_bridge(resource); struct vme_master_resource *image; size_t length; if (!bridge->master_read) { printk(KERN_WARNING "Reading from resource not supported\n"); return -EINVAL; } if (resource->type != VME_MASTER) { printk(KERN_ERR "Not a master resource\n"); return -EINVAL; } image = list_entry(resource->entry, struct vme_master_resource, list); length = vme_get_size(resource); if (offset > length) { printk(KERN_WARNING "Invalid Offset\n"); return -EFAULT; } if ((offset + count) > length) count = length - offset; return bridge->master_read(image, buf, count, offset); } EXPORT_SYMBOL(vme_master_read); /** * vme_master_write - Write data out to VME space from a buffer. * @resource: Pointer to VME master resource. * @buf: Pointer to buffer holding data to transfer. * @count: Number of bytes to transfer. * @offset: Offset into VME master window at which to start transfer. * * Perform write of count bytes of data from buf to location on VME bus which * maps into the VME master window at offset. * * Return: Number of bytes written, -EINVAL if resource is not a VME master * resource or write operation is not supported. -EFAULT returned if * invalid offset is provided. Hardware specific errors may also be * returned. */ ssize_t vme_master_write(struct vme_resource *resource, void *buf, size_t count, loff_t offset) { struct vme_bridge *bridge = find_bridge(resource); struct vme_master_resource *image; size_t length; if (!bridge->master_write) { printk(KERN_WARNING "Writing to resource not supported\n"); return -EINVAL; } if (resource->type != VME_MASTER) { printk(KERN_ERR "Not a master resource\n"); return -EINVAL; } image = list_entry(resource->entry, struct vme_master_resource, list); length = vme_get_size(resource); if (offset > length) { printk(KERN_WARNING "Invalid Offset\n"); return -EFAULT; } if ((offset + count) > length) count = length - offset; return bridge->master_write(image, buf, count, offset); } EXPORT_SYMBOL(vme_master_write); /** * vme_master_rmw - Perform read-modify-write cycle. * @resource: Pointer to VME master resource. * @mask: Bits to be compared and swapped in operation. * @compare: Bits to be compared with data read from offset. * @swap: Bits to be swapped in data read from offset. * @offset: Offset into VME master window at which to perform operation. * * Perform read-modify-write cycle on provided location: * - Location on VME bus is read. * - Bits selected by mask are compared with compare. * - Where a selected bit matches that in compare and are selected in swap, * the bit is swapped. * - Result written back to location on VME bus. * * Return: Bytes written on success, -EINVAL if resource is not a VME master * resource or RMW operation is not supported. Hardware specific * errors may also be returned. */ unsigned int vme_master_rmw(struct vme_resource *resource, unsigned int mask, unsigned int compare, unsigned int swap, loff_t offset) { struct vme_bridge *bridge = find_bridge(resource); struct vme_master_resource *image; if (!bridge->master_rmw) { printk(KERN_WARNING "Writing to resource not supported\n"); return -EINVAL; } if (resource->type != VME_MASTER) { printk(KERN_ERR "Not a master resource\n"); return -EINVAL; } image = list_entry(resource->entry, struct vme_master_resource, list); return bridge->master_rmw(image, mask, compare, swap, offset); } EXPORT_SYMBOL(vme_master_rmw); /** * vme_master_mmap - Mmap region of VME master window. * @resource: Pointer to VME master resource. * @vma: Pointer to definition of user mapping. * * Memory map a region of the VME master window into user space. * * Return: Zero on success, -EINVAL if resource is not a VME master * resource or -EFAULT if map exceeds window size. Other generic mmap * errors may also be returned. */ int vme_master_mmap(struct vme_resource *resource, struct vm_area_struct *vma) { struct vme_master_resource *image; phys_addr_t phys_addr; unsigned long vma_size; if (resource->type != VME_MASTER) { pr_err("Not a master resource\n"); return -EINVAL; } image = list_entry(resource->entry, struct vme_master_resource, list); phys_addr = image->bus_resource.start + (vma->vm_pgoff << PAGE_SHIFT); vma_size = vma->vm_end - vma->vm_start; if (phys_addr + vma_size > image->bus_resource.end + 1) { pr_err("Map size cannot exceed the window size\n"); return -EFAULT; } vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); return vm_iomap_memory(vma, phys_addr, vma->vm_end - vma->vm_start); } EXPORT_SYMBOL(vme_master_mmap); /** * vme_master_free - Free VME master window * @resource: Pointer to VME master resource. * * Free the provided master resource so that it may be reallocated. */ void vme_master_free(struct vme_resource *resource) { struct vme_master_resource *master_image; if (resource->type != VME_MASTER) { printk(KERN_ERR "Not a master resource\n"); return; } master_image = list_entry(resource->entry, struct vme_master_resource, list); if (!master_image) { printk(KERN_ERR "Can't find master resource\n"); return; } /* Unlock image */ spin_lock(&master_image->lock); if (master_image->locked == 0) printk(KERN_ERR "Image is already free\n"); master_image->locked = 0; spin_unlock(&master_image->lock); /* Free up resource memory */ kfree(resource); } EXPORT_SYMBOL(vme_master_free); /** * vme_dma_request - Request a DMA controller. * @vdev: Pointer to VME device struct vme_dev assigned to driver instance. * @route: Required src/destination combination. * * Request a VME DMA controller with capability to perform transfers bewteen * requested source/destination combination. * * Return: Pointer to VME DMA resource on success, NULL on failure. */ struct vme_resource *vme_dma_request(struct vme_dev *vdev, u32 route) { struct vme_bridge *bridge; struct list_head *dma_pos = NULL; struct vme_dma_resource *allocated_ctrlr = NULL; struct vme_dma_resource *dma_ctrlr = NULL; struct vme_resource *resource = NULL; /* XXX Not checking resource attributes */ printk(KERN_ERR "No VME resource Attribute tests done\n"); bridge = vdev->bridge; if (!bridge) { printk(KERN_ERR "Can't find VME bus\n"); goto err_bus; } /* Loop through DMA resources */ list_for_each(dma_pos, &bridge->dma_resources) { dma_ctrlr = list_entry(dma_pos, struct vme_dma_resource, list); if (!dma_ctrlr) { printk(KERN_ERR "Registered NULL DMA resource\n"); continue; } /* Find an unlocked and compatible controller */ mutex_lock(&dma_ctrlr->mtx); if (((dma_ctrlr->route_attr & route) == route) && (dma_ctrlr->locked == 0)) { dma_ctrlr->locked = 1; mutex_unlock(&dma_ctrlr->mtx); allocated_ctrlr = dma_ctrlr; break; } mutex_unlock(&dma_ctrlr->mtx); } /* Check to see if we found a resource */ if (!allocated_ctrlr) goto err_ctrlr; resource = kmalloc(sizeof(*resource), GFP_KERNEL); if (!resource) goto err_alloc; resource->type = VME_DMA; resource->entry = &allocated_ctrlr->list; return resource; err_alloc: /* Unlock image */ mutex_lock(&dma_ctrlr->mtx); dma_ctrlr->locked = 0; mutex_unlock(&dma_ctrlr->mtx); err_ctrlr: err_bus: return NULL; } EXPORT_SYMBOL(vme_dma_request); /** * vme_new_dma_list - Create new VME DMA list. * @resource: Pointer to VME DMA resource. * * Create a new VME DMA list. It is the responsibility of the user to free * the list once it is no longer required with vme_dma_list_free(). * * Return: Pointer to new VME DMA list, NULL on allocation failure or invalid * VME DMA resource. */ struct vme_dma_list *vme_new_dma_list(struct vme_resource *resource) { struct vme_dma_list *dma_list; if (resource->type != VME_DMA) { printk(KERN_ERR "Not a DMA resource\n"); return NULL; } dma_list = kmalloc(sizeof(*dma_list), GFP_KERNEL); if (!dma_list) return NULL; INIT_LIST_HEAD(&dma_list->entries); dma_list->parent = list_entry(resource->entry, struct vme_dma_resource, list); mutex_init(&dma_list->mtx); return dma_list; } EXPORT_SYMBOL(vme_new_dma_list); /** * vme_dma_pattern_attribute - Create "Pattern" type VME DMA list attribute. * @pattern: Value to use used as pattern * @type: Type of pattern to be written. * * Create VME DMA list attribute for pattern generation. It is the * responsibility of the user to free used attributes using * vme_dma_free_attribute(). * * Return: Pointer to VME DMA attribute, NULL on failure. */ struct vme_dma_attr *vme_dma_pattern_attribute(u32 pattern, u32 type) { struct vme_dma_attr *attributes; struct vme_dma_pattern *pattern_attr; attributes = kmalloc(sizeof(*attributes), GFP_KERNEL); if (!attributes) goto err_attr; pattern_attr = kmalloc(sizeof(*pattern_attr), GFP_KERNEL); if (!pattern_attr) goto err_pat; attributes->type = VME_DMA_PATTERN; attributes->private = (void *)pattern_attr; pattern_attr->pattern = pattern; pattern_attr->type = type; return attributes; err_pat: kfree(attributes); err_attr: return NULL; } EXPORT_SYMBOL(vme_dma_pattern_attribute); /** * vme_dma_pci_attribute - Create "PCI" type VME DMA list attribute. * @address: PCI base address for DMA transfer. * * Create VME DMA list attribute pointing to a location on PCI for DMA * transfers. It is the responsibility of the user to free used attributes * using vme_dma_free_attribute(). * * Return: Pointer to VME DMA attribute, NULL on failure. */ struct vme_dma_attr *vme_dma_pci_attribute(dma_addr_t address) { struct vme_dma_attr *attributes; struct vme_dma_pci *pci_attr; /* XXX Run some sanity checks here */ attributes = kmalloc(sizeof(*attributes), GFP_KERNEL); if (!attributes) goto err_attr; pci_attr = kmalloc(sizeof(*pci_attr), GFP_KERNEL); if (!pci_attr) goto err_pci; attributes->type = VME_DMA_PCI; attributes->private = (void *)pci_attr; pci_attr->address = address; return attributes; err_pci: kfree(attributes); err_attr: return NULL; } EXPORT_SYMBOL(vme_dma_pci_attribute); /** * vme_dma_vme_attribute - Create "VME" type VME DMA list attribute. * @address: VME base address for DMA transfer. * @aspace: VME address space to use for DMA transfer. * @cycle: VME bus cycle to use for DMA transfer. * @dwidth: VME data width to use for DMA transfer. * * Create VME DMA list attribute pointing to a location on the VME bus for DMA * transfers. It is the responsibility of the user to free used attributes * using vme_dma_free_attribute(). * * Return: Pointer to VME DMA attribute, NULL on failure. */ struct vme_dma_attr *vme_dma_vme_attribute(unsigned long long address, u32 aspace, u32 cycle, u32 dwidth) { struct vme_dma_attr *attributes; struct vme_dma_vme *vme_attr; attributes = kmalloc(sizeof(*attributes), GFP_KERNEL); if (!attributes) goto err_attr; vme_attr = kmalloc(sizeof(*vme_attr), GFP_KERNEL); if (!vme_attr) goto err_vme; attributes->type = VME_DMA_VME; attributes->private = (void *)vme_attr; vme_attr->address = address; vme_attr->aspace = aspace; vme_attr->cycle = cycle; vme_attr->dwidth = dwidth; return attributes; err_vme: kfree(attributes); err_attr: return NULL; } EXPORT_SYMBOL(vme_dma_vme_attribute); /** * vme_dma_free_attribute - Free DMA list attribute. * @attributes: Pointer to DMA list attribute. * * Free VME DMA list attribute. VME DMA list attributes can be safely freed * once vme_dma_list_add() has returned. */ void vme_dma_free_attribute(struct vme_dma_attr *attributes) { kfree(attributes->private); kfree(attributes); } EXPORT_SYMBOL(vme_dma_free_attribute); /** * vme_dma_list_add - Add enty to a VME DMA list. * @list: Pointer to VME list. * @src: Pointer to DMA list attribute to use as source. * @dest: Pointer to DMA list attribute to use as destination. * @count: Number of bytes to transfer. * * Add an entry to the provided VME DMA list. Entry requires pointers to source * and destination DMA attributes and a count. * * Please note, the attributes supported as source and destinations for * transfers are hardware dependent. * * Return: Zero on success, -EINVAL if operation is not supported on this * device or if the link list has already been submitted for execution. * Hardware specific errors also possible. */ int vme_dma_list_add(struct vme_dma_list *list, struct vme_dma_attr *src, struct vme_dma_attr *dest, size_t count) { struct vme_bridge *bridge = list->parent->parent; int retval; if (!bridge->dma_list_add) { printk(KERN_WARNING "Link List DMA generation not supported\n"); return -EINVAL; } if (!mutex_trylock(&list->mtx)) { printk(KERN_ERR "Link List already submitted\n"); return -EINVAL; } retval = bridge->dma_list_add(list, src, dest, count); mutex_unlock(&list->mtx); return retval; } EXPORT_SYMBOL(vme_dma_list_add); /** * vme_dma_list_exec - Queue a VME DMA list for execution. * @list: Pointer to VME list. * * Queue the provided VME DMA list for execution. The call will return once the * list has been executed. * * Return: Zero on success, -EINVAL if operation is not supported on this * device. Hardware specific errors also possible. */ int vme_dma_list_exec(struct vme_dma_list *list) { struct vme_bridge *bridge = list->parent->parent; int retval; if (!bridge->dma_list_exec) { printk(KERN_ERR "Link List DMA execution not supported\n"); return -EINVAL; } mutex_lock(&list->mtx); retval = bridge->dma_list_exec(list); mutex_unlock(&list->mtx); return retval; } EXPORT_SYMBOL(vme_dma_list_exec); /** * vme_dma_list_free - Free a VME DMA list. * @list: Pointer to VME list. * * Free the provided DMA list and all its entries. * * Return: Zero on success, -EINVAL on invalid VME resource, -EBUSY if resource * is still in use. Hardware specific errors also possible. */ int vme_dma_list_free(struct vme_dma_list *list) { struct vme_bridge *bridge = list->parent->parent; int retval; if (!bridge->dma_list_empty) { printk(KERN_WARNING "Emptying of Link Lists not supported\n"); return -EINVAL; } if (!mutex_trylock(&list->mtx)) { printk(KERN_ERR "Link List in use\n"); return -EBUSY; } /* * Empty out all of the entries from the DMA list. We need to go to the * low level driver as DMA entries are driver specific. */ retval = bridge->dma_list_empty(list); if (retval) { printk(KERN_ERR "Unable to empty link-list entries\n"); mutex_unlock(&list->mtx); return retval; } mutex_unlock(&list->mtx); kfree(list); return retval; } EXPORT_SYMBOL(vme_dma_list_free); /** * vme_dma_free - Free a VME DMA resource. * @resource: Pointer to VME DMA resource. * * Free the provided DMA resource so that it may be reallocated. * * Return: Zero on success, -EINVAL on invalid VME resource, -EBUSY if resource * is still active. */ int vme_dma_free(struct vme_resource *resource) { struct vme_dma_resource *ctrlr; if (resource->type != VME_DMA) { printk(KERN_ERR "Not a DMA resource\n"); return -EINVAL; } ctrlr = list_entry(resource->entry, struct vme_dma_resource, list); if (!mutex_trylock(&ctrlr->mtx)) { printk(KERN_ERR "Resource busy, can't free\n"); return -EBUSY; } if (!(list_empty(&ctrlr->pending) && list_empty(&ctrlr->running))) { printk(KERN_WARNING "Resource still processing transfers\n"); mutex_unlock(&ctrlr->mtx); return -EBUSY; } ctrlr->locked = 0; mutex_unlock(&ctrlr->mtx); kfree(resource); return 0; } EXPORT_SYMBOL(vme_dma_free); void vme_bus_error_handler(struct vme_bridge *bridge, unsigned long long address, int am) { struct list_head *handler_pos = NULL; struct vme_error_handler *handler; int handler_triggered = 0; u32 aspace = vme_get_aspace(am); list_for_each(handler_pos, &bridge->vme_error_handlers) { handler = list_entry(handler_pos, struct vme_error_handler, list); if ((aspace == handler->aspace) && (address >= handler->start) && (address < handler->end)) { if (!handler->num_errors) handler->first_error = address; if (handler->num_errors != UINT_MAX) handler->num_errors++; handler_triggered = 1; } } if (!handler_triggered) dev_err(bridge->parent, "Unhandled VME access error at address 0x%llx\n", address); } EXPORT_SYMBOL(vme_bus_error_handler); struct vme_error_handler *vme_register_error_handler( struct vme_bridge *bridge, u32 aspace, unsigned long long address, size_t len) { struct vme_error_handler *handler; handler = kmalloc(sizeof(*handler), GFP_ATOMIC); if (!handler) return NULL; handler->aspace = aspace; handler->start = address; handler->end = address + len; handler->num_errors = 0; handler->first_error = 0; list_add_tail(&handler->list, &bridge->vme_error_handlers); return handler; } EXPORT_SYMBOL(vme_register_error_handler); void vme_unregister_error_handler(struct vme_error_handler *handler) { list_del(&handler->list); kfree(handler); } EXPORT_SYMBOL(vme_unregister_error_handler); void vme_irq_handler(struct vme_bridge *bridge, int level, int statid) { void (*call)(int, int, void *); void *priv_data; call = bridge->irq[level - 1].callback[statid].func; priv_data = bridge->irq[level - 1].callback[statid].priv_data; if (call) call(level, statid, priv_data); else printk(KERN_WARNING "Spurious VME interrupt, level:%x, vector:%x\n", level, statid); } EXPORT_SYMBOL(vme_irq_handler); /** * vme_irq_request - Request a specific VME interrupt. * @vdev: Pointer to VME device struct vme_dev assigned to driver instance. * @level: Interrupt priority being requested. * @statid: Interrupt vector being requested. * @callback: Pointer to callback function called when VME interrupt/vector * received. * @priv_data: Generic pointer that will be passed to the callback function. * * Request callback to be attached as a handler for VME interrupts with provided * level and statid. * * Return: Zero on success, -EINVAL on invalid vme device, level or if the * function is not supported, -EBUSY if the level/statid combination is * already in use. Hardware specific errors also possible. */ int vme_irq_request(struct vme_dev *vdev, int level, int statid, void (*callback)(int, int, void *), void *priv_data) { struct vme_bridge *bridge; bridge = vdev->bridge; if (!bridge) { printk(KERN_ERR "Can't find VME bus\n"); return -EINVAL; } if ((level < 1) || (level > 7)) { printk(KERN_ERR "Invalid interrupt level\n"); return -EINVAL; } if (!bridge->irq_set) { printk(KERN_ERR "Configuring interrupts not supported\n"); return -EINVAL; } mutex_lock(&bridge->irq_mtx); if (bridge->irq[level - 1].callback[statid].func) { mutex_unlock(&bridge->irq_mtx); printk(KERN_WARNING "VME Interrupt already taken\n"); return -EBUSY; } bridge->irq[level - 1].count++; bridge->irq[level - 1].callback[statid].priv_data = priv_data; bridge->irq[level - 1].callback[statid].func = callback; /* Enable IRQ level */ bridge->irq_set(bridge, level, 1, 1); mutex_unlock(&bridge->irq_mtx); return 0; } EXPORT_SYMBOL(vme_irq_request); /** * vme_irq_free - Free a VME interrupt. * @vdev: Pointer to VME device struct vme_dev assigned to driver instance. * @level: Interrupt priority of interrupt being freed. * @statid: Interrupt vector of interrupt being freed. * * Remove previously attached callback from VME interrupt priority/vector. */ void vme_irq_free(struct vme_dev *vdev, int level, int statid) { struct vme_bridge *bridge; bridge = vdev->bridge; if (!bridge) { printk(KERN_ERR "Can't find VME bus\n"); return; } if ((level < 1) || (level > 7)) { printk(KERN_ERR "Invalid interrupt level\n"); return; } if (!bridge->irq_set) { printk(KERN_ERR "Configuring interrupts not supported\n"); return; } mutex_lock(&bridge->irq_mtx); bridge->irq[level - 1].count--; /* Disable IRQ level if no more interrupts attached at this level*/ if (bridge->irq[level - 1].count == 0) bridge->irq_set(bridge, level, 0, 1); bridge->irq[level - 1].callback[statid].func = NULL; bridge->irq[level - 1].callback[statid].priv_data = NULL; mutex_unlock(&bridge->irq_mtx); } EXPORT_SYMBOL(vme_irq_free); /** * vme_irq_generate - Generate VME interrupt. * @vdev: Pointer to VME device struct vme_dev assigned to driver instance. * @level: Interrupt priority at which to assert the interrupt. * @statid: Interrupt vector to associate with the interrupt. * * Generate a VME interrupt of the provided level and with the provided * statid. * * Return: Zero on success, -EINVAL on invalid vme device, level or if the * function is not supported. Hardware specific errors also possible. */ int vme_irq_generate(struct vme_dev *vdev, int level, int statid) { struct vme_bridge *bridge; bridge = vdev->bridge; if (!bridge) { printk(KERN_ERR "Can't find VME bus\n"); return -EINVAL; } if ((level < 1) || (level > 7)) { printk(KERN_WARNING "Invalid interrupt level\n"); return -EINVAL; } if (!bridge->irq_generate) { printk(KERN_WARNING "Interrupt generation not supported\n"); return -EINVAL; } return bridge->irq_generate(bridge, level, statid); } EXPORT_SYMBOL(vme_irq_generate); /** * vme_lm_request - Request a VME location monitor * @vdev: Pointer to VME device struct vme_dev assigned to driver instance. * * Allocate a location monitor resource to the driver. A location monitor * allows the driver to monitor accesses to a contiguous number of * addresses on the VME bus. * * Return: Pointer to a VME resource on success or NULL on failure. */ struct vme_resource *vme_lm_request(struct vme_dev *vdev) { struct vme_bridge *bridge; struct list_head *lm_pos = NULL; struct vme_lm_resource *allocated_lm = NULL; struct vme_lm_resource *lm = NULL; struct vme_resource *resource = NULL; bridge = vdev->bridge; if (!bridge) { printk(KERN_ERR "Can't find VME bus\n"); goto err_bus; } /* Loop through LM resources */ list_for_each(lm_pos, &bridge->lm_resources) { lm = list_entry(lm_pos, struct vme_lm_resource, list); if (!lm) { printk(KERN_ERR "Registered NULL Location Monitor resource\n"); continue; } /* Find an unlocked controller */ mutex_lock(&lm->mtx); if (lm->locked == 0) { lm->locked = 1; mutex_unlock(&lm->mtx); allocated_lm = lm; break; } mutex_unlock(&lm->mtx); } /* Check to see if we found a resource */ if (!allocated_lm) goto err_lm; resource = kmalloc(sizeof(*resource), GFP_KERNEL); if (!resource) goto err_alloc; resource->type = VME_LM; resource->entry = &allocated_lm->list; return resource; err_alloc: /* Unlock image */ mutex_lock(&lm->mtx); lm->locked = 0; mutex_unlock(&lm->mtx); err_lm: err_bus: return NULL; } EXPORT_SYMBOL(vme_lm_request); /** * vme_lm_count - Determine number of VME Addresses monitored * @resource: Pointer to VME location monitor resource. * * The number of contiguous addresses monitored is hardware dependent. * Return the number of contiguous addresses monitored by the * location monitor. * * Return: Count of addresses monitored or -EINVAL when provided with an * invalid location monitor resource. */ int vme_lm_count(struct vme_resource *resource) { struct vme_lm_resource *lm; if (resource->type != VME_LM) { printk(KERN_ERR "Not a Location Monitor resource\n"); return -EINVAL; } lm = list_entry(resource->entry, struct vme_lm_resource, list); return lm->monitors; } EXPORT_SYMBOL(vme_lm_count); /** * vme_lm_set - Configure location monitor * @resource: Pointer to VME location monitor resource. * @lm_base: Base address to monitor. * @aspace: VME address space to monitor. * @cycle: VME bus cycle type to monitor. * * Set the base address, address space and cycle type of accesses to be * monitored by the location monitor. * * Return: Zero on success, -EINVAL when provided with an invalid location * monitor resource or function is not supported. Hardware specific * errors may also be returned. */ int vme_lm_set(struct vme_resource *resource, unsigned long long lm_base, u32 aspace, u32 cycle) { struct vme_bridge *bridge = find_bridge(resource); struct vme_lm_resource *lm; if (resource->type != VME_LM) { printk(KERN_ERR "Not a Location Monitor resource\n"); return -EINVAL; } lm = list_entry(resource->entry, struct vme_lm_resource, list); if (!bridge->lm_set) { printk(KERN_ERR "vme_lm_set not supported\n"); return -EINVAL; } return bridge->lm_set(lm, lm_base, aspace, cycle); } EXPORT_SYMBOL(vme_lm_set); /** * vme_lm_get - Retrieve location monitor settings * @resource: Pointer to VME location monitor resource. * @lm_base: Pointer used to output the base address monitored. * @aspace: Pointer used to output the address space monitored. * @cycle: Pointer used to output the VME bus cycle type monitored. * * Retrieve the base address, address space and cycle type of accesses to * be monitored by the location monitor. * * Return: Zero on success, -EINVAL when provided with an invalid location * monitor resource or function is not supported. Hardware specific * errors may also be returned. */ int vme_lm_get(struct vme_resource *resource, unsigned long long *lm_base, u32 *aspace, u32 *cycle) { struct vme_bridge *bridge = find_bridge(resource); struct vme_lm_resource *lm; if (resource->type != VME_LM) { printk(KERN_ERR "Not a Location Monitor resource\n"); return -EINVAL; } lm = list_entry(resource->entry, struct vme_lm_resource, list); if (!bridge->lm_get) { printk(KERN_ERR "vme_lm_get not supported\n"); return -EINVAL; } return bridge->lm_get(lm, lm_base, aspace, cycle); } EXPORT_SYMBOL(vme_lm_get); /** * vme_lm_attach - Provide callback for location monitor address * @resource: Pointer to VME location monitor resource. * @monitor: Offset to which callback should be attached. * @callback: Pointer to callback function called when triggered. * @data: Generic pointer that will be passed to the callback function. * * Attach a callback to the specificed offset into the location monitors * monitored addresses. A generic pointer is provided to allow data to be * passed to the callback when called. * * Return: Zero on success, -EINVAL when provided with an invalid location * monitor resource or function is not supported. Hardware specific * errors may also be returned. */ int vme_lm_attach(struct vme_resource *resource, int monitor, void (*callback)(void *), void *data) { struct vme_bridge *bridge = find_bridge(resource); struct vme_lm_resource *lm; if (resource->type != VME_LM) { printk(KERN_ERR "Not a Location Monitor resource\n"); return -EINVAL; } lm = list_entry(resource->entry, struct vme_lm_resource, list); if (!bridge->lm_attach) { printk(KERN_ERR "vme_lm_attach not supported\n"); return -EINVAL; } return bridge->lm_attach(lm, monitor, callback, data); } EXPORT_SYMBOL(vme_lm_attach); /** * vme_lm_detach - Remove callback for location monitor address * @resource: Pointer to VME location monitor resource. * @monitor: Offset to which callback should be removed. * * Remove the callback associated with the specificed offset into the * location monitors monitored addresses. * * Return: Zero on success, -EINVAL when provided with an invalid location * monitor resource or function is not supported. Hardware specific * errors may also be returned. */ int vme_lm_detach(struct vme_resource *resource, int monitor) { struct vme_bridge *bridge = find_bridge(resource); struct vme_lm_resource *lm; if (resource->type != VME_LM) { printk(KERN_ERR "Not a Location Monitor resource\n"); return -EINVAL; } lm = list_entry(resource->entry, struct vme_lm_resource, list); if (!bridge->lm_detach) { printk(KERN_ERR "vme_lm_detach not supported\n"); return -EINVAL; } return bridge->lm_detach(lm, monitor); } EXPORT_SYMBOL(vme_lm_detach); /** * vme_lm_free - Free allocated VME location monitor * @resource: Pointer to VME location monitor resource. * * Free allocation of a VME location monitor. * * WARNING: This function currently expects that any callbacks that have * been attached to the location monitor have been removed. * * Return: Zero on success, -EINVAL when provided with an invalid location * monitor resource. */ void vme_lm_free(struct vme_resource *resource) { struct vme_lm_resource *lm; if (resource->type != VME_LM) { printk(KERN_ERR "Not a Location Monitor resource\n"); return; } lm = list_entry(resource->entry, struct vme_lm_resource, list); mutex_lock(&lm->mtx); /* XXX * Check to see that there aren't any callbacks still attached, if * there are we should probably be detaching them! */ lm->locked = 0; mutex_unlock(&lm->mtx); kfree(resource); } EXPORT_SYMBOL(vme_lm_free); /** * vme_slot_num - Retrieve slot ID * @vdev: Pointer to VME device struct vme_dev assigned to driver instance. * * Retrieve the slot ID associated with the provided VME device. * * Return: The slot ID on success, -EINVAL if VME bridge cannot be determined * or the function is not supported. Hardware specific errors may also * be returned. */ int vme_slot_num(struct vme_dev *vdev) { struct vme_bridge *bridge; bridge = vdev->bridge; if (!bridge) { printk(KERN_ERR "Can't find VME bus\n"); return -EINVAL; } if (!bridge->slot_get) { printk(KERN_WARNING "vme_slot_num not supported\n"); return -EINVAL; } return bridge->slot_get(bridge); } EXPORT_SYMBOL(vme_slot_num); /** * vme_bus_num - Retrieve bus number * @vdev: Pointer to VME device struct vme_dev assigned to driver instance. * * Retrieve the bus enumeration associated with the provided VME device. * * Return: The bus number on success, -EINVAL if VME bridge cannot be * determined. */ int vme_bus_num(struct vme_dev *vdev) { struct vme_bridge *bridge; bridge = vdev->bridge; if (!bridge) { pr_err("Can't find VME bus\n"); return -EINVAL; } return bridge->num; } EXPORT_SYMBOL(vme_bus_num); /* - Bridge Registration --------------------------------------------------- */ static void vme_dev_release(struct device *dev) { kfree(dev_to_vme_dev(dev)); } /* Common bridge initialization */ struct vme_bridge *vme_init_bridge(struct vme_bridge *bridge) { INIT_LIST_HEAD(&bridge->vme_error_handlers); INIT_LIST_HEAD(&bridge->master_resources); INIT_LIST_HEAD(&bridge->slave_resources); INIT_LIST_HEAD(&bridge->dma_resources); INIT_LIST_HEAD(&bridge->lm_resources); mutex_init(&bridge->irq_mtx); return bridge; } EXPORT_SYMBOL(vme_init_bridge); int vme_register_bridge(struct vme_bridge *bridge) { int i; int ret = -1; mutex_lock(&vme_buses_lock); for (i = 0; i < sizeof(vme_bus_numbers) * 8; i++) { if ((vme_bus_numbers & (1 << i)) == 0) { vme_bus_numbers |= (1 << i); bridge->num = i; INIT_LIST_HEAD(&bridge->devices); list_add_tail(&bridge->bus_list, &vme_bus_list); ret = 0; break; } } mutex_unlock(&vme_buses_lock); return ret; } EXPORT_SYMBOL(vme_register_bridge); void vme_unregister_bridge(struct vme_bridge *bridge) { struct vme_dev *vdev; struct vme_dev *tmp; mutex_lock(&vme_buses_lock); vme_bus_numbers &= ~(1 << bridge->num); list_for_each_entry_safe(vdev, tmp, &bridge->devices, bridge_list) { list_del(&vdev->drv_list); list_del(&vdev->bridge_list); device_unregister(&vdev->dev); } list_del(&bridge->bus_list); mutex_unlock(&vme_buses_lock); } EXPORT_SYMBOL(vme_unregister_bridge); /* - Driver Registration --------------------------------------------------- */ static int __vme_register_driver_bus(struct vme_driver *drv, struct vme_bridge *bridge, unsigned int ndevs) { int err; unsigned int i; struct vme_dev *vdev; struct vme_dev *tmp; for (i = 0; i < ndevs; i++) { vdev = kzalloc(sizeof(*vdev), GFP_KERNEL); if (!vdev) { err = -ENOMEM; goto err_devalloc; } vdev->num = i; vdev->bridge = bridge; vdev->dev.platform_data = drv; vdev->dev.release = vme_dev_release; vdev->dev.parent = bridge->parent; vdev->dev.bus = &vme_bus_type; dev_set_name(&vdev->dev, "%s.%u-%u", drv->name, bridge->num, vdev->num); err = device_register(&vdev->dev); if (err) goto err_reg; if (vdev->dev.platform_data) { list_add_tail(&vdev->drv_list, &drv->devices); list_add_tail(&vdev->bridge_list, &bridge->devices); } else device_unregister(&vdev->dev); } return 0; err_reg: put_device(&vdev->dev); err_devalloc: list_for_each_entry_safe(vdev, tmp, &drv->devices, drv_list) { list_del(&vdev->drv_list); list_del(&vdev->bridge_list); device_unregister(&vdev->dev); } return err; } static int __vme_register_driver(struct vme_driver *drv, unsigned int ndevs) { struct vme_bridge *bridge; int err = 0; mutex_lock(&vme_buses_lock); list_for_each_entry(bridge, &vme_bus_list, bus_list) { /* * This cannot cause trouble as we already have vme_buses_lock * and if the bridge is removed, it will have to go through * vme_unregister_bridge() to do it (which calls remove() on * the bridge which in turn tries to acquire vme_buses_lock and * will have to wait). */ err = __vme_register_driver_bus(drv, bridge, ndevs); if (err) break; } mutex_unlock(&vme_buses_lock); return err; } /** * vme_register_driver - Register a VME driver * @drv: Pointer to VME driver structure to register. * @ndevs: Maximum number of devices to allow to be enumerated. * * Register a VME device driver with the VME subsystem. * * Return: Zero on success, error value on registration failure. */ int vme_register_driver(struct vme_driver *drv, unsigned int ndevs) { int err; drv->driver.name = drv->name; drv->driver.bus = &vme_bus_type; INIT_LIST_HEAD(&drv->devices); err = driver_register(&drv->driver); if (err) return err; err = __vme_register_driver(drv, ndevs); if (err) driver_unregister(&drv->driver); return err; } EXPORT_SYMBOL(vme_register_driver); /** * vme_unregister_driver - Unregister a VME driver * @drv: Pointer to VME driver structure to unregister. * * Unregister a VME device driver from the VME subsystem. */ void vme_unregister_driver(struct vme_driver *drv) { struct vme_dev *dev, *dev_tmp; mutex_lock(&vme_buses_lock); list_for_each_entry_safe(dev, dev_tmp, &drv->devices, drv_list) { list_del(&dev->drv_list); list_del(&dev->bridge_list); device_unregister(&dev->dev); } mutex_unlock(&vme_buses_lock); driver_unregister(&drv->driver); } EXPORT_SYMBOL(vme_unregister_driver); /* - Bus Registration ------------------------------------------------------ */ static int vme_bus_match(struct device *dev, struct device_driver *drv) { struct vme_driver *vme_drv; vme_drv = container_of(drv, struct vme_driver, driver); if (dev->platform_data == vme_drv) { struct vme_dev *vdev = dev_to_vme_dev(dev); if (vme_drv->match && vme_drv->match(vdev)) return 1; dev->platform_data = NULL; } return 0; } static int vme_bus_probe(struct device *dev) { struct vme_driver *driver; struct vme_dev *vdev = dev_to_vme_dev(dev); driver = dev->platform_data; if (driver->probe) return driver->probe(vdev); return -ENODEV; } static int vme_bus_remove(struct device *dev) { struct vme_driver *driver; struct vme_dev *vdev = dev_to_vme_dev(dev); driver = dev->platform_data; if (driver->remove) return driver->remove(vdev); return -ENODEV; } struct bus_type vme_bus_type = { .name = "vme", .match = vme_bus_match, .probe = vme_bus_probe, .remove = vme_bus_remove, }; EXPORT_SYMBOL(vme_bus_type); static int __init vme_init(void) { return bus_register(&vme_bus_type); } subsys_initcall(vme_init);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1