Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Evgeniy Polyakov | 2393 | 62.46% | 7 | 22.58% |
David Fries | 1018 | 26.57% | 12 | 38.71% |
Maciej S. Szmigiero | 315 | 8.22% | 1 | 3.23% |
Andrew F. Davis | 58 | 1.51% | 2 | 6.45% |
Fjodor Schelichow | 24 | 0.63% | 1 | 3.23% |
Alan Stern | 5 | 0.13% | 1 | 3.23% |
Nishanth Aravamudan | 4 | 0.10% | 1 | 3.23% |
Henriette Hofmeier | 3 | 0.08% | 1 | 3.23% |
Tejun Heo | 3 | 0.08% | 1 | 3.23% |
Wei Yongjun | 3 | 0.08% | 1 | 3.23% |
Greg Kroah-Hartman | 2 | 0.05% | 1 | 3.23% |
Thomas Gleixner | 2 | 0.05% | 1 | 3.23% |
Arvind Yadav | 1 | 0.03% | 1 | 3.23% |
Total | 3831 | 31 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * ds2490.c USB to one wire bridge * * Copyright (c) 2004 Evgeniy Polyakov <zbr@ioremap.net> */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/mod_devicetable.h> #include <linux/usb.h> #include <linux/slab.h> #include <linux/w1.h> /* USB Standard */ /* USB Control request vendor type */ #define VENDOR 0x40 /* COMMAND TYPE CODES */ #define CONTROL_CMD 0x00 #define COMM_CMD 0x01 #define MODE_CMD 0x02 /* CONTROL COMMAND CODES */ #define CTL_RESET_DEVICE 0x0000 #define CTL_START_EXE 0x0001 #define CTL_RESUME_EXE 0x0002 #define CTL_HALT_EXE_IDLE 0x0003 #define CTL_HALT_EXE_DONE 0x0004 #define CTL_FLUSH_COMM_CMDS 0x0007 #define CTL_FLUSH_RCV_BUFFER 0x0008 #define CTL_FLUSH_XMT_BUFFER 0x0009 #define CTL_GET_COMM_CMDS 0x000A /* MODE COMMAND CODES */ #define MOD_PULSE_EN 0x0000 #define MOD_SPEED_CHANGE_EN 0x0001 #define MOD_1WIRE_SPEED 0x0002 #define MOD_STRONG_PU_DURATION 0x0003 #define MOD_PULLDOWN_SLEWRATE 0x0004 #define MOD_PROG_PULSE_DURATION 0x0005 #define MOD_WRITE1_LOWTIME 0x0006 #define MOD_DSOW0_TREC 0x0007 /* COMMUNICATION COMMAND CODES */ #define COMM_ERROR_ESCAPE 0x0601 #define COMM_SET_DURATION 0x0012 #define COMM_BIT_IO 0x0020 #define COMM_PULSE 0x0030 #define COMM_1_WIRE_RESET 0x0042 #define COMM_BYTE_IO 0x0052 #define COMM_MATCH_ACCESS 0x0064 #define COMM_BLOCK_IO 0x0074 #define COMM_READ_STRAIGHT 0x0080 #define COMM_DO_RELEASE 0x6092 #define COMM_SET_PATH 0x00A2 #define COMM_WRITE_SRAM_PAGE 0x00B2 #define COMM_WRITE_EPROM 0x00C4 #define COMM_READ_CRC_PROT_PAGE 0x00D4 #define COMM_READ_REDIRECT_PAGE_CRC 0x21E4 #define COMM_SEARCH_ACCESS 0x00F4 /* Communication command bits */ #define COMM_TYPE 0x0008 #define COMM_SE 0x0008 #define COMM_D 0x0008 #define COMM_Z 0x0008 #define COMM_CH 0x0008 #define COMM_SM 0x0008 #define COMM_R 0x0008 #define COMM_IM 0x0001 #define COMM_PS 0x4000 #define COMM_PST 0x4000 #define COMM_CIB 0x4000 #define COMM_RTS 0x4000 #define COMM_DT 0x2000 #define COMM_SPU 0x1000 #define COMM_F 0x0800 #define COMM_NTF 0x0400 #define COMM_ICP 0x0200 #define COMM_RST 0x0100 #define PULSE_PROG 0x01 #define PULSE_SPUE 0x02 #define BRANCH_MAIN 0xCC #define BRANCH_AUX 0x33 /* Status flags */ #define ST_SPUA 0x01 /* Strong Pull-up is active */ #define ST_PRGA 0x02 /* 12V programming pulse is being generated */ #define ST_12VP 0x04 /* external 12V programming voltage is present */ #define ST_PMOD 0x08 /* DS2490 powered from USB and external sources */ #define ST_HALT 0x10 /* DS2490 is currently halted */ #define ST_IDLE 0x20 /* DS2490 is currently idle */ #define ST_EPOF 0x80 /* Status transfer size, 16 bytes status, 16 byte result flags */ #define ST_SIZE 0x20 /* Result Register flags */ #define RR_DETECT 0xA5 /* New device detected */ #define RR_NRS 0x01 /* Reset no presence or ... */ #define RR_SH 0x02 /* short on reset or set path */ #define RR_APP 0x04 /* alarming presence on reset */ #define RR_VPP 0x08 /* 12V expected not seen */ #define RR_CMP 0x10 /* compare error */ #define RR_CRC 0x20 /* CRC error detected */ #define RR_RDP 0x40 /* redirected page */ #define RR_EOS 0x80 /* end of search error */ #define SPEED_NORMAL 0x00 #define SPEED_FLEXIBLE 0x01 #define SPEED_OVERDRIVE 0x02 #define NUM_EP 4 #define EP_CONTROL 0 #define EP_STATUS 1 #define EP_DATA_OUT 2 #define EP_DATA_IN 3 struct ds_device { struct list_head ds_entry; struct usb_device *udev; struct usb_interface *intf; int ep[NUM_EP]; /* Strong PullUp * 0: pullup not active, else duration in milliseconds */ int spu_sleep; /* spu_bit contains COMM_SPU or 0 depending on if the strong pullup * should be active or not for writes. */ u16 spu_bit; u8 st_buf[ST_SIZE]; u8 byte_buf; struct w1_bus_master master; }; struct ds_status { u8 enable; u8 speed; u8 pullup_dur; u8 ppuls_dur; u8 pulldown_slew; u8 write1_time; u8 write0_time; u8 reserved0; u8 status; u8 command0; u8 command1; u8 command_buffer_status; u8 data_out_buffer_status; u8 data_in_buffer_status; u8 reserved1; u8 reserved2; }; static LIST_HEAD(ds_devices); static DEFINE_MUTEX(ds_mutex); static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index) { int err; err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]), CONTROL_CMD, VENDOR, value, index, NULL, 0, 1000); if (err < 0) { pr_err("Failed to send command control message %x.%x: err=%d.\n", value, index, err); return err; } return err; } static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index) { int err; err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]), MODE_CMD, VENDOR, value, index, NULL, 0, 1000); if (err < 0) { pr_err("Failed to send mode control message %x.%x: err=%d.\n", value, index, err); return err; } return err; } static int ds_send_control(struct ds_device *dev, u16 value, u16 index) { int err; err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]), COMM_CMD, VENDOR, value, index, NULL, 0, 1000); if (err < 0) { pr_err("Failed to send control message %x.%x: err=%d.\n", value, index, err); return err; } return err; } static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off) { pr_info("%45s: %8x\n", str, buf[off]); } static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count) { int i; pr_info("0x%x: count=%d, status: ", dev->ep[EP_STATUS], count); for (i = 0; i < count; ++i) pr_info("%02x ", buf[i]); pr_info("\n"); if (count >= 16) { ds_print_msg(buf, "enable flag", 0); ds_print_msg(buf, "1-wire speed", 1); ds_print_msg(buf, "strong pullup duration", 2); ds_print_msg(buf, "programming pulse duration", 3); ds_print_msg(buf, "pulldown slew rate control", 4); ds_print_msg(buf, "write-1 low time", 5); ds_print_msg(buf, "data sample offset/write-0 recovery time", 6); ds_print_msg(buf, "reserved (test register)", 7); ds_print_msg(buf, "device status flags", 8); ds_print_msg(buf, "communication command byte 1", 9); ds_print_msg(buf, "communication command byte 2", 10); ds_print_msg(buf, "communication command buffer status", 11); ds_print_msg(buf, "1-wire data output buffer status", 12); ds_print_msg(buf, "1-wire data input buffer status", 13); ds_print_msg(buf, "reserved", 14); ds_print_msg(buf, "reserved", 15); } for (i = 16; i < count; ++i) { if (buf[i] == RR_DETECT) { ds_print_msg(buf, "new device detect", i); continue; } ds_print_msg(buf, "Result Register Value: ", i); if (buf[i] & RR_NRS) pr_info("NRS: Reset no presence or ...\n"); if (buf[i] & RR_SH) pr_info("SH: short on reset or set path\n"); if (buf[i] & RR_APP) pr_info("APP: alarming presence on reset\n"); if (buf[i] & RR_VPP) pr_info("VPP: 12V expected not seen\n"); if (buf[i] & RR_CMP) pr_info("CMP: compare error\n"); if (buf[i] & RR_CRC) pr_info("CRC: CRC error detected\n"); if (buf[i] & RR_RDP) pr_info("RDP: redirected page\n"); if (buf[i] & RR_EOS) pr_info("EOS: end of search error\n"); } } static int ds_recv_status(struct ds_device *dev, struct ds_status *st, bool dump) { int count, err; if (st) memset(st, 0, sizeof(*st)); count = 0; err = usb_interrupt_msg(dev->udev, usb_rcvintpipe(dev->udev, dev->ep[EP_STATUS]), dev->st_buf, sizeof(dev->st_buf), &count, 1000); if (err < 0) { pr_err("Failed to read 1-wire data from 0x%x: err=%d.\n", dev->ep[EP_STATUS], err); return err; } if (dump) ds_dump_status(dev, dev->st_buf, count); if (st && count >= sizeof(*st)) memcpy(st, dev->st_buf, sizeof(*st)); return count; } static void ds_reset_device(struct ds_device *dev) { ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0); /* Always allow strong pullup which allow individual writes to use * the strong pullup. */ if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE)) pr_err("ds_reset_device: Error allowing strong pullup\n"); /* Chip strong pullup time was cleared. */ if (dev->spu_sleep) { /* lower 4 bits are 0, see ds_set_pullup */ u8 del = dev->spu_sleep>>4; if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del)) pr_err("ds_reset_device: Error setting duration\n"); } } static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size) { int count, err; /* Careful on size. If size is less than what is available in * the input buffer, the device fails the bulk transfer and * clears the input buffer. It could read the maximum size of * the data buffer, but then do you return the first, last, or * some set of the middle size bytes? As long as the rest of * the code is correct there will be size bytes waiting. A * call to ds_wait_status will wait until the device is idle * and any data to be received would have been available. */ count = 0; err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]), buf, size, &count, 1000); if (err < 0) { pr_info("Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]); usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN])); ds_recv_status(dev, NULL, true); return err; } #if 0 { int i; printk("%s: count=%d: ", __func__, count); for (i = 0; i < count; ++i) printk("%02x ", buf[i]); printk("\n"); } #endif return count; } static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len) { int count, err; count = 0; err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000); if (err < 0) { pr_err("Failed to write 1-wire data to ep0x%x: " "err=%d.\n", dev->ep[EP_DATA_OUT], err); return err; } return err; } #if 0 int ds_stop_pulse(struct ds_device *dev, int limit) { struct ds_status st; int count = 0, err = 0; do { err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0); if (err) break; err = ds_send_control(dev, CTL_RESUME_EXE, 0); if (err) break; err = ds_recv_status(dev, &st, false); if (err) break; if ((st.status & ST_SPUA) == 0) { err = ds_send_control_mode(dev, MOD_PULSE_EN, 0); if (err) break; } } while (++count < limit); return err; } int ds_detect(struct ds_device *dev, struct ds_status *st) { int err; err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0); if (err) return err; err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0); if (err) return err; err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40); if (err) return err; err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG); if (err) return err; err = ds_dump_status(dev, st); return err; } #endif /* 0 */ static int ds_wait_status(struct ds_device *dev, struct ds_status *st) { int err, count = 0; do { st->status = 0; err = ds_recv_status(dev, st, false); #if 0 if (err >= 0) { int i; printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err); for (i = 0; i < err; ++i) printk("%02x ", dev->st_buf[i]); printk("\n"); } #endif } while (!(st->status & ST_IDLE) && !(err < 0) && ++count < 100); if (err >= 16 && st->status & ST_EPOF) { pr_info("Resetting device after ST_EPOF.\n"); ds_reset_device(dev); /* Always dump the device status. */ count = 101; } /* Dump the status for errors or if there is extended return data. * The extended status includes new device detection (maybe someone * can do something with it). */ if (err > 16 || count >= 100 || err < 0) ds_dump_status(dev, dev->st_buf, err); /* Extended data isn't an error. Well, a short is, but the dump * would have already told the user that and we can't do anything * about it in software anyway. */ if (count >= 100 || err < 0) return -1; else return 0; } static int ds_reset(struct ds_device *dev) { int err; /* Other potentionally interesting flags for reset. * * COMM_NTF: Return result register feedback. This could be used to * detect some conditions such as short, alarming presence, or * detect if a new device was detected. * * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE: * Select the data transfer rate. */ err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL); if (err) return err; return 0; } #if 0 static int ds_set_speed(struct ds_device *dev, int speed) { int err; if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE) return -EINVAL; if (speed != SPEED_OVERDRIVE) speed = SPEED_FLEXIBLE; speed &= 0xff; err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed); if (err) return err; return err; } #endif /* 0 */ static int ds_set_pullup(struct ds_device *dev, int delay) { int err = 0; u8 del = 1 + (u8)(delay >> 4); /* Just storing delay would not get the trunication and roundup. */ int ms = del<<4; /* Enable spu_bit if a delay is set. */ dev->spu_bit = delay ? COMM_SPU : 0; /* If delay is zero, it has already been disabled, if the time is * the same as the hardware was last programmed to, there is also * nothing more to do. Compare with the recalculated value ms * rather than del or delay which can have a different value. */ if (delay == 0 || ms == dev->spu_sleep) return err; err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del); if (err) return err; dev->spu_sleep = ms; return err; } static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit) { int err; struct ds_status st; err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0), 0); if (err) return err; ds_wait_status(dev, &st); err = ds_recv_data(dev, tbit, sizeof(*tbit)); if (err < 0) return err; return 0; } #if 0 static int ds_write_bit(struct ds_device *dev, u8 bit) { int err; struct ds_status st; /* Set COMM_ICP to write without a readback. Note, this will * produce one time slot, a down followed by an up with COMM_D * only determing the timing. */ err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP | (bit ? COMM_D : 0), 0); if (err) return err; ds_wait_status(dev, &st); return 0; } #endif static int ds_write_byte(struct ds_device *dev, u8 byte) { int err; struct ds_status st; err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte); if (err) return err; if (dev->spu_bit) msleep(dev->spu_sleep); err = ds_wait_status(dev, &st); if (err) return err; err = ds_recv_data(dev, &dev->byte_buf, 1); if (err < 0) return err; return !(byte == dev->byte_buf); } static int ds_read_byte(struct ds_device *dev, u8 *byte) { int err; struct ds_status st; err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM, 0xff); if (err) return err; ds_wait_status(dev, &st); err = ds_recv_data(dev, byte, sizeof(*byte)); if (err < 0) return err; return 0; } static int ds_read_block(struct ds_device *dev, u8 *buf, int len) { struct ds_status st; int err; if (len > 64*1024) return -E2BIG; memset(buf, 0xFF, len); err = ds_send_data(dev, buf, len); if (err < 0) return err; err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len); if (err) return err; ds_wait_status(dev, &st); memset(buf, 0x00, len); err = ds_recv_data(dev, buf, len); return err; } static int ds_write_block(struct ds_device *dev, u8 *buf, int len) { int err; struct ds_status st; err = ds_send_data(dev, buf, len); if (err < 0) return err; err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len); if (err) return err; if (dev->spu_bit) msleep(dev->spu_sleep); ds_wait_status(dev, &st); err = ds_recv_data(dev, buf, len); if (err < 0) return err; return !(err == len); } static void ds9490r_search(void *data, struct w1_master *master, u8 search_type, w1_slave_found_callback callback) { /* When starting with an existing id, the first id returned will * be that device (if it is still on the bus most likely). * * If the number of devices found is less than or equal to the * search_limit, that number of IDs will be returned. If there are * more, search_limit IDs will be returned followed by a non-zero * discrepency value. */ struct ds_device *dev = data; int err; u16 value, index; struct ds_status st; int search_limit; int found = 0; int i; /* DS18b20 spec, 13.16 ms per device, 75 per second, sleep for * discovering 8 devices (1 bulk transfer and 1/2 FIFO size) at a time. */ const unsigned long jtime = msecs_to_jiffies(1000*8/75); /* FIFO 128 bytes, bulk packet size 64, read a multiple of the * packet size. */ const size_t bufsize = 2 * 64; u64 *buf; buf = kmalloc(bufsize, GFP_KERNEL); if (!buf) return; mutex_lock(&master->bus_mutex); /* address to start searching at */ if (ds_send_data(dev, (u8 *)&master->search_id, 8) < 0) goto search_out; master->search_id = 0; value = COMM_SEARCH_ACCESS | COMM_IM | COMM_RST | COMM_SM | COMM_F | COMM_RTS; search_limit = master->max_slave_count; if (search_limit > 255) search_limit = 0; index = search_type | (search_limit << 8); if (ds_send_control(dev, value, index) < 0) goto search_out; do { schedule_timeout(jtime); err = ds_recv_status(dev, &st, false); if (err < 0 || err < sizeof(st)) break; if (st.data_in_buffer_status) { /* Bulk in can receive partial ids, but when it does * they fail crc and will be discarded anyway. * That has only been seen when status in buffer * is 0 and bulk is read anyway, so don't read * bulk without first checking if status says there * is data to read. */ err = ds_recv_data(dev, (u8 *)buf, bufsize); if (err < 0) break; for (i = 0; i < err/8; ++i) { ++found; if (found <= search_limit) callback(master, buf[i]); /* can't know if there will be a discrepancy * value after until the next id */ if (found == search_limit) master->search_id = buf[i]; } } if (test_bit(W1_ABORT_SEARCH, &master->flags)) break; } while (!(st.status & (ST_IDLE | ST_HALT))); /* only continue the search if some weren't found */ if (found <= search_limit) { master->search_id = 0; } else if (!test_bit(W1_WARN_MAX_COUNT, &master->flags)) { /* Only max_slave_count will be scanned in a search, * but it will start where it left off next search * until all ids are identified and then it will start * over. A continued search will report the previous * last id as the first id (provided it is still on the * bus). */ dev_info(&dev->udev->dev, "%s: max_slave_count %d reached, " "will continue next search.\n", __func__, master->max_slave_count); set_bit(W1_WARN_MAX_COUNT, &master->flags); } search_out: mutex_unlock(&master->bus_mutex); kfree(buf); } #if 0 /* * FIXME: if this disabled code is ever used in the future all ds_send_data() * calls must be changed to use a DMAable buffer. */ static int ds_match_access(struct ds_device *dev, u64 init) { int err; struct ds_status st; err = ds_send_data(dev, (unsigned char *)&init, sizeof(init)); if (err) return err; ds_wait_status(dev, &st); err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055); if (err) return err; ds_wait_status(dev, &st); return 0; } static int ds_set_path(struct ds_device *dev, u64 init) { int err; struct ds_status st; u8 buf[9]; memcpy(buf, &init, 8); buf[8] = BRANCH_MAIN; err = ds_send_data(dev, buf, sizeof(buf)); if (err) return err; ds_wait_status(dev, &st); err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0); if (err) return err; ds_wait_status(dev, &st); return 0; } #endif /* 0 */ static u8 ds9490r_touch_bit(void *data, u8 bit) { struct ds_device *dev = data; if (ds_touch_bit(dev, bit, &dev->byte_buf)) return 0; return dev->byte_buf; } #if 0 static void ds9490r_write_bit(void *data, u8 bit) { struct ds_device *dev = data; ds_write_bit(dev, bit); } static u8 ds9490r_read_bit(void *data) { struct ds_device *dev = data; int err; err = ds_touch_bit(dev, 1, &dev->byte_buf); if (err) return 0; return dev->byte_buf & 1; } #endif static void ds9490r_write_byte(void *data, u8 byte) { struct ds_device *dev = data; ds_write_byte(dev, byte); } static u8 ds9490r_read_byte(void *data) { struct ds_device *dev = data; int err; err = ds_read_byte(dev, &dev->byte_buf); if (err) return 0; return dev->byte_buf; } static void ds9490r_write_block(void *data, const u8 *buf, int len) { struct ds_device *dev = data; u8 *tbuf; if (len <= 0) return; tbuf = kmemdup(buf, len, GFP_KERNEL); if (!tbuf) return; ds_write_block(dev, tbuf, len); kfree(tbuf); } static u8 ds9490r_read_block(void *data, u8 *buf, int len) { struct ds_device *dev = data; int err; u8 *tbuf; if (len <= 0) return 0; tbuf = kmalloc(len, GFP_KERNEL); if (!tbuf) return 0; err = ds_read_block(dev, tbuf, len); if (err >= 0) memcpy(buf, tbuf, len); kfree(tbuf); return err >= 0 ? len : 0; } static u8 ds9490r_reset(void *data) { struct ds_device *dev = data; int err; err = ds_reset(dev); if (err) return 1; return 0; } static u8 ds9490r_set_pullup(void *data, int delay) { struct ds_device *dev = data; if (ds_set_pullup(dev, delay)) return 1; return 0; } static int ds_w1_init(struct ds_device *dev) { memset(&dev->master, 0, sizeof(struct w1_bus_master)); /* Reset the device as it can be in a bad state. * This is necessary because a block write will wait for data * to be placed in the output buffer and block any later * commands which will keep accumulating and the device will * not be idle. Another case is removing the ds2490 module * while a bus search is in progress, somehow a few commands * get through, but the input transfers fail leaving data in * the input buffer. This will cause the next read to fail * see the note in ds_recv_data. */ ds_reset_device(dev); dev->master.data = dev; dev->master.touch_bit = &ds9490r_touch_bit; /* read_bit and write_bit in w1_bus_master are expected to set and * sample the line level. For write_bit that means it is expected to * set it to that value and leave it there. ds2490 only supports an * individual time slot at the lowest level. The requirement from * pulling the bus state down to reading the state is 15us, something * that isn't realistic on the USB bus anyway. dev->master.read_bit = &ds9490r_read_bit; dev->master.write_bit = &ds9490r_write_bit; */ dev->master.read_byte = &ds9490r_read_byte; dev->master.write_byte = &ds9490r_write_byte; dev->master.read_block = &ds9490r_read_block; dev->master.write_block = &ds9490r_write_block; dev->master.reset_bus = &ds9490r_reset; dev->master.set_pullup = &ds9490r_set_pullup; dev->master.search = &ds9490r_search; return w1_add_master_device(&dev->master); } static void ds_w1_fini(struct ds_device *dev) { w1_remove_master_device(&dev->master); } static int ds_probe(struct usb_interface *intf, const struct usb_device_id *udev_id) { struct usb_device *udev = interface_to_usbdev(intf); struct usb_endpoint_descriptor *endpoint; struct usb_host_interface *iface_desc; struct ds_device *dev; int i, err, alt; dev = kzalloc(sizeof(struct ds_device), GFP_KERNEL); if (!dev) { pr_info("Failed to allocate new DS9490R structure.\n"); return -ENOMEM; } dev->udev = usb_get_dev(udev); if (!dev->udev) { err = -ENOMEM; goto err_out_free; } memset(dev->ep, 0, sizeof(dev->ep)); usb_set_intfdata(intf, dev); err = usb_reset_configuration(dev->udev); if (err) { dev_err(&dev->udev->dev, "Failed to reset configuration: err=%d.\n", err); goto err_out_clear; } /* alternative 3, 1ms interrupt (greatly speeds search), 64 byte bulk */ alt = 3; err = usb_set_interface(dev->udev, intf->cur_altsetting->desc.bInterfaceNumber, alt); if (err) { dev_err(&dev->udev->dev, "Failed to set alternative setting %d " "for %d interface: err=%d.\n", alt, intf->cur_altsetting->desc.bInterfaceNumber, err); goto err_out_clear; } iface_desc = intf->cur_altsetting; if (iface_desc->desc.bNumEndpoints != NUM_EP-1) { pr_info("Num endpoints=%d. It is not DS9490R.\n", iface_desc->desc.bNumEndpoints); err = -EINVAL; goto err_out_clear; } /* * This loop doesn'd show control 0 endpoint, * so we will fill only 1-3 endpoints entry. */ for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) { endpoint = &iface_desc->endpoint[i].desc; dev->ep[i+1] = endpoint->bEndpointAddress; #if 0 printk("%d: addr=%x, size=%d, dir=%s, type=%x\n", i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize), (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT", endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK); #endif } err = ds_w1_init(dev); if (err) goto err_out_clear; mutex_lock(&ds_mutex); list_add_tail(&dev->ds_entry, &ds_devices); mutex_unlock(&ds_mutex); return 0; err_out_clear: usb_set_intfdata(intf, NULL); usb_put_dev(dev->udev); err_out_free: kfree(dev); return err; } static void ds_disconnect(struct usb_interface *intf) { struct ds_device *dev; dev = usb_get_intfdata(intf); if (!dev) return; mutex_lock(&ds_mutex); list_del(&dev->ds_entry); mutex_unlock(&ds_mutex); ds_w1_fini(dev); usb_set_intfdata(intf, NULL); usb_put_dev(dev->udev); kfree(dev); } static const struct usb_device_id ds_id_table[] = { { USB_DEVICE(0x04fa, 0x2490) }, { }, }; MODULE_DEVICE_TABLE(usb, ds_id_table); static struct usb_driver ds_driver = { .name = "DS9490R", .probe = ds_probe, .disconnect = ds_disconnect, .id_table = ds_id_table, }; module_usb_driver(ds_driver); MODULE_AUTHOR("Evgeniy Polyakov <zbr@ioremap.net>"); MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1