Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rafael J. Wysocki | 2475 | 59.83% | 35 | 47.95% |
Andy Grover | 564 | 13.63% | 3 | 4.11% |
Mika Westerberg | 469 | 11.34% | 2 | 2.74% |
Len Brown | 210 | 5.08% | 6 | 8.22% |
Hans de Goede | 123 | 2.97% | 2 | 2.74% |
Konstantin Karasyov | 108 | 2.61% | 2 | 2.74% |
Patrick Mochel | 75 | 1.81% | 3 | 4.11% |
Lin Ming | 49 | 1.18% | 4 | 5.48% |
Alexey Y. Starikovskiy | 21 | 0.51% | 1 | 1.37% |
Lan Tianyu | 10 | 0.24% | 1 | 1.37% |
Yakui Zhao | 7 | 0.17% | 2 | 2.74% |
Arvind Yadav | 5 | 0.12% | 1 | 1.37% |
Toshi Kani | 4 | 0.10% | 1 | 1.37% |
Arnd Bergmann | 4 | 0.10% | 1 | 1.37% |
Jiang Liu | 2 | 0.05% | 1 | 1.37% |
Andrew Morton | 2 | 0.05% | 1 | 1.37% |
Thomas Gleixner | 2 | 0.05% | 1 | 1.37% |
Rui Zhang | 2 | 0.05% | 1 | 1.37% |
Lv Zheng | 1 | 0.02% | 1 | 1.37% |
Burman Yan | 1 | 0.02% | 1 | 1.37% |
Tejun Heo | 1 | 0.02% | 1 | 1.37% |
Matthew Wilcox | 1 | 0.02% | 1 | 1.37% |
Björn Helgaas | 1 | 0.02% | 1 | 1.37% |
Total | 4137 | 73 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * drivers/acpi/power.c - ACPI Power Resources management. * * Copyright (C) 2001 - 2015 Intel Corp. * Author: Andy Grover <andrew.grover@intel.com> * Author: Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> */ /* * ACPI power-managed devices may be controlled in two ways: * 1. via "Device Specific (D-State) Control" * 2. via "Power Resource Control". * The code below deals with ACPI Power Resources control. * * An ACPI "power resource object" represents a software controllable power * plane, clock plane, or other resource depended on by a device. * * A device may rely on multiple power resources, and a power resource * may be shared by multiple devices. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/types.h> #include <linux/slab.h> #include <linux/pm_runtime.h> #include <linux/sysfs.h> #include <linux/acpi.h> #include "sleep.h" #include "internal.h" #define _COMPONENT ACPI_POWER_COMPONENT ACPI_MODULE_NAME("power"); #define ACPI_POWER_CLASS "power_resource" #define ACPI_POWER_DEVICE_NAME "Power Resource" #define ACPI_POWER_FILE_INFO "info" #define ACPI_POWER_FILE_STATUS "state" #define ACPI_POWER_RESOURCE_STATE_OFF 0x00 #define ACPI_POWER_RESOURCE_STATE_ON 0x01 #define ACPI_POWER_RESOURCE_STATE_UNKNOWN 0xFF struct acpi_power_dependent_device { struct device *dev; struct list_head node; }; struct acpi_power_resource { struct acpi_device device; struct list_head list_node; char *name; u32 system_level; u32 order; unsigned int ref_count; bool wakeup_enabled; struct mutex resource_lock; struct list_head dependents; }; struct acpi_power_resource_entry { struct list_head node; struct acpi_power_resource *resource; }; static LIST_HEAD(acpi_power_resource_list); static DEFINE_MUTEX(power_resource_list_lock); /* -------------------------------------------------------------------------- Power Resource Management -------------------------------------------------------------------------- */ static inline struct acpi_power_resource *to_power_resource(struct acpi_device *device) { return container_of(device, struct acpi_power_resource, device); } static struct acpi_power_resource *acpi_power_get_context(acpi_handle handle) { struct acpi_device *device; if (acpi_bus_get_device(handle, &device)) return NULL; return to_power_resource(device); } static int acpi_power_resources_list_add(acpi_handle handle, struct list_head *list) { struct acpi_power_resource *resource = acpi_power_get_context(handle); struct acpi_power_resource_entry *entry; if (!resource || !list) return -EINVAL; entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (!entry) return -ENOMEM; entry->resource = resource; if (!list_empty(list)) { struct acpi_power_resource_entry *e; list_for_each_entry(e, list, node) if (e->resource->order > resource->order) { list_add_tail(&entry->node, &e->node); return 0; } } list_add_tail(&entry->node, list); return 0; } void acpi_power_resources_list_free(struct list_head *list) { struct acpi_power_resource_entry *entry, *e; list_for_each_entry_safe(entry, e, list, node) { list_del(&entry->node); kfree(entry); } } static bool acpi_power_resource_is_dup(union acpi_object *package, unsigned int start, unsigned int i) { acpi_handle rhandle, dup; unsigned int j; /* The caller is expected to check the package element types */ rhandle = package->package.elements[i].reference.handle; for (j = start; j < i; j++) { dup = package->package.elements[j].reference.handle; if (dup == rhandle) return true; } return false; } int acpi_extract_power_resources(union acpi_object *package, unsigned int start, struct list_head *list) { unsigned int i; int err = 0; for (i = start; i < package->package.count; i++) { union acpi_object *element = &package->package.elements[i]; acpi_handle rhandle; if (element->type != ACPI_TYPE_LOCAL_REFERENCE) { err = -ENODATA; break; } rhandle = element->reference.handle; if (!rhandle) { err = -ENODEV; break; } /* Some ACPI tables contain duplicate power resource references */ if (acpi_power_resource_is_dup(package, start, i)) continue; err = acpi_add_power_resource(rhandle); if (err) break; err = acpi_power_resources_list_add(rhandle, list); if (err) break; } if (err) acpi_power_resources_list_free(list); return err; } static int acpi_power_get_state(acpi_handle handle, int *state) { acpi_status status = AE_OK; unsigned long long sta = 0; char node_name[5]; struct acpi_buffer buffer = { sizeof(node_name), node_name }; if (!handle || !state) return -EINVAL; status = acpi_evaluate_integer(handle, "_STA", NULL, &sta); if (ACPI_FAILURE(status)) return -ENODEV; *state = (sta & 0x01)?ACPI_POWER_RESOURCE_STATE_ON: ACPI_POWER_RESOURCE_STATE_OFF; acpi_get_name(handle, ACPI_SINGLE_NAME, &buffer); ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource [%s] is %s\n", node_name, *state ? "on" : "off")); return 0; } static int acpi_power_get_list_state(struct list_head *list, int *state) { struct acpi_power_resource_entry *entry; int cur_state; if (!list || !state) return -EINVAL; /* The state of the list is 'on' IFF all resources are 'on'. */ cur_state = 0; list_for_each_entry(entry, list, node) { struct acpi_power_resource *resource = entry->resource; acpi_handle handle = resource->device.handle; int result; mutex_lock(&resource->resource_lock); result = acpi_power_get_state(handle, &cur_state); mutex_unlock(&resource->resource_lock); if (result) return result; if (cur_state != ACPI_POWER_RESOURCE_STATE_ON) break; } ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Resource list is %s\n", cur_state ? "on" : "off")); *state = cur_state; return 0; } static int acpi_power_resource_add_dependent(struct acpi_power_resource *resource, struct device *dev) { struct acpi_power_dependent_device *dep; int ret = 0; mutex_lock(&resource->resource_lock); list_for_each_entry(dep, &resource->dependents, node) { /* Only add it once */ if (dep->dev == dev) goto unlock; } dep = kzalloc(sizeof(*dep), GFP_KERNEL); if (!dep) { ret = -ENOMEM; goto unlock; } dep->dev = dev; list_add_tail(&dep->node, &resource->dependents); dev_dbg(dev, "added power dependency to [%s]\n", resource->name); unlock: mutex_unlock(&resource->resource_lock); return ret; } static void acpi_power_resource_remove_dependent(struct acpi_power_resource *resource, struct device *dev) { struct acpi_power_dependent_device *dep; mutex_lock(&resource->resource_lock); list_for_each_entry(dep, &resource->dependents, node) { if (dep->dev == dev) { list_del(&dep->node); kfree(dep); dev_dbg(dev, "removed power dependency to [%s]\n", resource->name); break; } } mutex_unlock(&resource->resource_lock); } /** * acpi_device_power_add_dependent - Add dependent device of this ACPI device * @adev: ACPI device pointer * @dev: Dependent device * * If @adev has non-empty _PR0 the @dev is added as dependent device to all * power resources returned by it. This means that whenever these power * resources are turned _ON the dependent devices get runtime resumed. This * is needed for devices such as PCI to allow its driver to re-initialize * it after it went to D0uninitialized. * * If @adev does not have _PR0 this does nothing. * * Returns %0 in case of success and negative errno otherwise. */ int acpi_device_power_add_dependent(struct acpi_device *adev, struct device *dev) { struct acpi_power_resource_entry *entry; struct list_head *resources; int ret; if (!adev->flags.power_manageable) return 0; resources = &adev->power.states[ACPI_STATE_D0].resources; list_for_each_entry(entry, resources, node) { ret = acpi_power_resource_add_dependent(entry->resource, dev); if (ret) goto err; } return 0; err: list_for_each_entry(entry, resources, node) acpi_power_resource_remove_dependent(entry->resource, dev); return ret; } /** * acpi_device_power_remove_dependent - Remove dependent device * @adev: ACPI device pointer * @dev: Dependent device * * Does the opposite of acpi_device_power_add_dependent() and removes the * dependent device if it is found. Can be called to @adev that does not * have _PR0 as well. */ void acpi_device_power_remove_dependent(struct acpi_device *adev, struct device *dev) { struct acpi_power_resource_entry *entry; struct list_head *resources; if (!adev->flags.power_manageable) return; resources = &adev->power.states[ACPI_STATE_D0].resources; list_for_each_entry_reverse(entry, resources, node) acpi_power_resource_remove_dependent(entry->resource, dev); } static int __acpi_power_on(struct acpi_power_resource *resource) { struct acpi_power_dependent_device *dep; acpi_status status = AE_OK; status = acpi_evaluate_object(resource->device.handle, "_ON", NULL, NULL); if (ACPI_FAILURE(status)) return -ENODEV; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned on\n", resource->name)); /* * If there are other dependents on this power resource we need to * resume them now so that their drivers can re-initialize the * hardware properly after it went back to D0. */ if (list_empty(&resource->dependents) || list_is_singular(&resource->dependents)) return 0; list_for_each_entry(dep, &resource->dependents, node) { dev_dbg(dep->dev, "runtime resuming because [%s] turned on\n", resource->name); pm_request_resume(dep->dev); } return 0; } static int acpi_power_on_unlocked(struct acpi_power_resource *resource) { int result = 0; if (resource->ref_count++) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] already on\n", resource->name)); } else { result = __acpi_power_on(resource); if (result) resource->ref_count--; } return result; } static int acpi_power_on(struct acpi_power_resource *resource) { int result; mutex_lock(&resource->resource_lock); result = acpi_power_on_unlocked(resource); mutex_unlock(&resource->resource_lock); return result; } static int __acpi_power_off(struct acpi_power_resource *resource) { acpi_status status; status = acpi_evaluate_object(resource->device.handle, "_OFF", NULL, NULL); if (ACPI_FAILURE(status)) return -ENODEV; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] turned off\n", resource->name)); return 0; } static int acpi_power_off_unlocked(struct acpi_power_resource *resource) { int result = 0; if (!resource->ref_count) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] already off\n", resource->name)); return 0; } if (--resource->ref_count) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Power resource [%s] still in use\n", resource->name)); } else { result = __acpi_power_off(resource); if (result) resource->ref_count++; } return result; } static int acpi_power_off(struct acpi_power_resource *resource) { int result; mutex_lock(&resource->resource_lock); result = acpi_power_off_unlocked(resource); mutex_unlock(&resource->resource_lock); return result; } static int acpi_power_off_list(struct list_head *list) { struct acpi_power_resource_entry *entry; int result = 0; list_for_each_entry_reverse(entry, list, node) { result = acpi_power_off(entry->resource); if (result) goto err; } return 0; err: list_for_each_entry_continue(entry, list, node) acpi_power_on(entry->resource); return result; } static int acpi_power_on_list(struct list_head *list) { struct acpi_power_resource_entry *entry; int result = 0; list_for_each_entry(entry, list, node) { result = acpi_power_on(entry->resource); if (result) goto err; } return 0; err: list_for_each_entry_continue_reverse(entry, list, node) acpi_power_off(entry->resource); return result; } static struct attribute *attrs[] = { NULL, }; static const struct attribute_group attr_groups[] = { [ACPI_STATE_D0] = { .name = "power_resources_D0", .attrs = attrs, }, [ACPI_STATE_D1] = { .name = "power_resources_D1", .attrs = attrs, }, [ACPI_STATE_D2] = { .name = "power_resources_D2", .attrs = attrs, }, [ACPI_STATE_D3_HOT] = { .name = "power_resources_D3hot", .attrs = attrs, }, }; static const struct attribute_group wakeup_attr_group = { .name = "power_resources_wakeup", .attrs = attrs, }; static void acpi_power_hide_list(struct acpi_device *adev, struct list_head *resources, const struct attribute_group *attr_group) { struct acpi_power_resource_entry *entry; if (list_empty(resources)) return; list_for_each_entry_reverse(entry, resources, node) { struct acpi_device *res_dev = &entry->resource->device; sysfs_remove_link_from_group(&adev->dev.kobj, attr_group->name, dev_name(&res_dev->dev)); } sysfs_remove_group(&adev->dev.kobj, attr_group); } static void acpi_power_expose_list(struct acpi_device *adev, struct list_head *resources, const struct attribute_group *attr_group) { struct acpi_power_resource_entry *entry; int ret; if (list_empty(resources)) return; ret = sysfs_create_group(&adev->dev.kobj, attr_group); if (ret) return; list_for_each_entry(entry, resources, node) { struct acpi_device *res_dev = &entry->resource->device; ret = sysfs_add_link_to_group(&adev->dev.kobj, attr_group->name, &res_dev->dev.kobj, dev_name(&res_dev->dev)); if (ret) { acpi_power_hide_list(adev, resources, attr_group); break; } } } static void acpi_power_expose_hide(struct acpi_device *adev, struct list_head *resources, const struct attribute_group *attr_group, bool expose) { if (expose) acpi_power_expose_list(adev, resources, attr_group); else acpi_power_hide_list(adev, resources, attr_group); } void acpi_power_add_remove_device(struct acpi_device *adev, bool add) { int state; if (adev->wakeup.flags.valid) acpi_power_expose_hide(adev, &adev->wakeup.resources, &wakeup_attr_group, add); if (!adev->power.flags.power_resources) return; for (state = ACPI_STATE_D0; state <= ACPI_STATE_D3_HOT; state++) acpi_power_expose_hide(adev, &adev->power.states[state].resources, &attr_groups[state], add); } int acpi_power_wakeup_list_init(struct list_head *list, int *system_level_p) { struct acpi_power_resource_entry *entry; int system_level = 5; list_for_each_entry(entry, list, node) { struct acpi_power_resource *resource = entry->resource; acpi_handle handle = resource->device.handle; int result; int state; mutex_lock(&resource->resource_lock); result = acpi_power_get_state(handle, &state); if (result) { mutex_unlock(&resource->resource_lock); return result; } if (state == ACPI_POWER_RESOURCE_STATE_ON) { resource->ref_count++; resource->wakeup_enabled = true; } if (system_level > resource->system_level) system_level = resource->system_level; mutex_unlock(&resource->resource_lock); } *system_level_p = system_level; return 0; } /* -------------------------------------------------------------------------- Device Power Management -------------------------------------------------------------------------- */ /** * acpi_device_sleep_wake - execute _DSW (Device Sleep Wake) or (deprecated in * ACPI 3.0) _PSW (Power State Wake) * @dev: Device to handle. * @enable: 0 - disable, 1 - enable the wake capabilities of the device. * @sleep_state: Target sleep state of the system. * @dev_state: Target power state of the device. * * Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power * State Wake) for the device, if present. On failure reset the device's * wakeup.flags.valid flag. * * RETURN VALUE: * 0 if either _DSW or _PSW has been successfully executed * 0 if neither _DSW nor _PSW has been found * -ENODEV if the execution of either _DSW or _PSW has failed */ int acpi_device_sleep_wake(struct acpi_device *dev, int enable, int sleep_state, int dev_state) { union acpi_object in_arg[3]; struct acpi_object_list arg_list = { 3, in_arg }; acpi_status status = AE_OK; /* * Try to execute _DSW first. * * Three arguments are needed for the _DSW object: * Argument 0: enable/disable the wake capabilities * Argument 1: target system state * Argument 2: target device state * When _DSW object is called to disable the wake capabilities, maybe * the first argument is filled. The values of the other two arguments * are meaningless. */ in_arg[0].type = ACPI_TYPE_INTEGER; in_arg[0].integer.value = enable; in_arg[1].type = ACPI_TYPE_INTEGER; in_arg[1].integer.value = sleep_state; in_arg[2].type = ACPI_TYPE_INTEGER; in_arg[2].integer.value = dev_state; status = acpi_evaluate_object(dev->handle, "_DSW", &arg_list, NULL); if (ACPI_SUCCESS(status)) { return 0; } else if (status != AE_NOT_FOUND) { printk(KERN_ERR PREFIX "_DSW execution failed\n"); dev->wakeup.flags.valid = 0; return -ENODEV; } /* Execute _PSW */ status = acpi_execute_simple_method(dev->handle, "_PSW", enable); if (ACPI_FAILURE(status) && (status != AE_NOT_FOUND)) { printk(KERN_ERR PREFIX "_PSW execution failed\n"); dev->wakeup.flags.valid = 0; return -ENODEV; } return 0; } /* * Prepare a wakeup device, two steps (Ref ACPI 2.0:P229): * 1. Power on the power resources required for the wakeup device * 2. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power * State Wake) for the device, if present */ int acpi_enable_wakeup_device_power(struct acpi_device *dev, int sleep_state) { struct acpi_power_resource_entry *entry; int err = 0; if (!dev || !dev->wakeup.flags.valid) return -EINVAL; mutex_lock(&acpi_device_lock); if (dev->wakeup.prepare_count++) goto out; list_for_each_entry(entry, &dev->wakeup.resources, node) { struct acpi_power_resource *resource = entry->resource; mutex_lock(&resource->resource_lock); if (!resource->wakeup_enabled) { err = acpi_power_on_unlocked(resource); if (!err) resource->wakeup_enabled = true; } mutex_unlock(&resource->resource_lock); if (err) { dev_err(&dev->dev, "Cannot turn wakeup power resources on\n"); dev->wakeup.flags.valid = 0; goto out; } } /* * Passing 3 as the third argument below means the device may be * put into arbitrary power state afterward. */ err = acpi_device_sleep_wake(dev, 1, sleep_state, 3); if (err) dev->wakeup.prepare_count = 0; out: mutex_unlock(&acpi_device_lock); return err; } /* * Shutdown a wakeup device, counterpart of above method * 1. Execute _DSW (Device Sleep Wake) or (deprecated in ACPI 3.0) _PSW (Power * State Wake) for the device, if present * 2. Shutdown down the power resources */ int acpi_disable_wakeup_device_power(struct acpi_device *dev) { struct acpi_power_resource_entry *entry; int err = 0; if (!dev || !dev->wakeup.flags.valid) return -EINVAL; mutex_lock(&acpi_device_lock); if (--dev->wakeup.prepare_count > 0) goto out; /* * Executing the code below even if prepare_count is already zero when * the function is called may be useful, for example for initialisation. */ if (dev->wakeup.prepare_count < 0) dev->wakeup.prepare_count = 0; err = acpi_device_sleep_wake(dev, 0, 0, 0); if (err) goto out; list_for_each_entry(entry, &dev->wakeup.resources, node) { struct acpi_power_resource *resource = entry->resource; mutex_lock(&resource->resource_lock); if (resource->wakeup_enabled) { err = acpi_power_off_unlocked(resource); if (!err) resource->wakeup_enabled = false; } mutex_unlock(&resource->resource_lock); if (err) { dev_err(&dev->dev, "Cannot turn wakeup power resources off\n"); dev->wakeup.flags.valid = 0; break; } } out: mutex_unlock(&acpi_device_lock); return err; } int acpi_power_get_inferred_state(struct acpi_device *device, int *state) { int result = 0; int list_state = 0; int i = 0; if (!device || !state) return -EINVAL; /* * We know a device's inferred power state when all the resources * required for a given D-state are 'on'. */ for (i = ACPI_STATE_D0; i <= ACPI_STATE_D3_HOT; i++) { struct list_head *list = &device->power.states[i].resources; if (list_empty(list)) continue; result = acpi_power_get_list_state(list, &list_state); if (result) return result; if (list_state == ACPI_POWER_RESOURCE_STATE_ON) { *state = i; return 0; } } *state = device->power.states[ACPI_STATE_D3_COLD].flags.valid ? ACPI_STATE_D3_COLD : ACPI_STATE_D3_HOT; return 0; } int acpi_power_on_resources(struct acpi_device *device, int state) { if (!device || state < ACPI_STATE_D0 || state > ACPI_STATE_D3_HOT) return -EINVAL; return acpi_power_on_list(&device->power.states[state].resources); } int acpi_power_transition(struct acpi_device *device, int state) { int result = 0; if (!device || (state < ACPI_STATE_D0) || (state > ACPI_STATE_D3_COLD)) return -EINVAL; if (device->power.state == state || !device->flags.power_manageable) return 0; if ((device->power.state < ACPI_STATE_D0) || (device->power.state > ACPI_STATE_D3_COLD)) return -ENODEV; /* * First we reference all power resources required in the target list * (e.g. so the device doesn't lose power while transitioning). Then, * we dereference all power resources used in the current list. */ if (state < ACPI_STATE_D3_COLD) result = acpi_power_on_list( &device->power.states[state].resources); if (!result && device->power.state < ACPI_STATE_D3_COLD) acpi_power_off_list( &device->power.states[device->power.state].resources); /* We shouldn't change the state unless the above operations succeed. */ device->power.state = result ? ACPI_STATE_UNKNOWN : state; return result; } static void acpi_release_power_resource(struct device *dev) { struct acpi_device *device = to_acpi_device(dev); struct acpi_power_resource *resource; resource = container_of(device, struct acpi_power_resource, device); mutex_lock(&power_resource_list_lock); list_del(&resource->list_node); mutex_unlock(&power_resource_list_lock); acpi_free_pnp_ids(&device->pnp); kfree(resource); } static ssize_t acpi_power_in_use_show(struct device *dev, struct device_attribute *attr, char *buf) { struct acpi_power_resource *resource; resource = to_power_resource(to_acpi_device(dev)); return sprintf(buf, "%u\n", !!resource->ref_count); } static DEVICE_ATTR(resource_in_use, 0444, acpi_power_in_use_show, NULL); static void acpi_power_sysfs_remove(struct acpi_device *device) { device_remove_file(&device->dev, &dev_attr_resource_in_use); } static void acpi_power_add_resource_to_list(struct acpi_power_resource *resource) { mutex_lock(&power_resource_list_lock); if (!list_empty(&acpi_power_resource_list)) { struct acpi_power_resource *r; list_for_each_entry(r, &acpi_power_resource_list, list_node) if (r->order > resource->order) { list_add_tail(&resource->list_node, &r->list_node); goto out; } } list_add_tail(&resource->list_node, &acpi_power_resource_list); out: mutex_unlock(&power_resource_list_lock); } int acpi_add_power_resource(acpi_handle handle) { struct acpi_power_resource *resource; struct acpi_device *device = NULL; union acpi_object acpi_object; struct acpi_buffer buffer = { sizeof(acpi_object), &acpi_object }; acpi_status status; int state, result = -ENODEV; acpi_bus_get_device(handle, &device); if (device) return 0; resource = kzalloc(sizeof(*resource), GFP_KERNEL); if (!resource) return -ENOMEM; device = &resource->device; acpi_init_device_object(device, handle, ACPI_BUS_TYPE_POWER, ACPI_STA_DEFAULT); mutex_init(&resource->resource_lock); INIT_LIST_HEAD(&resource->list_node); INIT_LIST_HEAD(&resource->dependents); resource->name = device->pnp.bus_id; strcpy(acpi_device_name(device), ACPI_POWER_DEVICE_NAME); strcpy(acpi_device_class(device), ACPI_POWER_CLASS); device->power.state = ACPI_STATE_UNKNOWN; /* Evalute the object to get the system level and resource order. */ status = acpi_evaluate_object(handle, NULL, NULL, &buffer); if (ACPI_FAILURE(status)) goto err; resource->system_level = acpi_object.power_resource.system_level; resource->order = acpi_object.power_resource.resource_order; result = acpi_power_get_state(handle, &state); if (result) goto err; printk(KERN_INFO PREFIX "%s [%s] (%s)\n", acpi_device_name(device), acpi_device_bid(device), state ? "on" : "off"); device->flags.match_driver = true; result = acpi_device_add(device, acpi_release_power_resource); if (result) goto err; if (!device_create_file(&device->dev, &dev_attr_resource_in_use)) device->remove = acpi_power_sysfs_remove; acpi_power_add_resource_to_list(resource); acpi_device_add_finalize(device); return 0; err: acpi_release_power_resource(&device->dev); return result; } #ifdef CONFIG_ACPI_SLEEP void acpi_resume_power_resources(void) { struct acpi_power_resource *resource; mutex_lock(&power_resource_list_lock); list_for_each_entry(resource, &acpi_power_resource_list, list_node) { int result, state; mutex_lock(&resource->resource_lock); result = acpi_power_get_state(resource->device.handle, &state); if (result) { mutex_unlock(&resource->resource_lock); continue; } if (state == ACPI_POWER_RESOURCE_STATE_OFF && resource->ref_count) { dev_info(&resource->device.dev, "Turning ON\n"); __acpi_power_on(resource); } mutex_unlock(&resource->resource_lock); } mutex_unlock(&power_resource_list_lock); } void acpi_turn_off_unused_power_resources(void) { struct acpi_power_resource *resource; mutex_lock(&power_resource_list_lock); list_for_each_entry_reverse(resource, &acpi_power_resource_list, list_node) { int result, state; mutex_lock(&resource->resource_lock); result = acpi_power_get_state(resource->device.handle, &state); if (result) { mutex_unlock(&resource->resource_lock); continue; } if (state == ACPI_POWER_RESOURCE_STATE_ON && !resource->ref_count) { dev_info(&resource->device.dev, "Turning OFF\n"); __acpi_power_off(resource); } mutex_unlock(&resource->resource_lock); } mutex_unlock(&power_resource_list_lock); } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1