Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Len Brown | 1266 | 39.76% | 8 | 14.55% |
Venkatesh Pallipadi | 745 | 23.40% | 2 | 3.64% |
Thomas Renninger | 185 | 5.81% | 6 | 10.91% |
Rafael J. Wysocki | 162 | 5.09% | 6 | 10.91% |
Matthew Garrett | 162 | 5.09% | 1 | 1.82% |
Viresh Kumar | 141 | 4.43% | 1 | 1.82% |
Marco Aurelio da Costa | 98 | 3.08% | 1 | 1.82% |
Yakui Zhao | 75 | 2.36% | 1 | 1.82% |
Stanislaw Gruszka | 67 | 2.10% | 1 | 1.82% |
Patrick Mochel | 48 | 1.51% | 1 | 1.82% |
Rusty Russell | 34 | 1.07% | 2 | 3.64% |
Mike Travis | 28 | 0.88% | 1 | 1.82% |
Joao Martins | 25 | 0.79% | 1 | 1.82% |
Arjan van de Ven | 18 | 0.57% | 1 | 1.82% |
Jiang Liu | 18 | 0.57% | 2 | 3.64% |
Darrick J. Wong | 15 | 0.47% | 1 | 1.82% |
Lin Ming | 15 | 0.47% | 1 | 1.82% |
Stefan Bader | 14 | 0.44% | 1 | 1.82% |
Andrew Morton | 12 | 0.38% | 1 | 1.82% |
Miao Xie | 10 | 0.31% | 1 | 1.82% |
Kees Cook | 7 | 0.22% | 1 | 1.82% |
Lv Zheng | 6 | 0.19% | 1 | 1.82% |
Fenghua Yu | 6 | 0.19% | 1 | 1.82% |
Konrad Rzeszutek Wilk | 5 | 0.16% | 1 | 1.82% |
Chen Yu | 5 | 0.16% | 1 | 1.82% |
Kamezawa Hiroyuki | 5 | 0.16% | 1 | 1.82% |
Tejun Heo | 4 | 0.13% | 2 | 3.64% |
Thomas Gleixner | 2 | 0.06% | 1 | 1.82% |
Milan Broz | 1 | 0.03% | 1 | 1.82% |
Matthew Wilcox | 1 | 0.03% | 1 | 1.82% |
Alexey Y. Starikovskiy | 1 | 0.03% | 1 | 1.82% |
Dominik Brodowski | 1 | 0.03% | 1 | 1.82% |
Li Zefan | 1 | 0.03% | 1 | 1.82% |
Lucas De Marchi | 1 | 0.03% | 1 | 1.82% |
Total | 3184 | 55 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * processor_perflib.c - ACPI Processor P-States Library ($Revision: 71 $) * * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com> * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com> * Copyright (C) 2004 Dominik Brodowski <linux@brodo.de> * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com> * - Added processor hotplug support */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <linux/cpufreq.h> #include <linux/slab.h> #include <linux/acpi.h> #include <acpi/processor.h> #ifdef CONFIG_X86 #include <asm/cpufeature.h> #endif #define PREFIX "ACPI: " #define ACPI_PROCESSOR_CLASS "processor" #define ACPI_PROCESSOR_FILE_PERFORMANCE "performance" #define _COMPONENT ACPI_PROCESSOR_COMPONENT ACPI_MODULE_NAME("processor_perflib"); static DEFINE_MUTEX(performance_mutex); /* * _PPC support is implemented as a CPUfreq policy notifier: * This means each time a CPUfreq driver registered also with * the ACPI core is asked to change the speed policy, the maximum * value is adjusted so that it is within the platform limit. * * Also, when a new platform limit value is detected, the CPUfreq * policy is adjusted accordingly. */ /* ignore_ppc: * -1 -> cpufreq low level drivers not initialized -> _PSS, etc. not called yet * ignore _PPC * 0 -> cpufreq low level drivers initialized -> consider _PPC values * 1 -> ignore _PPC totally -> forced by user through boot param */ static int ignore_ppc = -1; module_param(ignore_ppc, int, 0644); MODULE_PARM_DESC(ignore_ppc, "If the frequency of your machine gets wrongly" \ "limited by BIOS, this should help"); static bool acpi_processor_ppc_in_use; static int acpi_processor_get_platform_limit(struct acpi_processor *pr) { acpi_status status = 0; unsigned long long ppc = 0; int ret; if (!pr) return -EINVAL; /* * _PPC indicates the maximum state currently supported by the platform * (e.g. 0 = states 0..n; 1 = states 1..n; etc. */ status = acpi_evaluate_integer(pr->handle, "_PPC", NULL, &ppc); if (status != AE_NOT_FOUND) acpi_processor_ppc_in_use = true; if (ACPI_FAILURE(status) && status != AE_NOT_FOUND) { ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PPC")); return -ENODEV; } pr_debug("CPU %d: _PPC is %d - frequency %s limited\n", pr->id, (int)ppc, ppc ? "" : "not"); pr->performance_platform_limit = (int)ppc; if (ppc >= pr->performance->state_count || unlikely(!freq_qos_request_active(&pr->perflib_req))) return 0; ret = freq_qos_update_request(&pr->perflib_req, pr->performance->states[ppc].core_frequency * 1000); if (ret < 0) { pr_warn("Failed to update perflib freq constraint: CPU%d (%d)\n", pr->id, ret); } return 0; } #define ACPI_PROCESSOR_NOTIFY_PERFORMANCE 0x80 /* * acpi_processor_ppc_ost: Notify firmware the _PPC evaluation status * @handle: ACPI processor handle * @status: the status code of _PPC evaluation * 0: success. OSPM is now using the performance state specificed. * 1: failure. OSPM has not changed the number of P-states in use */ static void acpi_processor_ppc_ost(acpi_handle handle, int status) { if (acpi_has_method(handle, "_OST")) acpi_evaluate_ost(handle, ACPI_PROCESSOR_NOTIFY_PERFORMANCE, status, NULL); } void acpi_processor_ppc_has_changed(struct acpi_processor *pr, int event_flag) { int ret; if (ignore_ppc || !pr->performance) { /* * Only when it is notification event, the _OST object * will be evaluated. Otherwise it is skipped. */ if (event_flag) acpi_processor_ppc_ost(pr->handle, 1); return; } ret = acpi_processor_get_platform_limit(pr); /* * Only when it is notification event, the _OST object * will be evaluated. Otherwise it is skipped. */ if (event_flag) { if (ret < 0) acpi_processor_ppc_ost(pr->handle, 1); else acpi_processor_ppc_ost(pr->handle, 0); } if (ret >= 0) cpufreq_update_limits(pr->id); } int acpi_processor_get_bios_limit(int cpu, unsigned int *limit) { struct acpi_processor *pr; pr = per_cpu(processors, cpu); if (!pr || !pr->performance || !pr->performance->state_count) return -ENODEV; *limit = pr->performance->states[pr->performance_platform_limit]. core_frequency * 1000; return 0; } EXPORT_SYMBOL(acpi_processor_get_bios_limit); void acpi_processor_ignore_ppc_init(void) { if (ignore_ppc < 0) ignore_ppc = 0; } void acpi_processor_ppc_init(struct cpufreq_policy *policy) { unsigned int cpu; for_each_cpu(cpu, policy->related_cpus) { struct acpi_processor *pr = per_cpu(processors, cpu); int ret; if (!pr) continue; ret = freq_qos_add_request(&policy->constraints, &pr->perflib_req, FREQ_QOS_MAX, INT_MAX); if (ret < 0) pr_err("Failed to add freq constraint for CPU%d (%d)\n", cpu, ret); } } void acpi_processor_ppc_exit(struct cpufreq_policy *policy) { unsigned int cpu; for_each_cpu(cpu, policy->related_cpus) { struct acpi_processor *pr = per_cpu(processors, cpu); if (pr) freq_qos_remove_request(&pr->perflib_req); } } static int acpi_processor_get_performance_control(struct acpi_processor *pr) { int result = 0; acpi_status status = 0; struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; union acpi_object *pct = NULL; union acpi_object obj = { 0 }; status = acpi_evaluate_object(pr->handle, "_PCT", NULL, &buffer); if (ACPI_FAILURE(status)) { ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PCT")); return -ENODEV; } pct = (union acpi_object *)buffer.pointer; if (!pct || (pct->type != ACPI_TYPE_PACKAGE) || (pct->package.count != 2)) { printk(KERN_ERR PREFIX "Invalid _PCT data\n"); result = -EFAULT; goto end; } /* * control_register */ obj = pct->package.elements[0]; if ((obj.type != ACPI_TYPE_BUFFER) || (obj.buffer.length < sizeof(struct acpi_pct_register)) || (obj.buffer.pointer == NULL)) { printk(KERN_ERR PREFIX "Invalid _PCT data (control_register)\n"); result = -EFAULT; goto end; } memcpy(&pr->performance->control_register, obj.buffer.pointer, sizeof(struct acpi_pct_register)); /* * status_register */ obj = pct->package.elements[1]; if ((obj.type != ACPI_TYPE_BUFFER) || (obj.buffer.length < sizeof(struct acpi_pct_register)) || (obj.buffer.pointer == NULL)) { printk(KERN_ERR PREFIX "Invalid _PCT data (status_register)\n"); result = -EFAULT; goto end; } memcpy(&pr->performance->status_register, obj.buffer.pointer, sizeof(struct acpi_pct_register)); end: kfree(buffer.pointer); return result; } #ifdef CONFIG_X86 /* * Some AMDs have 50MHz frequency multiples, but only provide 100MHz rounding * in their ACPI data. Calculate the real values and fix up the _PSS data. */ static void amd_fixup_frequency(struct acpi_processor_px *px, int i) { u32 hi, lo, fid, did; int index = px->control & 0x00000007; if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) return; if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10) || boot_cpu_data.x86 == 0x11) { rdmsr(MSR_AMD_PSTATE_DEF_BASE + index, lo, hi); /* * MSR C001_0064+: * Bit 63: PstateEn. Read-write. If set, the P-state is valid. */ if (!(hi & BIT(31))) return; fid = lo & 0x3f; did = (lo >> 6) & 7; if (boot_cpu_data.x86 == 0x10) px->core_frequency = (100 * (fid + 0x10)) >> did; else px->core_frequency = (100 * (fid + 8)) >> did; } } #else static void amd_fixup_frequency(struct acpi_processor_px *px, int i) {}; #endif static int acpi_processor_get_performance_states(struct acpi_processor *pr) { int result = 0; acpi_status status = AE_OK; struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; struct acpi_buffer format = { sizeof("NNNNNN"), "NNNNNN" }; struct acpi_buffer state = { 0, NULL }; union acpi_object *pss = NULL; int i; int last_invalid = -1; status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); if (ACPI_FAILURE(status)) { ACPI_EXCEPTION((AE_INFO, status, "Evaluating _PSS")); return -ENODEV; } pss = buffer.pointer; if (!pss || (pss->type != ACPI_TYPE_PACKAGE)) { printk(KERN_ERR PREFIX "Invalid _PSS data\n"); result = -EFAULT; goto end; } ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d performance states\n", pss->package.count)); pr->performance->state_count = pss->package.count; pr->performance->states = kmalloc_array(pss->package.count, sizeof(struct acpi_processor_px), GFP_KERNEL); if (!pr->performance->states) { result = -ENOMEM; goto end; } for (i = 0; i < pr->performance->state_count; i++) { struct acpi_processor_px *px = &(pr->performance->states[i]); state.length = sizeof(struct acpi_processor_px); state.pointer = px; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Extracting state %d\n", i)); status = acpi_extract_package(&(pss->package.elements[i]), &format, &state); if (ACPI_FAILURE(status)) { ACPI_EXCEPTION((AE_INFO, status, "Invalid _PSS data")); result = -EFAULT; kfree(pr->performance->states); goto end; } amd_fixup_frequency(px, i); ACPI_DEBUG_PRINT((ACPI_DB_INFO, "State [%d]: core_frequency[%d] power[%d] transition_latency[%d] bus_master_latency[%d] control[0x%x] status[0x%x]\n", i, (u32) px->core_frequency, (u32) px->power, (u32) px->transition_latency, (u32) px->bus_master_latency, (u32) px->control, (u32) px->status)); /* * Check that ACPI's u64 MHz will be valid as u32 KHz in cpufreq */ if (!px->core_frequency || ((u32)(px->core_frequency * 1000) != (px->core_frequency * 1000))) { printk(KERN_ERR FW_BUG PREFIX "Invalid BIOS _PSS frequency found for processor %d: 0x%llx MHz\n", pr->id, px->core_frequency); if (last_invalid == -1) last_invalid = i; } else { if (last_invalid != -1) { /* * Copy this valid entry over last_invalid entry */ memcpy(&(pr->performance->states[last_invalid]), px, sizeof(struct acpi_processor_px)); ++last_invalid; } } } if (last_invalid == 0) { printk(KERN_ERR FW_BUG PREFIX "No valid BIOS _PSS frequency found for processor %d\n", pr->id); result = -EFAULT; kfree(pr->performance->states); pr->performance->states = NULL; } if (last_invalid > 0) pr->performance->state_count = last_invalid; end: kfree(buffer.pointer); return result; } int acpi_processor_get_performance_info(struct acpi_processor *pr) { int result = 0; if (!pr || !pr->performance || !pr->handle) return -EINVAL; if (!acpi_has_method(pr->handle, "_PCT")) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "ACPI-based processor performance control unavailable\n")); return -ENODEV; } result = acpi_processor_get_performance_control(pr); if (result) goto update_bios; result = acpi_processor_get_performance_states(pr); if (result) goto update_bios; /* We need to call _PPC once when cpufreq starts */ if (ignore_ppc != 1) result = acpi_processor_get_platform_limit(pr); return result; /* * Having _PPC but missing frequencies (_PSS, _PCT) is a very good hint that * the BIOS is older than the CPU and does not know its frequencies */ update_bios: #ifdef CONFIG_X86 if (acpi_has_method(pr->handle, "_PPC")) { if(boot_cpu_has(X86_FEATURE_EST)) printk(KERN_WARNING FW_BUG "BIOS needs update for CPU " "frequency support\n"); } #endif return result; } EXPORT_SYMBOL_GPL(acpi_processor_get_performance_info); int acpi_processor_pstate_control(void) { acpi_status status; if (!acpi_gbl_FADT.smi_command || !acpi_gbl_FADT.pstate_control) return 0; ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Writing pstate_control [0x%x] to smi_command [0x%x]\n", acpi_gbl_FADT.pstate_control, acpi_gbl_FADT.smi_command)); status = acpi_os_write_port(acpi_gbl_FADT.smi_command, (u32)acpi_gbl_FADT.pstate_control, 8); if (ACPI_SUCCESS(status)) return 1; ACPI_EXCEPTION((AE_INFO, status, "Failed to write pstate_control [0x%x] to smi_command [0x%x]", acpi_gbl_FADT.pstate_control, acpi_gbl_FADT.smi_command)); return -EIO; } int acpi_processor_notify_smm(struct module *calling_module) { static int is_done = 0; int result; if (!acpi_processor_cpufreq_init) return -EBUSY; if (!try_module_get(calling_module)) return -EINVAL; /* is_done is set to negative if an error occurred, * and to postitive if _no_ error occurred, but SMM * was already notified. This avoids double notification * which might lead to unexpected results... */ if (is_done > 0) { module_put(calling_module); return 0; } else if (is_done < 0) { module_put(calling_module); return is_done; } is_done = -EIO; result = acpi_processor_pstate_control(); if (!result) { ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No SMI port or pstate_control\n")); module_put(calling_module); return 0; } if (result < 0) { module_put(calling_module); return result; } /* Success. If there's no _PPC, we need to fear nothing, so * we can allow the cpufreq driver to be rmmod'ed. */ is_done = 1; if (!acpi_processor_ppc_in_use) module_put(calling_module); return 0; } EXPORT_SYMBOL(acpi_processor_notify_smm); int acpi_processor_get_psd(acpi_handle handle, struct acpi_psd_package *pdomain) { int result = 0; acpi_status status = AE_OK; struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL}; struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"}; struct acpi_buffer state = {0, NULL}; union acpi_object *psd = NULL; status = acpi_evaluate_object(handle, "_PSD", NULL, &buffer); if (ACPI_FAILURE(status)) { return -ENODEV; } psd = buffer.pointer; if (!psd || (psd->type != ACPI_TYPE_PACKAGE)) { printk(KERN_ERR PREFIX "Invalid _PSD data\n"); result = -EFAULT; goto end; } if (psd->package.count != 1) { printk(KERN_ERR PREFIX "Invalid _PSD data\n"); result = -EFAULT; goto end; } state.length = sizeof(struct acpi_psd_package); state.pointer = pdomain; status = acpi_extract_package(&(psd->package.elements[0]), &format, &state); if (ACPI_FAILURE(status)) { printk(KERN_ERR PREFIX "Invalid _PSD data\n"); result = -EFAULT; goto end; } if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) { printk(KERN_ERR PREFIX "Unknown _PSD:num_entries\n"); result = -EFAULT; goto end; } if (pdomain->revision != ACPI_PSD_REV0_REVISION) { printk(KERN_ERR PREFIX "Unknown _PSD:revision\n"); result = -EFAULT; goto end; } if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL && pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY && pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) { printk(KERN_ERR PREFIX "Invalid _PSD:coord_type\n"); result = -EFAULT; goto end; } end: kfree(buffer.pointer); return result; } EXPORT_SYMBOL(acpi_processor_get_psd); int acpi_processor_preregister_performance( struct acpi_processor_performance __percpu *performance) { int count_target; int retval = 0; unsigned int i, j; cpumask_var_t covered_cpus; struct acpi_processor *pr; struct acpi_psd_package *pdomain; struct acpi_processor *match_pr; struct acpi_psd_package *match_pdomain; if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL)) return -ENOMEM; mutex_lock(&performance_mutex); /* * Check if another driver has already registered, and abort before * changing pr->performance if it has. Check input data as well. */ for_each_possible_cpu(i) { pr = per_cpu(processors, i); if (!pr) { /* Look only at processors in ACPI namespace */ continue; } if (pr->performance) { retval = -EBUSY; goto err_out; } if (!performance || !per_cpu_ptr(performance, i)) { retval = -EINVAL; goto err_out; } } /* Call _PSD for all CPUs */ for_each_possible_cpu(i) { pr = per_cpu(processors, i); if (!pr) continue; pr->performance = per_cpu_ptr(performance, i); cpumask_set_cpu(i, pr->performance->shared_cpu_map); pdomain = &(pr->performance->domain_info); if (acpi_processor_get_psd(pr->handle, pdomain)) { retval = -EINVAL; continue; } } if (retval) goto err_ret; /* * Now that we have _PSD data from all CPUs, lets setup P-state * domain info. */ for_each_possible_cpu(i) { pr = per_cpu(processors, i); if (!pr) continue; if (cpumask_test_cpu(i, covered_cpus)) continue; pdomain = &(pr->performance->domain_info); cpumask_set_cpu(i, pr->performance->shared_cpu_map); cpumask_set_cpu(i, covered_cpus); if (pdomain->num_processors <= 1) continue; /* Validate the Domain info */ count_target = pdomain->num_processors; if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL) pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ALL; else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL) pr->performance->shared_type = CPUFREQ_SHARED_TYPE_HW; else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY) pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ANY; for_each_possible_cpu(j) { if (i == j) continue; match_pr = per_cpu(processors, j); if (!match_pr) continue; match_pdomain = &(match_pr->performance->domain_info); if (match_pdomain->domain != pdomain->domain) continue; /* Here i and j are in the same domain */ if (match_pdomain->num_processors != count_target) { retval = -EINVAL; goto err_ret; } if (pdomain->coord_type != match_pdomain->coord_type) { retval = -EINVAL; goto err_ret; } cpumask_set_cpu(j, covered_cpus); cpumask_set_cpu(j, pr->performance->shared_cpu_map); } for_each_possible_cpu(j) { if (i == j) continue; match_pr = per_cpu(processors, j); if (!match_pr) continue; match_pdomain = &(match_pr->performance->domain_info); if (match_pdomain->domain != pdomain->domain) continue; match_pr->performance->shared_type = pr->performance->shared_type; cpumask_copy(match_pr->performance->shared_cpu_map, pr->performance->shared_cpu_map); } } err_ret: for_each_possible_cpu(i) { pr = per_cpu(processors, i); if (!pr || !pr->performance) continue; /* Assume no coordination on any error parsing domain info */ if (retval) { cpumask_clear(pr->performance->shared_cpu_map); cpumask_set_cpu(i, pr->performance->shared_cpu_map); pr->performance->shared_type = CPUFREQ_SHARED_TYPE_ALL; } pr->performance = NULL; /* Will be set for real in register */ } err_out: mutex_unlock(&performance_mutex); free_cpumask_var(covered_cpus); return retval; } EXPORT_SYMBOL(acpi_processor_preregister_performance); int acpi_processor_register_performance(struct acpi_processor_performance *performance, unsigned int cpu) { struct acpi_processor *pr; if (!acpi_processor_cpufreq_init) return -EINVAL; mutex_lock(&performance_mutex); pr = per_cpu(processors, cpu); if (!pr) { mutex_unlock(&performance_mutex); return -ENODEV; } if (pr->performance) { mutex_unlock(&performance_mutex); return -EBUSY; } WARN_ON(!performance); pr->performance = performance; if (acpi_processor_get_performance_info(pr)) { pr->performance = NULL; mutex_unlock(&performance_mutex); return -EIO; } mutex_unlock(&performance_mutex); return 0; } EXPORT_SYMBOL(acpi_processor_register_performance); void acpi_processor_unregister_performance(unsigned int cpu) { struct acpi_processor *pr; mutex_lock(&performance_mutex); pr = per_cpu(processors, cpu); if (!pr) { mutex_unlock(&performance_mutex); return; } if (pr->performance) kfree(pr->performance->states); pr->performance = NULL; mutex_unlock(&performance_mutex); return; } EXPORT_SYMBOL(acpi_processor_unregister_performance);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1