Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Linus Torvalds (pre-git) | 3791 | 73.71% | 12 | 23.08% |
Al Viro | 952 | 18.51% | 8 | 15.38% |
Hanna V. Linder | 127 | 2.47% | 1 | 1.92% |
Arnd Bergmann | 54 | 1.05% | 3 | 5.77% |
Andrew Morton | 49 | 0.95% | 2 | 3.85% |
Linus Torvalds | 40 | 0.78% | 5 | 9.62% |
Sudip Mukherjee | 36 | 0.70% | 1 | 1.92% |
Arnaldo Carvalho de Melo | 24 | 0.47% | 1 | 1.92% |
Greg Kroah-Hartman | 19 | 0.37% | 5 | 9.62% |
Rusty Russell | 15 | 0.29% | 2 | 3.85% |
Alan Cox | 12 | 0.23% | 1 | 1.92% |
Jonathan Corbet | 6 | 0.12% | 1 | 1.92% |
Tim Schmielau | 4 | 0.08% | 1 | 1.92% |
Roel Kluin | 4 | 0.08% | 2 | 3.85% |
Alexey Dobriyan | 2 | 0.04% | 1 | 1.92% |
Tony Jones | 2 | 0.04% | 1 | 1.92% |
Akinobu Mita | 2 | 0.04% | 1 | 1.92% |
Arjan van de Ven | 1 | 0.02% | 1 | 1.92% |
Adrian Bunk | 1 | 0.02% | 1 | 1.92% |
Nishanth Aravamudan | 1 | 0.02% | 1 | 1.92% |
Masahiro Yamada | 1 | 0.02% | 1 | 1.92% |
Total | 5143 | 52 |
/* pt.c (c) 1998 Grant R. Guenther <grant@torque.net> Under the terms of the GNU General Public License. This is the high-level driver for parallel port ATAPI tape drives based on chips supported by the paride module. The driver implements both rewinding and non-rewinding devices, filemarks, and the rewind ioctl. It allocates a small internal "bounce buffer" for each open device, but otherwise expects buffering and blocking to be done at the user level. As with most block-structured tapes, short writes are padded to full tape blocks, so reading back a file may return more data than was actually written. By default, the driver will autoprobe for a single parallel port ATAPI tape drive, but if their individual parameters are specified, the driver can handle up to 4 drives. The rewinding devices are named /dev/pt0, /dev/pt1, ... while the non-rewinding devices are /dev/npt0, /dev/npt1, etc. The behaviour of the pt driver can be altered by setting some parameters from the insmod command line. The following parameters are adjustable: drive0 These four arguments can be arrays of drive1 1-6 integers as follows: drive2 drive3 <prt>,<pro>,<uni>,<mod>,<slv>,<dly> Where, <prt> is the base of the parallel port address for the corresponding drive. (required) <pro> is the protocol number for the adapter that supports this drive. These numbers are logged by 'paride' when the protocol modules are initialised. (0 if not given) <uni> for those adapters that support chained devices, this is the unit selector for the chain of devices on the given port. It should be zero for devices that don't support chaining. (0 if not given) <mod> this can be -1 to choose the best mode, or one of the mode numbers supported by the adapter. (-1 if not given) <slv> ATAPI devices can be jumpered to master or slave. Set this to 0 to choose the master drive, 1 to choose the slave, -1 (the default) to choose the first drive found. <dly> some parallel ports require the driver to go more slowly. -1 sets a default value that should work with the chosen protocol. Otherwise, set this to a small integer, the larger it is the slower the port i/o. In some cases, setting this to zero will speed up the device. (default -1) major You may use this parameter to override the default major number (96) that this driver will use. Be sure to change the device name as well. name This parameter is a character string that contains the name the kernel will use for this device (in /proc output, for instance). (default "pt"). verbose This parameter controls the amount of logging that the driver will do. Set it to 0 for normal operation, 1 to see autoprobe progress messages, or 2 to see additional debugging output. (default 0) If this driver is built into the kernel, you can use the following command line parameters, with the same values as the corresponding module parameters listed above: pt.drive0 pt.drive1 pt.drive2 pt.drive3 In addition, you can use the parameter pt.disable to disable the driver entirely. */ /* Changes: 1.01 GRG 1998.05.06 Round up transfer size, fix ready_wait, loosed interpretation of ATAPI standard for clearing error status. Eliminate sti(); 1.02 GRG 1998.06.16 Eliminate an Ugh. 1.03 GRG 1998.08.15 Adjusted PT_TMO, use HZ in loop timing, extra debugging 1.04 GRG 1998.09.24 Repair minor coding error, added jumbo support */ #define PT_VERSION "1.04" #define PT_MAJOR 96 #define PT_NAME "pt" #define PT_UNITS 4 #include <linux/types.h> /* Here are things one can override from the insmod command. Most are autoprobed by paride unless set here. Verbose is on by default. */ static int verbose = 0; static int major = PT_MAJOR; static char *name = PT_NAME; static int disable = 0; static int drive0[6] = { 0, 0, 0, -1, -1, -1 }; static int drive1[6] = { 0, 0, 0, -1, -1, -1 }; static int drive2[6] = { 0, 0, 0, -1, -1, -1 }; static int drive3[6] = { 0, 0, 0, -1, -1, -1 }; static int (*drives[4])[6] = {&drive0, &drive1, &drive2, &drive3}; #define D_PRT 0 #define D_PRO 1 #define D_UNI 2 #define D_MOD 3 #define D_SLV 4 #define D_DLY 5 #define DU (*drives[unit]) /* end of parameters */ #include <linux/module.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/delay.h> #include <linux/slab.h> #include <linux/mtio.h> #include <linux/device.h> #include <linux/sched.h> /* current, TASK_*, schedule_timeout() */ #include <linux/mutex.h> #include <linux/uaccess.h> module_param(verbose, int, 0); module_param(major, int, 0); module_param(name, charp, 0); module_param_array(drive0, int, NULL, 0); module_param_array(drive1, int, NULL, 0); module_param_array(drive2, int, NULL, 0); module_param_array(drive3, int, NULL, 0); #include "paride.h" #define PT_MAX_RETRIES 5 #define PT_TMO 3000 /* interrupt timeout in jiffies */ #define PT_SPIN_DEL 50 /* spin delay in micro-seconds */ #define PT_RESET_TMO 30 /* 30 seconds */ #define PT_READY_TMO 60 /* 60 seconds */ #define PT_REWIND_TMO 1200 /* 20 minutes */ #define PT_SPIN ((1000000/(HZ*PT_SPIN_DEL))*PT_TMO) #define STAT_ERR 0x00001 #define STAT_INDEX 0x00002 #define STAT_ECC 0x00004 #define STAT_DRQ 0x00008 #define STAT_SEEK 0x00010 #define STAT_WRERR 0x00020 #define STAT_READY 0x00040 #define STAT_BUSY 0x00080 #define STAT_SENSE 0x1f000 #define ATAPI_TEST_READY 0x00 #define ATAPI_REWIND 0x01 #define ATAPI_REQ_SENSE 0x03 #define ATAPI_READ_6 0x08 #define ATAPI_WRITE_6 0x0a #define ATAPI_WFM 0x10 #define ATAPI_IDENTIFY 0x12 #define ATAPI_MODE_SENSE 0x1a #define ATAPI_LOG_SENSE 0x4d static DEFINE_MUTEX(pt_mutex); static int pt_open(struct inode *inode, struct file *file); static long pt_ioctl(struct file *file, unsigned int cmd, unsigned long arg); static int pt_release(struct inode *inode, struct file *file); static ssize_t pt_read(struct file *filp, char __user *buf, size_t count, loff_t * ppos); static ssize_t pt_write(struct file *filp, const char __user *buf, size_t count, loff_t * ppos); static int pt_detect(void); /* bits in tape->flags */ #define PT_MEDIA 1 #define PT_WRITE_OK 2 #define PT_REWIND 4 #define PT_WRITING 8 #define PT_READING 16 #define PT_EOF 32 #define PT_NAMELEN 8 #define PT_BUFSIZE 16384 struct pt_unit { struct pi_adapter pia; /* interface to paride layer */ struct pi_adapter *pi; int flags; /* various state flags */ int last_sense; /* result of last request sense */ int drive; /* drive */ atomic_t available; /* 1 if access is available 0 otherwise */ int bs; /* block size */ int capacity; /* Size of tape in KB */ int present; /* device present ? */ char *bufptr; char name[PT_NAMELEN]; /* pf0, pf1, ... */ }; static int pt_identify(struct pt_unit *tape); static struct pt_unit pt[PT_UNITS]; static char pt_scratch[512]; /* scratch block buffer */ static void *par_drv; /* reference of parport driver */ /* kernel glue structures */ static const struct file_operations pt_fops = { .owner = THIS_MODULE, .read = pt_read, .write = pt_write, .unlocked_ioctl = pt_ioctl, .open = pt_open, .release = pt_release, .llseek = noop_llseek, }; /* sysfs class support */ static struct class *pt_class; static inline int status_reg(struct pi_adapter *pi) { return pi_read_regr(pi, 1, 6); } static inline int read_reg(struct pi_adapter *pi, int reg) { return pi_read_regr(pi, 0, reg); } static inline void write_reg(struct pi_adapter *pi, int reg, int val) { pi_write_regr(pi, 0, reg, val); } static inline u8 DRIVE(struct pt_unit *tape) { return 0xa0+0x10*tape->drive; } static int pt_wait(struct pt_unit *tape, int go, int stop, char *fun, char *msg) { int j, r, e, s, p; struct pi_adapter *pi = tape->pi; j = 0; while ((((r = status_reg(pi)) & go) || (stop && (!(r & stop)))) && (j++ < PT_SPIN)) udelay(PT_SPIN_DEL); if ((r & (STAT_ERR & stop)) || (j > PT_SPIN)) { s = read_reg(pi, 7); e = read_reg(pi, 1); p = read_reg(pi, 2); if (j > PT_SPIN) e |= 0x100; if (fun) printk("%s: %s %s: alt=0x%x stat=0x%x err=0x%x" " loop=%d phase=%d\n", tape->name, fun, msg, r, s, e, j, p); return (e << 8) + s; } return 0; } static int pt_command(struct pt_unit *tape, char *cmd, int dlen, char *fun) { struct pi_adapter *pi = tape->pi; pi_connect(pi); write_reg(pi, 6, DRIVE(tape)); if (pt_wait(tape, STAT_BUSY | STAT_DRQ, 0, fun, "before command")) { pi_disconnect(pi); return -1; } write_reg(pi, 4, dlen % 256); write_reg(pi, 5, dlen / 256); write_reg(pi, 7, 0xa0); /* ATAPI packet command */ if (pt_wait(tape, STAT_BUSY, STAT_DRQ, fun, "command DRQ")) { pi_disconnect(pi); return -1; } if (read_reg(pi, 2) != 1) { printk("%s: %s: command phase error\n", tape->name, fun); pi_disconnect(pi); return -1; } pi_write_block(pi, cmd, 12); return 0; } static int pt_completion(struct pt_unit *tape, char *buf, char *fun) { struct pi_adapter *pi = tape->pi; int r, s, n, p; r = pt_wait(tape, STAT_BUSY, STAT_DRQ | STAT_READY | STAT_ERR, fun, "completion"); if (read_reg(pi, 7) & STAT_DRQ) { n = (((read_reg(pi, 4) + 256 * read_reg(pi, 5)) + 3) & 0xfffc); p = read_reg(pi, 2) & 3; if (p == 0) pi_write_block(pi, buf, n); if (p == 2) pi_read_block(pi, buf, n); } s = pt_wait(tape, STAT_BUSY, STAT_READY | STAT_ERR, fun, "data done"); pi_disconnect(pi); return (r ? r : s); } static void pt_req_sense(struct pt_unit *tape, int quiet) { char rs_cmd[12] = { ATAPI_REQ_SENSE, 0, 0, 0, 16, 0, 0, 0, 0, 0, 0, 0 }; char buf[16]; int r; r = pt_command(tape, rs_cmd, 16, "Request sense"); mdelay(1); if (!r) pt_completion(tape, buf, "Request sense"); tape->last_sense = -1; if (!r) { if (!quiet) printk("%s: Sense key: %x, ASC: %x, ASQ: %x\n", tape->name, buf[2] & 0xf, buf[12], buf[13]); tape->last_sense = (buf[2] & 0xf) | ((buf[12] & 0xff) << 8) | ((buf[13] & 0xff) << 16); } } static int pt_atapi(struct pt_unit *tape, char *cmd, int dlen, char *buf, char *fun) { int r; r = pt_command(tape, cmd, dlen, fun); mdelay(1); if (!r) r = pt_completion(tape, buf, fun); if (r) pt_req_sense(tape, !fun); return r; } static void pt_sleep(int cs) { schedule_timeout_interruptible(cs); } static int pt_poll_dsc(struct pt_unit *tape, int pause, int tmo, char *msg) { struct pi_adapter *pi = tape->pi; int k, e, s; k = 0; e = 0; s = 0; while (k < tmo) { pt_sleep(pause); k++; pi_connect(pi); write_reg(pi, 6, DRIVE(tape)); s = read_reg(pi, 7); e = read_reg(pi, 1); pi_disconnect(pi); if (s & (STAT_ERR | STAT_SEEK)) break; } if ((k >= tmo) || (s & STAT_ERR)) { if (k >= tmo) printk("%s: %s DSC timeout\n", tape->name, msg); else printk("%s: %s stat=0x%x err=0x%x\n", tape->name, msg, s, e); pt_req_sense(tape, 0); return 0; } return 1; } static void pt_media_access_cmd(struct pt_unit *tape, int tmo, char *cmd, char *fun) { if (pt_command(tape, cmd, 0, fun)) { pt_req_sense(tape, 0); return; } pi_disconnect(tape->pi); pt_poll_dsc(tape, HZ, tmo, fun); } static void pt_rewind(struct pt_unit *tape) { char rw_cmd[12] = { ATAPI_REWIND, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; pt_media_access_cmd(tape, PT_REWIND_TMO, rw_cmd, "rewind"); } static void pt_write_fm(struct pt_unit *tape) { char wm_cmd[12] = { ATAPI_WFM, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 }; pt_media_access_cmd(tape, PT_TMO, wm_cmd, "write filemark"); } #define DBMSG(msg) ((verbose>1)?(msg):NULL) static int pt_reset(struct pt_unit *tape) { struct pi_adapter *pi = tape->pi; int i, k, flg; int expect[5] = { 1, 1, 1, 0x14, 0xeb }; pi_connect(pi); write_reg(pi, 6, DRIVE(tape)); write_reg(pi, 7, 8); pt_sleep(20 * HZ / 1000); k = 0; while ((k++ < PT_RESET_TMO) && (status_reg(pi) & STAT_BUSY)) pt_sleep(HZ / 10); flg = 1; for (i = 0; i < 5; i++) flg &= (read_reg(pi, i + 1) == expect[i]); if (verbose) { printk("%s: Reset (%d) signature = ", tape->name, k); for (i = 0; i < 5; i++) printk("%3x", read_reg(pi, i + 1)); if (!flg) printk(" (incorrect)"); printk("\n"); } pi_disconnect(pi); return flg - 1; } static int pt_ready_wait(struct pt_unit *tape, int tmo) { char tr_cmd[12] = { ATAPI_TEST_READY, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int k, p; k = 0; while (k < tmo) { tape->last_sense = 0; pt_atapi(tape, tr_cmd, 0, NULL, DBMSG("test unit ready")); p = tape->last_sense; if (!p) return 0; if (!(((p & 0xffff) == 0x0402) || ((p & 0xff) == 6))) return p; k++; pt_sleep(HZ); } return 0x000020; /* timeout */ } static void xs(char *buf, char *targ, int offs, int len) { int j, k, l; j = 0; l = 0; for (k = 0; k < len; k++) if ((buf[k + offs] != 0x20) || (buf[k + offs] != l)) l = targ[j++] = buf[k + offs]; if (l == 0x20) j--; targ[j] = 0; } static int xn(char *buf, int offs, int size) { int v, k; v = 0; for (k = 0; k < size; k++) v = v * 256 + (buf[k + offs] & 0xff); return v; } static int pt_identify(struct pt_unit *tape) { int dt, s; char *ms[2] = { "master", "slave" }; char mf[10], id[18]; char id_cmd[12] = { ATAPI_IDENTIFY, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0 }; char ms_cmd[12] = { ATAPI_MODE_SENSE, 0, 0x2a, 0, 36, 0, 0, 0, 0, 0, 0, 0 }; char ls_cmd[12] = { ATAPI_LOG_SENSE, 0, 0x71, 0, 0, 0, 0, 0, 36, 0, 0, 0 }; char buf[36]; s = pt_atapi(tape, id_cmd, 36, buf, "identify"); if (s) return -1; dt = buf[0] & 0x1f; if (dt != 1) { if (verbose) printk("%s: Drive %d, unsupported type %d\n", tape->name, tape->drive, dt); return -1; } xs(buf, mf, 8, 8); xs(buf, id, 16, 16); tape->flags = 0; tape->capacity = 0; tape->bs = 0; if (!pt_ready_wait(tape, PT_READY_TMO)) tape->flags |= PT_MEDIA; if (!pt_atapi(tape, ms_cmd, 36, buf, "mode sense")) { if (!(buf[2] & 0x80)) tape->flags |= PT_WRITE_OK; tape->bs = xn(buf, 10, 2); } if (!pt_atapi(tape, ls_cmd, 36, buf, "log sense")) tape->capacity = xn(buf, 24, 4); printk("%s: %s %s, %s", tape->name, mf, id, ms[tape->drive]); if (!(tape->flags & PT_MEDIA)) printk(", no media\n"); else { if (!(tape->flags & PT_WRITE_OK)) printk(", RO"); printk(", blocksize %d, %d MB\n", tape->bs, tape->capacity / 1024); } return 0; } /* * returns 0, with id set if drive is detected * -1, if drive detection failed */ static int pt_probe(struct pt_unit *tape) { if (tape->drive == -1) { for (tape->drive = 0; tape->drive <= 1; tape->drive++) if (!pt_reset(tape)) return pt_identify(tape); } else { if (!pt_reset(tape)) return pt_identify(tape); } return -1; } static int pt_detect(void) { struct pt_unit *tape; int specified = 0, found = 0; int unit; printk("%s: %s version %s, major %d\n", name, name, PT_VERSION, major); par_drv = pi_register_driver(name); if (!par_drv) { pr_err("failed to register %s driver\n", name); return -1; } specified = 0; for (unit = 0; unit < PT_UNITS; unit++) { struct pt_unit *tape = &pt[unit]; tape->pi = &tape->pia; atomic_set(&tape->available, 1); tape->flags = 0; tape->last_sense = 0; tape->present = 0; tape->bufptr = NULL; tape->drive = DU[D_SLV]; snprintf(tape->name, PT_NAMELEN, "%s%d", name, unit); if (!DU[D_PRT]) continue; specified++; if (pi_init(tape->pi, 0, DU[D_PRT], DU[D_MOD], DU[D_UNI], DU[D_PRO], DU[D_DLY], pt_scratch, PI_PT, verbose, tape->name)) { if (!pt_probe(tape)) { tape->present = 1; found++; } else pi_release(tape->pi); } } if (specified == 0) { tape = pt; if (pi_init(tape->pi, 1, -1, -1, -1, -1, -1, pt_scratch, PI_PT, verbose, tape->name)) { if (!pt_probe(tape)) { tape->present = 1; found++; } else pi_release(tape->pi); } } if (found) return 0; pi_unregister_driver(par_drv); printk("%s: No ATAPI tape drive detected\n", name); return -1; } static int pt_open(struct inode *inode, struct file *file) { int unit = iminor(inode) & 0x7F; struct pt_unit *tape = pt + unit; int err; mutex_lock(&pt_mutex); if (unit >= PT_UNITS || (!tape->present)) { mutex_unlock(&pt_mutex); return -ENODEV; } err = -EBUSY; if (!atomic_dec_and_test(&tape->available)) goto out; pt_identify(tape); err = -ENODEV; if (!(tape->flags & PT_MEDIA)) goto out; err = -EROFS; if ((!(tape->flags & PT_WRITE_OK)) && (file->f_mode & FMODE_WRITE)) goto out; if (!(iminor(inode) & 128)) tape->flags |= PT_REWIND; err = -ENOMEM; tape->bufptr = kmalloc(PT_BUFSIZE, GFP_KERNEL); if (tape->bufptr == NULL) { printk("%s: buffer allocation failed\n", tape->name); goto out; } file->private_data = tape; mutex_unlock(&pt_mutex); return 0; out: atomic_inc(&tape->available); mutex_unlock(&pt_mutex); return err; } static long pt_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct pt_unit *tape = file->private_data; struct mtop __user *p = (void __user *)arg; struct mtop mtop; switch (cmd) { case MTIOCTOP: if (copy_from_user(&mtop, p, sizeof(struct mtop))) return -EFAULT; switch (mtop.mt_op) { case MTREW: mutex_lock(&pt_mutex); pt_rewind(tape); mutex_unlock(&pt_mutex); return 0; case MTWEOF: mutex_lock(&pt_mutex); pt_write_fm(tape); mutex_unlock(&pt_mutex); return 0; default: /* FIXME: rate limit ?? */ printk(KERN_DEBUG "%s: Unimplemented mt_op %d\n", tape->name, mtop.mt_op); return -EINVAL; } default: return -ENOTTY; } } static int pt_release(struct inode *inode, struct file *file) { struct pt_unit *tape = file->private_data; if (atomic_read(&tape->available) > 1) return -EINVAL; if (tape->flags & PT_WRITING) pt_write_fm(tape); if (tape->flags & PT_REWIND) pt_rewind(tape); kfree(tape->bufptr); tape->bufptr = NULL; atomic_inc(&tape->available); return 0; } static ssize_t pt_read(struct file *filp, char __user *buf, size_t count, loff_t * ppos) { struct pt_unit *tape = filp->private_data; struct pi_adapter *pi = tape->pi; char rd_cmd[12] = { ATAPI_READ_6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int k, n, r, p, s, t, b; if (!(tape->flags & (PT_READING | PT_WRITING))) { tape->flags |= PT_READING; if (pt_atapi(tape, rd_cmd, 0, NULL, "start read-ahead")) return -EIO; } else if (tape->flags & PT_WRITING) return -EIO; if (tape->flags & PT_EOF) return 0; t = 0; while (count > 0) { if (!pt_poll_dsc(tape, HZ / 100, PT_TMO, "read")) return -EIO; n = count; if (n > 32768) n = 32768; /* max per command */ b = (n - 1 + tape->bs) / tape->bs; n = b * tape->bs; /* rounded up to even block */ rd_cmd[4] = b; r = pt_command(tape, rd_cmd, n, "read"); mdelay(1); if (r) { pt_req_sense(tape, 0); return -EIO; } while (1) { r = pt_wait(tape, STAT_BUSY, STAT_DRQ | STAT_ERR | STAT_READY, DBMSG("read DRQ"), ""); if (r & STAT_SENSE) { pi_disconnect(pi); pt_req_sense(tape, 0); return -EIO; } if (r) tape->flags |= PT_EOF; s = read_reg(pi, 7); if (!(s & STAT_DRQ)) break; n = (read_reg(pi, 4) + 256 * read_reg(pi, 5)); p = (read_reg(pi, 2) & 3); if (p != 2) { pi_disconnect(pi); printk("%s: Phase error on read: %d\n", tape->name, p); return -EIO; } while (n > 0) { k = n; if (k > PT_BUFSIZE) k = PT_BUFSIZE; pi_read_block(pi, tape->bufptr, k); n -= k; b = k; if (b > count) b = count; if (copy_to_user(buf + t, tape->bufptr, b)) { pi_disconnect(pi); return -EFAULT; } t += b; count -= b; } } pi_disconnect(pi); if (tape->flags & PT_EOF) break; } return t; } static ssize_t pt_write(struct file *filp, const char __user *buf, size_t count, loff_t * ppos) { struct pt_unit *tape = filp->private_data; struct pi_adapter *pi = tape->pi; char wr_cmd[12] = { ATAPI_WRITE_6, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int k, n, r, p, s, t, b; if (!(tape->flags & PT_WRITE_OK)) return -EROFS; if (!(tape->flags & (PT_READING | PT_WRITING))) { tape->flags |= PT_WRITING; if (pt_atapi (tape, wr_cmd, 0, NULL, "start buffer-available mode")) return -EIO; } else if (tape->flags & PT_READING) return -EIO; if (tape->flags & PT_EOF) return -ENOSPC; t = 0; while (count > 0) { if (!pt_poll_dsc(tape, HZ / 100, PT_TMO, "write")) return -EIO; n = count; if (n > 32768) n = 32768; /* max per command */ b = (n - 1 + tape->bs) / tape->bs; n = b * tape->bs; /* rounded up to even block */ wr_cmd[4] = b; r = pt_command(tape, wr_cmd, n, "write"); mdelay(1); if (r) { /* error delivering command only */ pt_req_sense(tape, 0); return -EIO; } while (1) { r = pt_wait(tape, STAT_BUSY, STAT_DRQ | STAT_ERR | STAT_READY, DBMSG("write DRQ"), NULL); if (r & STAT_SENSE) { pi_disconnect(pi); pt_req_sense(tape, 0); return -EIO; } if (r) tape->flags |= PT_EOF; s = read_reg(pi, 7); if (!(s & STAT_DRQ)) break; n = (read_reg(pi, 4) + 256 * read_reg(pi, 5)); p = (read_reg(pi, 2) & 3); if (p != 0) { pi_disconnect(pi); printk("%s: Phase error on write: %d \n", tape->name, p); return -EIO; } while (n > 0) { k = n; if (k > PT_BUFSIZE) k = PT_BUFSIZE; b = k; if (b > count) b = count; if (copy_from_user(tape->bufptr, buf + t, b)) { pi_disconnect(pi); return -EFAULT; } pi_write_block(pi, tape->bufptr, k); t += b; count -= b; n -= k; } } pi_disconnect(pi); if (tape->flags & PT_EOF) break; } return t; } static int __init pt_init(void) { int unit; int err; if (disable) { err = -EINVAL; goto out; } if (pt_detect()) { err = -ENODEV; goto out; } err = register_chrdev(major, name, &pt_fops); if (err < 0) { printk("pt_init: unable to get major number %d\n", major); for (unit = 0; unit < PT_UNITS; unit++) if (pt[unit].present) pi_release(pt[unit].pi); goto out; } major = err; pt_class = class_create(THIS_MODULE, "pt"); if (IS_ERR(pt_class)) { err = PTR_ERR(pt_class); goto out_chrdev; } for (unit = 0; unit < PT_UNITS; unit++) if (pt[unit].present) { device_create(pt_class, NULL, MKDEV(major, unit), NULL, "pt%d", unit); device_create(pt_class, NULL, MKDEV(major, unit + 128), NULL, "pt%dn", unit); } goto out; out_chrdev: unregister_chrdev(major, "pt"); out: return err; } static void __exit pt_exit(void) { int unit; for (unit = 0; unit < PT_UNITS; unit++) if (pt[unit].present) { device_destroy(pt_class, MKDEV(major, unit)); device_destroy(pt_class, MKDEV(major, unit + 128)); } class_destroy(pt_class); unregister_chrdev(major, name); for (unit = 0; unit < PT_UNITS; unit++) if (pt[unit].present) pi_release(pt[unit].pi); } MODULE_LICENSE("GPL"); module_init(pt_init) module_exit(pt_exit)
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1