Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Loic Poulain | 4790 | 92.06% | 19 | 44.19% |
Tedd Ho-Jeong An | 203 | 3.90% | 8 | 18.60% |
Andy Shevchenko | 86 | 1.65% | 1 | 2.33% |
Johan Hovold | 48 | 0.92% | 1 | 2.33% |
Marcel Holtmann | 47 | 0.90% | 6 | 13.95% |
Vladis Dronov | 12 | 0.23% | 1 | 2.33% |
Bart Van Assche | 6 | 0.12% | 1 | 2.33% |
Johannes Berg | 5 | 0.10% | 2 | 4.65% |
Thomas Gleixner | 2 | 0.04% | 1 | 2.33% |
Anton Protopopov | 2 | 0.04% | 1 | 2.33% |
Jia-Ju Bai | 1 | 0.02% | 1 | 2.33% |
Gustavo A. R. Silva | 1 | 0.02% | 1 | 2.33% |
Total | 5203 | 43 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * * Bluetooth HCI UART driver for Intel devices * * Copyright (C) 2015 Intel Corporation */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/skbuff.h> #include <linux/firmware.h> #include <linux/module.h> #include <linux/wait.h> #include <linux/tty.h> #include <linux/platform_device.h> #include <linux/gpio/consumer.h> #include <linux/acpi.h> #include <linux/interrupt.h> #include <linux/pm_runtime.h> #include <net/bluetooth/bluetooth.h> #include <net/bluetooth/hci_core.h> #include "hci_uart.h" #include "btintel.h" #define STATE_BOOTLOADER 0 #define STATE_DOWNLOADING 1 #define STATE_FIRMWARE_LOADED 2 #define STATE_FIRMWARE_FAILED 3 #define STATE_BOOTING 4 #define STATE_LPM_ENABLED 5 #define STATE_TX_ACTIVE 6 #define STATE_SUSPENDED 7 #define STATE_LPM_TRANSACTION 8 #define HCI_LPM_WAKE_PKT 0xf0 #define HCI_LPM_PKT 0xf1 #define HCI_LPM_MAX_SIZE 10 #define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE #define LPM_OP_TX_NOTIFY 0x00 #define LPM_OP_SUSPEND_ACK 0x02 #define LPM_OP_RESUME_ACK 0x03 #define LPM_SUSPEND_DELAY_MS 1000 struct hci_lpm_pkt { __u8 opcode; __u8 dlen; __u8 data[]; } __packed; struct intel_device { struct list_head list; struct platform_device *pdev; struct gpio_desc *reset; struct hci_uart *hu; struct mutex hu_lock; int irq; }; static LIST_HEAD(intel_device_list); static DEFINE_MUTEX(intel_device_list_lock); struct intel_data { struct sk_buff *rx_skb; struct sk_buff_head txq; struct work_struct busy_work; struct hci_uart *hu; unsigned long flags; }; static u8 intel_convert_speed(unsigned int speed) { switch (speed) { case 9600: return 0x00; case 19200: return 0x01; case 38400: return 0x02; case 57600: return 0x03; case 115200: return 0x04; case 230400: return 0x05; case 460800: return 0x06; case 921600: return 0x07; case 1843200: return 0x08; case 3250000: return 0x09; case 2000000: return 0x0a; case 3000000: return 0x0b; default: return 0xff; } } static int intel_wait_booting(struct hci_uart *hu) { struct intel_data *intel = hu->priv; int err; err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING, TASK_INTERRUPTIBLE, msecs_to_jiffies(1000)); if (err == -EINTR) { bt_dev_err(hu->hdev, "Device boot interrupted"); return -EINTR; } if (err) { bt_dev_err(hu->hdev, "Device boot timeout"); return -ETIMEDOUT; } return err; } #ifdef CONFIG_PM static int intel_wait_lpm_transaction(struct hci_uart *hu) { struct intel_data *intel = hu->priv; int err; err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION, TASK_INTERRUPTIBLE, msecs_to_jiffies(1000)); if (err == -EINTR) { bt_dev_err(hu->hdev, "LPM transaction interrupted"); return -EINTR; } if (err) { bt_dev_err(hu->hdev, "LPM transaction timeout"); return -ETIMEDOUT; } return err; } static int intel_lpm_suspend(struct hci_uart *hu) { static const u8 suspend[] = { 0x01, 0x01, 0x01 }; struct intel_data *intel = hu->priv; struct sk_buff *skb; if (!test_bit(STATE_LPM_ENABLED, &intel->flags) || test_bit(STATE_SUSPENDED, &intel->flags)) return 0; if (test_bit(STATE_TX_ACTIVE, &intel->flags)) return -EAGAIN; bt_dev_dbg(hu->hdev, "Suspending"); skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL); if (!skb) { bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet"); return -ENOMEM; } skb_put_data(skb, suspend, sizeof(suspend)); hci_skb_pkt_type(skb) = HCI_LPM_PKT; set_bit(STATE_LPM_TRANSACTION, &intel->flags); /* LPM flow is a priority, enqueue packet at list head */ skb_queue_head(&intel->txq, skb); hci_uart_tx_wakeup(hu); intel_wait_lpm_transaction(hu); /* Even in case of failure, continue and test the suspended flag */ clear_bit(STATE_LPM_TRANSACTION, &intel->flags); if (!test_bit(STATE_SUSPENDED, &intel->flags)) { bt_dev_err(hu->hdev, "Device suspend error"); return -EINVAL; } bt_dev_dbg(hu->hdev, "Suspended"); hci_uart_set_flow_control(hu, true); return 0; } static int intel_lpm_resume(struct hci_uart *hu) { struct intel_data *intel = hu->priv; struct sk_buff *skb; if (!test_bit(STATE_LPM_ENABLED, &intel->flags) || !test_bit(STATE_SUSPENDED, &intel->flags)) return 0; bt_dev_dbg(hu->hdev, "Resuming"); hci_uart_set_flow_control(hu, false); skb = bt_skb_alloc(0, GFP_KERNEL); if (!skb) { bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet"); return -ENOMEM; } hci_skb_pkt_type(skb) = HCI_LPM_WAKE_PKT; set_bit(STATE_LPM_TRANSACTION, &intel->flags); /* LPM flow is a priority, enqueue packet at list head */ skb_queue_head(&intel->txq, skb); hci_uart_tx_wakeup(hu); intel_wait_lpm_transaction(hu); /* Even in case of failure, continue and test the suspended flag */ clear_bit(STATE_LPM_TRANSACTION, &intel->flags); if (test_bit(STATE_SUSPENDED, &intel->flags)) { bt_dev_err(hu->hdev, "Device resume error"); return -EINVAL; } bt_dev_dbg(hu->hdev, "Resumed"); return 0; } #endif /* CONFIG_PM */ static int intel_lpm_host_wake(struct hci_uart *hu) { static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 }; struct intel_data *intel = hu->priv; struct sk_buff *skb; hci_uart_set_flow_control(hu, false); clear_bit(STATE_SUSPENDED, &intel->flags); skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL); if (!skb) { bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet"); return -ENOMEM; } skb_put_data(skb, lpm_resume_ack, sizeof(lpm_resume_ack)); hci_skb_pkt_type(skb) = HCI_LPM_PKT; /* LPM flow is a priority, enqueue packet at list head */ skb_queue_head(&intel->txq, skb); hci_uart_tx_wakeup(hu); bt_dev_dbg(hu->hdev, "Resumed by controller"); return 0; } static irqreturn_t intel_irq(int irq, void *dev_id) { struct intel_device *idev = dev_id; dev_info(&idev->pdev->dev, "hci_intel irq\n"); mutex_lock(&idev->hu_lock); if (idev->hu) intel_lpm_host_wake(idev->hu); mutex_unlock(&idev->hu_lock); /* Host/Controller are now LPM resumed, trigger a new delayed suspend */ pm_runtime_get(&idev->pdev->dev); pm_runtime_mark_last_busy(&idev->pdev->dev); pm_runtime_put_autosuspend(&idev->pdev->dev); return IRQ_HANDLED; } static int intel_set_power(struct hci_uart *hu, bool powered) { struct list_head *p; int err = -ENODEV; if (!hu->tty->dev) return err; mutex_lock(&intel_device_list_lock); list_for_each(p, &intel_device_list) { struct intel_device *idev = list_entry(p, struct intel_device, list); /* tty device and pdev device should share the same parent * which is the UART port. */ if (hu->tty->dev->parent != idev->pdev->dev.parent) continue; if (!idev->reset) { err = -ENOTSUPP; break; } BT_INFO("hu %p, Switching compatible pm device (%s) to %u", hu, dev_name(&idev->pdev->dev), powered); gpiod_set_value(idev->reset, powered); /* Provide to idev a hu reference which is used to run LPM * transactions (lpm suspend/resume) from PM callbacks. * hu needs to be protected against concurrent removing during * these PM ops. */ mutex_lock(&idev->hu_lock); idev->hu = powered ? hu : NULL; mutex_unlock(&idev->hu_lock); if (idev->irq < 0) break; if (powered && device_can_wakeup(&idev->pdev->dev)) { err = devm_request_threaded_irq(&idev->pdev->dev, idev->irq, NULL, intel_irq, IRQF_ONESHOT, "bt-host-wake", idev); if (err) { BT_ERR("hu %p, unable to allocate irq-%d", hu, idev->irq); break; } device_wakeup_enable(&idev->pdev->dev); pm_runtime_set_active(&idev->pdev->dev); pm_runtime_use_autosuspend(&idev->pdev->dev); pm_runtime_set_autosuspend_delay(&idev->pdev->dev, LPM_SUSPEND_DELAY_MS); pm_runtime_enable(&idev->pdev->dev); } else if (!powered && device_may_wakeup(&idev->pdev->dev)) { devm_free_irq(&idev->pdev->dev, idev->irq, idev); device_wakeup_disable(&idev->pdev->dev); pm_runtime_disable(&idev->pdev->dev); } } mutex_unlock(&intel_device_list_lock); return err; } static void intel_busy_work(struct work_struct *work) { struct list_head *p; struct intel_data *intel = container_of(work, struct intel_data, busy_work); if (!intel->hu->tty->dev) return; /* Link is busy, delay the suspend */ mutex_lock(&intel_device_list_lock); list_for_each(p, &intel_device_list) { struct intel_device *idev = list_entry(p, struct intel_device, list); if (intel->hu->tty->dev->parent == idev->pdev->dev.parent) { pm_runtime_get(&idev->pdev->dev); pm_runtime_mark_last_busy(&idev->pdev->dev); pm_runtime_put_autosuspend(&idev->pdev->dev); break; } } mutex_unlock(&intel_device_list_lock); } static int intel_open(struct hci_uart *hu) { struct intel_data *intel; BT_DBG("hu %p", hu); if (!hci_uart_has_flow_control(hu)) return -EOPNOTSUPP; intel = kzalloc(sizeof(*intel), GFP_KERNEL); if (!intel) return -ENOMEM; skb_queue_head_init(&intel->txq); INIT_WORK(&intel->busy_work, intel_busy_work); intel->hu = hu; hu->priv = intel; if (!intel_set_power(hu, true)) set_bit(STATE_BOOTING, &intel->flags); return 0; } static int intel_close(struct hci_uart *hu) { struct intel_data *intel = hu->priv; BT_DBG("hu %p", hu); cancel_work_sync(&intel->busy_work); intel_set_power(hu, false); skb_queue_purge(&intel->txq); kfree_skb(intel->rx_skb); kfree(intel); hu->priv = NULL; return 0; } static int intel_flush(struct hci_uart *hu) { struct intel_data *intel = hu->priv; BT_DBG("hu %p", hu); skb_queue_purge(&intel->txq); return 0; } static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode) { struct sk_buff *skb; struct hci_event_hdr *hdr; struct hci_ev_cmd_complete *evt; skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_KERNEL); if (!skb) return -ENOMEM; hdr = skb_put(skb, sizeof(*hdr)); hdr->evt = HCI_EV_CMD_COMPLETE; hdr->plen = sizeof(*evt) + 1; evt = skb_put(skb, sizeof(*evt)); evt->ncmd = 0x01; evt->opcode = cpu_to_le16(opcode); skb_put_u8(skb, 0x00); hci_skb_pkt_type(skb) = HCI_EVENT_PKT; return hci_recv_frame(hdev, skb); } static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed) { struct intel_data *intel = hu->priv; struct hci_dev *hdev = hu->hdev; u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 }; struct sk_buff *skb; int err; /* This can be the first command sent to the chip, check * that the controller is ready. */ err = intel_wait_booting(hu); clear_bit(STATE_BOOTING, &intel->flags); /* In case of timeout, try to continue anyway */ if (err && err != -ETIMEDOUT) return err; bt_dev_info(hdev, "Change controller speed to %d", speed); speed_cmd[3] = intel_convert_speed(speed); if (speed_cmd[3] == 0xff) { bt_dev_err(hdev, "Unsupported speed"); return -EINVAL; } /* Device will not accept speed change if Intel version has not been * previously requested. */ skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) { bt_dev_err(hdev, "Reading Intel version information failed (%ld)", PTR_ERR(skb)); return PTR_ERR(skb); } kfree_skb(skb); skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL); if (!skb) { bt_dev_err(hdev, "Failed to alloc memory for baudrate packet"); return -ENOMEM; } skb_put_data(skb, speed_cmd, sizeof(speed_cmd)); hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; hci_uart_set_flow_control(hu, true); skb_queue_tail(&intel->txq, skb); hci_uart_tx_wakeup(hu); /* wait 100ms to change baudrate on controller side */ msleep(100); hci_uart_set_baudrate(hu, speed); hci_uart_set_flow_control(hu, false); return 0; } static int intel_setup(struct hci_uart *hu) { struct intel_data *intel = hu->priv; struct hci_dev *hdev = hu->hdev; struct sk_buff *skb; struct intel_version ver; struct intel_boot_params params; struct list_head *p; const struct firmware *fw; char fwname[64]; u32 boot_param; ktime_t calltime, delta, rettime; unsigned long long duration; unsigned int init_speed, oper_speed; int speed_change = 0; int err; bt_dev_dbg(hdev, "start intel_setup"); hu->hdev->set_diag = btintel_set_diag; hu->hdev->set_bdaddr = btintel_set_bdaddr; /* Set the default boot parameter to 0x0 and it is updated to * SKU specific boot parameter after reading Intel_Write_Boot_Params * command while downloading the firmware. */ boot_param = 0x00000000; calltime = ktime_get(); if (hu->init_speed) init_speed = hu->init_speed; else init_speed = hu->proto->init_speed; if (hu->oper_speed) oper_speed = hu->oper_speed; else oper_speed = hu->proto->oper_speed; if (oper_speed && init_speed && oper_speed != init_speed) speed_change = 1; /* Check that the controller is ready */ err = intel_wait_booting(hu); clear_bit(STATE_BOOTING, &intel->flags); /* In case of timeout, try to continue anyway */ if (err && err != -ETIMEDOUT) return err; set_bit(STATE_BOOTLOADER, &intel->flags); /* Read the Intel version information to determine if the device * is in bootloader mode or if it already has operational firmware * loaded. */ err = btintel_read_version(hdev, &ver); if (err) return err; /* The hardware platform number has a fixed value of 0x37 and * for now only accept this single value. */ if (ver.hw_platform != 0x37) { bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)", ver.hw_platform); return -EINVAL; } /* Check for supported iBT hardware variants of this firmware * loading method. * * This check has been put in place to ensure correct forward * compatibility options when newer hardware variants come along. */ switch (ver.hw_variant) { case 0x0b: /* LnP */ case 0x0c: /* WsP */ case 0x12: /* ThP */ break; default: bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)", ver.hw_variant); return -EINVAL; } btintel_version_info(hdev, &ver); /* The firmware variant determines if the device is in bootloader * mode or is running operational firmware. The value 0x06 identifies * the bootloader and the value 0x23 identifies the operational * firmware. * * When the operational firmware is already present, then only * the check for valid Bluetooth device address is needed. This * determines if the device will be added as configured or * unconfigured controller. * * It is not possible to use the Secure Boot Parameters in this * case since that command is only available in bootloader mode. */ if (ver.fw_variant == 0x23) { clear_bit(STATE_BOOTLOADER, &intel->flags); btintel_check_bdaddr(hdev); return 0; } /* If the device is not in bootloader mode, then the only possible * choice is to return an error and abort the device initialization. */ if (ver.fw_variant != 0x06) { bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)", ver.fw_variant); return -ENODEV; } /* Read the secure boot parameters to identify the operating * details of the bootloader. */ err = btintel_read_boot_params(hdev, ¶ms); if (err) return err; /* It is required that every single firmware fragment is acknowledged * with a command complete event. If the boot parameters indicate * that this bootloader does not send them, then abort the setup. */ if (params.limited_cce != 0x00) { bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)", params.limited_cce); return -EINVAL; } /* If the OTP has no valid Bluetooth device address, then there will * also be no valid address for the operational firmware. */ if (!bacmp(¶ms.otp_bdaddr, BDADDR_ANY)) { bt_dev_info(hdev, "No device address configured"); set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks); } /* With this Intel bootloader only the hardware variant and device * revision information are used to select the right firmware for SfP * and WsP. * * The firmware filename is ibt-<hw_variant>-<dev_revid>.sfi. * * Currently the supported hardware variants are: * 11 (0x0b) for iBT 3.0 (LnP/SfP) * 12 (0x0c) for iBT 3.5 (WsP) * * For ThP/JfP and for future SKU's, the FW name varies based on HW * variant, HW revision and FW revision, as these are dependent on CNVi * and RF Combination. * * 18 (0x12) for iBT3.5 (ThP/JfP) * * The firmware file name for these will be * ibt-<hw_variant>-<hw_revision>-<fw_revision>.sfi. * */ switch (ver.hw_variant) { case 0x0b: /* SfP */ case 0x0c: /* WsP */ snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.sfi", le16_to_cpu(ver.hw_variant), le16_to_cpu(params.dev_revid)); break; case 0x12: /* ThP */ snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.sfi", le16_to_cpu(ver.hw_variant), le16_to_cpu(ver.hw_revision), le16_to_cpu(ver.fw_revision)); break; default: bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)", ver.hw_variant); return -EINVAL; } err = request_firmware(&fw, fwname, &hdev->dev); if (err < 0) { bt_dev_err(hdev, "Failed to load Intel firmware file (%d)", err); return err; } bt_dev_info(hdev, "Found device firmware: %s", fwname); /* Save the DDC file name for later */ switch (ver.hw_variant) { case 0x0b: /* SfP */ case 0x0c: /* WsP */ snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u.ddc", le16_to_cpu(ver.hw_variant), le16_to_cpu(params.dev_revid)); break; case 0x12: /* ThP */ snprintf(fwname, sizeof(fwname), "intel/ibt-%u-%u-%u.ddc", le16_to_cpu(ver.hw_variant), le16_to_cpu(ver.hw_revision), le16_to_cpu(ver.fw_revision)); break; default: bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)", ver.hw_variant); return -EINVAL; } if (fw->size < 644) { bt_dev_err(hdev, "Invalid size of firmware file (%zu)", fw->size); err = -EBADF; goto done; } set_bit(STATE_DOWNLOADING, &intel->flags); /* Start firmware downloading and get boot parameter */ err = btintel_download_firmware(hdev, fw, &boot_param); if (err < 0) goto done; set_bit(STATE_FIRMWARE_LOADED, &intel->flags); bt_dev_info(hdev, "Waiting for firmware download to complete"); /* Before switching the device into operational mode and with that * booting the loaded firmware, wait for the bootloader notification * that all fragments have been successfully received. * * When the event processing receives the notification, then the * STATE_DOWNLOADING flag will be cleared. * * The firmware loading should not take longer than 5 seconds * and thus just timeout if that happens and fail the setup * of this device. */ err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING, TASK_INTERRUPTIBLE, msecs_to_jiffies(5000)); if (err == -EINTR) { bt_dev_err(hdev, "Firmware loading interrupted"); err = -EINTR; goto done; } if (err) { bt_dev_err(hdev, "Firmware loading timeout"); err = -ETIMEDOUT; goto done; } if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) { bt_dev_err(hdev, "Firmware loading failed"); err = -ENOEXEC; goto done; } rettime = ktime_get(); delta = ktime_sub(rettime, calltime); duration = (unsigned long long) ktime_to_ns(delta) >> 10; bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration); done: release_firmware(fw); if (err < 0) return err; /* We need to restore the default speed before Intel reset */ if (speed_change) { err = intel_set_baudrate(hu, init_speed); if (err) return err; } calltime = ktime_get(); set_bit(STATE_BOOTING, &intel->flags); err = btintel_send_intel_reset(hdev, boot_param); if (err) return err; /* The bootloader will not indicate when the device is ready. This * is done by the operational firmware sending bootup notification. * * Booting into operational firmware should not take longer than * 1 second. However if that happens, then just fail the setup * since something went wrong. */ bt_dev_info(hdev, "Waiting for device to boot"); err = intel_wait_booting(hu); if (err) return err; clear_bit(STATE_BOOTING, &intel->flags); rettime = ktime_get(); delta = ktime_sub(rettime, calltime); duration = (unsigned long long) ktime_to_ns(delta) >> 10; bt_dev_info(hdev, "Device booted in %llu usecs", duration); /* Enable LPM if matching pdev with wakeup enabled, set TX active * until further LPM TX notification. */ mutex_lock(&intel_device_list_lock); list_for_each(p, &intel_device_list) { struct intel_device *dev = list_entry(p, struct intel_device, list); if (!hu->tty->dev) break; if (hu->tty->dev->parent == dev->pdev->dev.parent) { if (device_may_wakeup(&dev->pdev->dev)) { set_bit(STATE_LPM_ENABLED, &intel->flags); set_bit(STATE_TX_ACTIVE, &intel->flags); } break; } } mutex_unlock(&intel_device_list_lock); /* Ignore errors, device can work without DDC parameters */ btintel_load_ddc_config(hdev, fwname); skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) return PTR_ERR(skb); kfree_skb(skb); if (speed_change) { err = intel_set_baudrate(hu, oper_speed); if (err) return err; } bt_dev_info(hdev, "Setup complete"); clear_bit(STATE_BOOTLOADER, &intel->flags); return 0; } static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb) { struct hci_uart *hu = hci_get_drvdata(hdev); struct intel_data *intel = hu->priv; struct hci_event_hdr *hdr; if (!test_bit(STATE_BOOTLOADER, &intel->flags) && !test_bit(STATE_BOOTING, &intel->flags)) goto recv; hdr = (void *)skb->data; /* When the firmware loading completes the device sends * out a vendor specific event indicating the result of * the firmware loading. */ if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 && skb->data[2] == 0x06) { if (skb->data[3] != 0x00) set_bit(STATE_FIRMWARE_FAILED, &intel->flags); if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) && test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) wake_up_bit(&intel->flags, STATE_DOWNLOADING); /* When switching to the operational firmware the device * sends a vendor specific event indicating that the bootup * completed. */ } else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 && skb->data[2] == 0x02) { if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) wake_up_bit(&intel->flags, STATE_BOOTING); } recv: return hci_recv_frame(hdev, skb); } static void intel_recv_lpm_notify(struct hci_dev *hdev, int value) { struct hci_uart *hu = hci_get_drvdata(hdev); struct intel_data *intel = hu->priv; bt_dev_dbg(hdev, "TX idle notification (%d)", value); if (value) { set_bit(STATE_TX_ACTIVE, &intel->flags); schedule_work(&intel->busy_work); } else { clear_bit(STATE_TX_ACTIVE, &intel->flags); } } static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb) { struct hci_lpm_pkt *lpm = (void *)skb->data; struct hci_uart *hu = hci_get_drvdata(hdev); struct intel_data *intel = hu->priv; switch (lpm->opcode) { case LPM_OP_TX_NOTIFY: if (lpm->dlen < 1) { bt_dev_err(hu->hdev, "Invalid LPM notification packet"); break; } intel_recv_lpm_notify(hdev, lpm->data[0]); break; case LPM_OP_SUSPEND_ACK: set_bit(STATE_SUSPENDED, &intel->flags); if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION); break; case LPM_OP_RESUME_ACK: clear_bit(STATE_SUSPENDED, &intel->flags); if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION); break; default: bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode); break; } kfree_skb(skb); return 0; } #define INTEL_RECV_LPM \ .type = HCI_LPM_PKT, \ .hlen = HCI_LPM_HDR_SIZE, \ .loff = 1, \ .lsize = 1, \ .maxlen = HCI_LPM_MAX_SIZE static const struct h4_recv_pkt intel_recv_pkts[] = { { H4_RECV_ACL, .recv = hci_recv_frame }, { H4_RECV_SCO, .recv = hci_recv_frame }, { H4_RECV_EVENT, .recv = intel_recv_event }, { INTEL_RECV_LPM, .recv = intel_recv_lpm }, }; static int intel_recv(struct hci_uart *hu, const void *data, int count) { struct intel_data *intel = hu->priv; if (!test_bit(HCI_UART_REGISTERED, &hu->flags)) return -EUNATCH; intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count, intel_recv_pkts, ARRAY_SIZE(intel_recv_pkts)); if (IS_ERR(intel->rx_skb)) { int err = PTR_ERR(intel->rx_skb); bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err); intel->rx_skb = NULL; return err; } return count; } static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb) { struct intel_data *intel = hu->priv; struct list_head *p; BT_DBG("hu %p skb %p", hu, skb); if (!hu->tty->dev) goto out_enqueue; /* Be sure our controller is resumed and potential LPM transaction * completed before enqueuing any packet. */ mutex_lock(&intel_device_list_lock); list_for_each(p, &intel_device_list) { struct intel_device *idev = list_entry(p, struct intel_device, list); if (hu->tty->dev->parent == idev->pdev->dev.parent) { pm_runtime_get_sync(&idev->pdev->dev); pm_runtime_mark_last_busy(&idev->pdev->dev); pm_runtime_put_autosuspend(&idev->pdev->dev); break; } } mutex_unlock(&intel_device_list_lock); out_enqueue: skb_queue_tail(&intel->txq, skb); return 0; } static struct sk_buff *intel_dequeue(struct hci_uart *hu) { struct intel_data *intel = hu->priv; struct sk_buff *skb; skb = skb_dequeue(&intel->txq); if (!skb) return skb; if (test_bit(STATE_BOOTLOADER, &intel->flags) && (hci_skb_pkt_type(skb) == HCI_COMMAND_PKT)) { struct hci_command_hdr *cmd = (void *)skb->data; __u16 opcode = le16_to_cpu(cmd->opcode); /* When the 0xfc01 command is issued to boot into * the operational firmware, it will actually not * send a command complete event. To keep the flow * control working inject that event here. */ if (opcode == 0xfc01) inject_cmd_complete(hu->hdev, opcode); } /* Prepend skb with frame type */ memcpy(skb_push(skb, 1), &hci_skb_pkt_type(skb), 1); return skb; } static const struct hci_uart_proto intel_proto = { .id = HCI_UART_INTEL, .name = "Intel", .manufacturer = 2, .init_speed = 115200, .oper_speed = 3000000, .open = intel_open, .close = intel_close, .flush = intel_flush, .setup = intel_setup, .set_baudrate = intel_set_baudrate, .recv = intel_recv, .enqueue = intel_enqueue, .dequeue = intel_dequeue, }; #ifdef CONFIG_ACPI static const struct acpi_device_id intel_acpi_match[] = { { "INT33E1", 0 }, { }, }; MODULE_DEVICE_TABLE(acpi, intel_acpi_match); #endif #ifdef CONFIG_PM static int intel_suspend_device(struct device *dev) { struct intel_device *idev = dev_get_drvdata(dev); mutex_lock(&idev->hu_lock); if (idev->hu) intel_lpm_suspend(idev->hu); mutex_unlock(&idev->hu_lock); return 0; } static int intel_resume_device(struct device *dev) { struct intel_device *idev = dev_get_drvdata(dev); mutex_lock(&idev->hu_lock); if (idev->hu) intel_lpm_resume(idev->hu); mutex_unlock(&idev->hu_lock); return 0; } #endif #ifdef CONFIG_PM_SLEEP static int intel_suspend(struct device *dev) { struct intel_device *idev = dev_get_drvdata(dev); if (device_may_wakeup(dev)) enable_irq_wake(idev->irq); return intel_suspend_device(dev); } static int intel_resume(struct device *dev) { struct intel_device *idev = dev_get_drvdata(dev); if (device_may_wakeup(dev)) disable_irq_wake(idev->irq); return intel_resume_device(dev); } #endif static const struct dev_pm_ops intel_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume) SET_RUNTIME_PM_OPS(intel_suspend_device, intel_resume_device, NULL) }; static const struct acpi_gpio_params reset_gpios = { 0, 0, false }; static const struct acpi_gpio_params host_wake_gpios = { 1, 0, false }; static const struct acpi_gpio_mapping acpi_hci_intel_gpios[] = { { "reset-gpios", &reset_gpios, 1 }, { "host-wake-gpios", &host_wake_gpios, 1 }, { }, }; static int intel_probe(struct platform_device *pdev) { struct intel_device *idev; int ret; idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL); if (!idev) return -ENOMEM; mutex_init(&idev->hu_lock); idev->pdev = pdev; ret = devm_acpi_dev_add_driver_gpios(&pdev->dev, acpi_hci_intel_gpios); if (ret) dev_dbg(&pdev->dev, "Unable to add GPIO mapping table\n"); idev->reset = devm_gpiod_get(&pdev->dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(idev->reset)) { dev_err(&pdev->dev, "Unable to retrieve gpio\n"); return PTR_ERR(idev->reset); } idev->irq = platform_get_irq(pdev, 0); if (idev->irq < 0) { struct gpio_desc *host_wake; dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n"); host_wake = devm_gpiod_get(&pdev->dev, "host-wake", GPIOD_IN); if (IS_ERR(host_wake)) { dev_err(&pdev->dev, "Unable to retrieve IRQ\n"); goto no_irq; } idev->irq = gpiod_to_irq(host_wake); if (idev->irq < 0) { dev_err(&pdev->dev, "No corresponding irq for gpio\n"); goto no_irq; } } /* Only enable wake-up/irq when controller is powered */ device_set_wakeup_capable(&pdev->dev, true); device_wakeup_disable(&pdev->dev); no_irq: platform_set_drvdata(pdev, idev); /* Place this instance on the device list */ mutex_lock(&intel_device_list_lock); list_add_tail(&idev->list, &intel_device_list); mutex_unlock(&intel_device_list_lock); dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n", desc_to_gpio(idev->reset), idev->irq); return 0; } static int intel_remove(struct platform_device *pdev) { struct intel_device *idev = platform_get_drvdata(pdev); device_wakeup_disable(&pdev->dev); mutex_lock(&intel_device_list_lock); list_del(&idev->list); mutex_unlock(&intel_device_list_lock); dev_info(&pdev->dev, "unregistered.\n"); return 0; } static struct platform_driver intel_driver = { .probe = intel_probe, .remove = intel_remove, .driver = { .name = "hci_intel", .acpi_match_table = ACPI_PTR(intel_acpi_match), .pm = &intel_pm_ops, }, }; int __init intel_init(void) { platform_driver_register(&intel_driver); return hci_uart_register_proto(&intel_proto); } int __exit intel_deinit(void) { platform_driver_unregister(&intel_driver); return hci_uart_unregister_proto(&intel_proto); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1