Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Eric Anholt | 4459 | 46.78% | 12 | 22.64% |
Martin Sperl | 3995 | 41.92% | 12 | 22.64% |
Boris Brezillon | 341 | 3.58% | 7 | 13.21% |
Stefan Wahren | 294 | 3.08% | 5 | 9.43% |
Phil Elwell | 159 | 1.67% | 3 | 5.66% |
Remi Pommarel | 136 | 1.43% | 3 | 5.66% |
Stephen Boyd | 94 | 0.99% | 3 | 5.66% |
Simon Arlott | 25 | 0.26% | 1 | 1.89% |
Yisheng Xie | 12 | 0.13% | 1 | 1.89% |
Kees Cook | 8 | 0.08% | 2 | 3.77% |
Yue haibing | 3 | 0.03% | 1 | 1.89% |
Stephen Warren | 2 | 0.02% | 1 | 1.89% |
Wei Yongjun | 2 | 0.02% | 1 | 1.89% |
Nicolas Saenz Julienne | 1 | 0.01% | 1 | 1.89% |
Total | 9531 | 53 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright (C) 2010,2015 Broadcom * Copyright (C) 2012 Stephen Warren */ /** * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain) * * The clock tree on the 2835 has several levels. There's a root * oscillator running at 19.2Mhz. After the oscillator there are 5 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays", * and "HDMI displays". Those 5 PLLs each can divide their output to * produce up to 4 channels. Finally, there is the level of clocks to * be consumed by other hardware components (like "H264" or "HDMI * state machine"), which divide off of some subset of the PLL * channels. * * All of the clocks in the tree are exposed in the DT, because the DT * may want to make assignments of the final layer of clocks to the * PLL channels, and some components of the hardware will actually * skip layers of the tree (for example, the pixel clock comes * directly from the PLLH PIX channel without using a CM_*CTL clock * generator). */ #include <linux/clk-provider.h> #include <linux/clkdev.h> #include <linux/clk.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <dt-bindings/clock/bcm2835.h> #define CM_PASSWORD 0x5a000000 #define CM_GNRICCTL 0x000 #define CM_GNRICDIV 0x004 # define CM_DIV_FRAC_BITS 12 # define CM_DIV_FRAC_MASK GENMASK(CM_DIV_FRAC_BITS - 1, 0) #define CM_VPUCTL 0x008 #define CM_VPUDIV 0x00c #define CM_SYSCTL 0x010 #define CM_SYSDIV 0x014 #define CM_PERIACTL 0x018 #define CM_PERIADIV 0x01c #define CM_PERIICTL 0x020 #define CM_PERIIDIV 0x024 #define CM_H264CTL 0x028 #define CM_H264DIV 0x02c #define CM_ISPCTL 0x030 #define CM_ISPDIV 0x034 #define CM_V3DCTL 0x038 #define CM_V3DDIV 0x03c #define CM_CAM0CTL 0x040 #define CM_CAM0DIV 0x044 #define CM_CAM1CTL 0x048 #define CM_CAM1DIV 0x04c #define CM_CCP2CTL 0x050 #define CM_CCP2DIV 0x054 #define CM_DSI0ECTL 0x058 #define CM_DSI0EDIV 0x05c #define CM_DSI0PCTL 0x060 #define CM_DSI0PDIV 0x064 #define CM_DPICTL 0x068 #define CM_DPIDIV 0x06c #define CM_GP0CTL 0x070 #define CM_GP0DIV 0x074 #define CM_GP1CTL 0x078 #define CM_GP1DIV 0x07c #define CM_GP2CTL 0x080 #define CM_GP2DIV 0x084 #define CM_HSMCTL 0x088 #define CM_HSMDIV 0x08c #define CM_OTPCTL 0x090 #define CM_OTPDIV 0x094 #define CM_PCMCTL 0x098 #define CM_PCMDIV 0x09c #define CM_PWMCTL 0x0a0 #define CM_PWMDIV 0x0a4 #define CM_SLIMCTL 0x0a8 #define CM_SLIMDIV 0x0ac #define CM_SMICTL 0x0b0 #define CM_SMIDIV 0x0b4 /* no definition for 0x0b8 and 0x0bc */ #define CM_TCNTCTL 0x0c0 # define CM_TCNT_SRC1_SHIFT 12 #define CM_TCNTCNT 0x0c4 #define CM_TECCTL 0x0c8 #define CM_TECDIV 0x0cc #define CM_TD0CTL 0x0d0 #define CM_TD0DIV 0x0d4 #define CM_TD1CTL 0x0d8 #define CM_TD1DIV 0x0dc #define CM_TSENSCTL 0x0e0 #define CM_TSENSDIV 0x0e4 #define CM_TIMERCTL 0x0e8 #define CM_TIMERDIV 0x0ec #define CM_UARTCTL 0x0f0 #define CM_UARTDIV 0x0f4 #define CM_VECCTL 0x0f8 #define CM_VECDIV 0x0fc #define CM_PULSECTL 0x190 #define CM_PULSEDIV 0x194 #define CM_SDCCTL 0x1a8 #define CM_SDCDIV 0x1ac #define CM_ARMCTL 0x1b0 #define CM_AVEOCTL 0x1b8 #define CM_AVEODIV 0x1bc #define CM_EMMCCTL 0x1c0 #define CM_EMMCDIV 0x1c4 #define CM_EMMC2CTL 0x1d0 #define CM_EMMC2DIV 0x1d4 /* General bits for the CM_*CTL regs */ # define CM_ENABLE BIT(4) # define CM_KILL BIT(5) # define CM_GATE_BIT 6 # define CM_GATE BIT(CM_GATE_BIT) # define CM_BUSY BIT(7) # define CM_BUSYD BIT(8) # define CM_FRAC BIT(9) # define CM_SRC_SHIFT 0 # define CM_SRC_BITS 4 # define CM_SRC_MASK 0xf # define CM_SRC_GND 0 # define CM_SRC_OSC 1 # define CM_SRC_TESTDEBUG0 2 # define CM_SRC_TESTDEBUG1 3 # define CM_SRC_PLLA_CORE 4 # define CM_SRC_PLLA_PER 4 # define CM_SRC_PLLC_CORE0 5 # define CM_SRC_PLLC_PER 5 # define CM_SRC_PLLC_CORE1 8 # define CM_SRC_PLLD_CORE 6 # define CM_SRC_PLLD_PER 6 # define CM_SRC_PLLH_AUX 7 # define CM_SRC_PLLC_CORE1 8 # define CM_SRC_PLLC_CORE2 9 #define CM_OSCCOUNT 0x100 #define CM_PLLA 0x104 # define CM_PLL_ANARST BIT(8) # define CM_PLLA_HOLDPER BIT(7) # define CM_PLLA_LOADPER BIT(6) # define CM_PLLA_HOLDCORE BIT(5) # define CM_PLLA_LOADCORE BIT(4) # define CM_PLLA_HOLDCCP2 BIT(3) # define CM_PLLA_LOADCCP2 BIT(2) # define CM_PLLA_HOLDDSI0 BIT(1) # define CM_PLLA_LOADDSI0 BIT(0) #define CM_PLLC 0x108 # define CM_PLLC_HOLDPER BIT(7) # define CM_PLLC_LOADPER BIT(6) # define CM_PLLC_HOLDCORE2 BIT(5) # define CM_PLLC_LOADCORE2 BIT(4) # define CM_PLLC_HOLDCORE1 BIT(3) # define CM_PLLC_LOADCORE1 BIT(2) # define CM_PLLC_HOLDCORE0 BIT(1) # define CM_PLLC_LOADCORE0 BIT(0) #define CM_PLLD 0x10c # define CM_PLLD_HOLDPER BIT(7) # define CM_PLLD_LOADPER BIT(6) # define CM_PLLD_HOLDCORE BIT(5) # define CM_PLLD_LOADCORE BIT(4) # define CM_PLLD_HOLDDSI1 BIT(3) # define CM_PLLD_LOADDSI1 BIT(2) # define CM_PLLD_HOLDDSI0 BIT(1) # define CM_PLLD_LOADDSI0 BIT(0) #define CM_PLLH 0x110 # define CM_PLLH_LOADRCAL BIT(2) # define CM_PLLH_LOADAUX BIT(1) # define CM_PLLH_LOADPIX BIT(0) #define CM_LOCK 0x114 # define CM_LOCK_FLOCKH BIT(12) # define CM_LOCK_FLOCKD BIT(11) # define CM_LOCK_FLOCKC BIT(10) # define CM_LOCK_FLOCKB BIT(9) # define CM_LOCK_FLOCKA BIT(8) #define CM_EVENT 0x118 #define CM_DSI1ECTL 0x158 #define CM_DSI1EDIV 0x15c #define CM_DSI1PCTL 0x160 #define CM_DSI1PDIV 0x164 #define CM_DFTCTL 0x168 #define CM_DFTDIV 0x16c #define CM_PLLB 0x170 # define CM_PLLB_HOLDARM BIT(1) # define CM_PLLB_LOADARM BIT(0) #define A2W_PLLA_CTRL 0x1100 #define A2W_PLLC_CTRL 0x1120 #define A2W_PLLD_CTRL 0x1140 #define A2W_PLLH_CTRL 0x1160 #define A2W_PLLB_CTRL 0x11e0 # define A2W_PLL_CTRL_PRST_DISABLE BIT(17) # define A2W_PLL_CTRL_PWRDN BIT(16) # define A2W_PLL_CTRL_PDIV_MASK 0x000007000 # define A2W_PLL_CTRL_PDIV_SHIFT 12 # define A2W_PLL_CTRL_NDIV_MASK 0x0000003ff # define A2W_PLL_CTRL_NDIV_SHIFT 0 #define A2W_PLLA_ANA0 0x1010 #define A2W_PLLC_ANA0 0x1030 #define A2W_PLLD_ANA0 0x1050 #define A2W_PLLH_ANA0 0x1070 #define A2W_PLLB_ANA0 0x10f0 #define A2W_PLL_KA_SHIFT 7 #define A2W_PLL_KA_MASK GENMASK(9, 7) #define A2W_PLL_KI_SHIFT 19 #define A2W_PLL_KI_MASK GENMASK(21, 19) #define A2W_PLL_KP_SHIFT 15 #define A2W_PLL_KP_MASK GENMASK(18, 15) #define A2W_PLLH_KA_SHIFT 19 #define A2W_PLLH_KA_MASK GENMASK(21, 19) #define A2W_PLLH_KI_LOW_SHIFT 22 #define A2W_PLLH_KI_LOW_MASK GENMASK(23, 22) #define A2W_PLLH_KI_HIGH_SHIFT 0 #define A2W_PLLH_KI_HIGH_MASK GENMASK(0, 0) #define A2W_PLLH_KP_SHIFT 1 #define A2W_PLLH_KP_MASK GENMASK(4, 1) #define A2W_XOSC_CTRL 0x1190 # define A2W_XOSC_CTRL_PLLB_ENABLE BIT(7) # define A2W_XOSC_CTRL_PLLA_ENABLE BIT(6) # define A2W_XOSC_CTRL_PLLD_ENABLE BIT(5) # define A2W_XOSC_CTRL_DDR_ENABLE BIT(4) # define A2W_XOSC_CTRL_CPR1_ENABLE BIT(3) # define A2W_XOSC_CTRL_USB_ENABLE BIT(2) # define A2W_XOSC_CTRL_HDMI_ENABLE BIT(1) # define A2W_XOSC_CTRL_PLLC_ENABLE BIT(0) #define A2W_PLLA_FRAC 0x1200 #define A2W_PLLC_FRAC 0x1220 #define A2W_PLLD_FRAC 0x1240 #define A2W_PLLH_FRAC 0x1260 #define A2W_PLLB_FRAC 0x12e0 # define A2W_PLL_FRAC_MASK ((1 << A2W_PLL_FRAC_BITS) - 1) # define A2W_PLL_FRAC_BITS 20 #define A2W_PLL_CHANNEL_DISABLE BIT(8) #define A2W_PLL_DIV_BITS 8 #define A2W_PLL_DIV_SHIFT 0 #define A2W_PLLA_DSI0 0x1300 #define A2W_PLLA_CORE 0x1400 #define A2W_PLLA_PER 0x1500 #define A2W_PLLA_CCP2 0x1600 #define A2W_PLLC_CORE2 0x1320 #define A2W_PLLC_CORE1 0x1420 #define A2W_PLLC_PER 0x1520 #define A2W_PLLC_CORE0 0x1620 #define A2W_PLLD_DSI0 0x1340 #define A2W_PLLD_CORE 0x1440 #define A2W_PLLD_PER 0x1540 #define A2W_PLLD_DSI1 0x1640 #define A2W_PLLH_AUX 0x1360 #define A2W_PLLH_RCAL 0x1460 #define A2W_PLLH_PIX 0x1560 #define A2W_PLLH_STS 0x1660 #define A2W_PLLH_CTRLR 0x1960 #define A2W_PLLH_FRACR 0x1a60 #define A2W_PLLH_AUXR 0x1b60 #define A2W_PLLH_RCALR 0x1c60 #define A2W_PLLH_PIXR 0x1d60 #define A2W_PLLH_STSR 0x1e60 #define A2W_PLLB_ARM 0x13e0 #define A2W_PLLB_SP0 0x14e0 #define A2W_PLLB_SP1 0x15e0 #define A2W_PLLB_SP2 0x16e0 #define LOCK_TIMEOUT_NS 100000000 #define BCM2835_MAX_FB_RATE 1750000000u #define SOC_BCM2835 BIT(0) #define SOC_BCM2711 BIT(1) #define SOC_ALL (SOC_BCM2835 | SOC_BCM2711) /* * Names of clocks used within the driver that need to be replaced * with an external parent's name. This array is in the order that * the clocks node in the DT references external clocks. */ static const char *const cprman_parent_names[] = { "xosc", "dsi0_byte", "dsi0_ddr2", "dsi0_ddr", "dsi1_byte", "dsi1_ddr2", "dsi1_ddr", }; struct bcm2835_cprman { struct device *dev; void __iomem *regs; spinlock_t regs_lock; /* spinlock for all clocks */ /* * Real names of cprman clock parents looked up through * of_clk_get_parent_name(), which will be used in the * parent_names[] arrays for clock registration. */ const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)]; /* Must be last */ struct clk_hw_onecell_data onecell; }; struct cprman_plat_data { unsigned int soc; }; static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val) { writel(CM_PASSWORD | val, cprman->regs + reg); } static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg) { return readl(cprman->regs + reg); } /* Does a cycle of measuring a clock through the TCNT clock, which may * source from many other clocks in the system. */ static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman, u32 tcnt_mux) { u32 osccount = 19200; /* 1ms */ u32 count; ktime_t timeout; spin_lock(&cprman->regs_lock); cprman_write(cprman, CM_TCNTCTL, CM_KILL); cprman_write(cprman, CM_TCNTCTL, (tcnt_mux & CM_SRC_MASK) | (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT); cprman_write(cprman, CM_OSCCOUNT, osccount); /* do a kind delay at the start */ mdelay(1); /* Finish off whatever is left of OSCCOUNT */ timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); while (cprman_read(cprman, CM_OSCCOUNT)) { if (ktime_after(ktime_get(), timeout)) { dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n"); count = 0; goto out; } cpu_relax(); } /* Wait for BUSY to clear. */ timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) { if (ktime_after(ktime_get(), timeout)) { dev_err(cprman->dev, "timeout waiting for !BUSY\n"); count = 0; goto out; } cpu_relax(); } count = cprman_read(cprman, CM_TCNTCNT); cprman_write(cprman, CM_TCNTCTL, 0); out: spin_unlock(&cprman->regs_lock); return count * 1000; } static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base, struct debugfs_reg32 *regs, size_t nregs, struct dentry *dentry) { struct debugfs_regset32 *regset; regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL); if (!regset) return; regset->regs = regs; regset->nregs = nregs; regset->base = cprman->regs + base; debugfs_create_regset32("regdump", S_IRUGO, dentry, regset); } struct bcm2835_pll_data { const char *name; u32 cm_ctrl_reg; u32 a2w_ctrl_reg; u32 frac_reg; u32 ana_reg_base; u32 reference_enable_mask; /* Bit in CM_LOCK to indicate when the PLL has locked. */ u32 lock_mask; const struct bcm2835_pll_ana_bits *ana; unsigned long min_rate; unsigned long max_rate; /* * Highest rate for the VCO before we have to use the * pre-divide-by-2. */ unsigned long max_fb_rate; }; struct bcm2835_pll_ana_bits { u32 mask0; u32 set0; u32 mask1; u32 set1; u32 mask3; u32 set3; u32 fb_prediv_mask; }; static const struct bcm2835_pll_ana_bits bcm2835_ana_default = { .mask0 = 0, .set0 = 0, .mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK, .set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT), .mask3 = A2W_PLL_KA_MASK, .set3 = (2 << A2W_PLL_KA_SHIFT), .fb_prediv_mask = BIT(14), }; static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = { .mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK, .set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT), .mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK, .set1 = (6 << A2W_PLLH_KP_SHIFT), .mask3 = 0, .set3 = 0, .fb_prediv_mask = BIT(11), }; struct bcm2835_pll_divider_data { const char *name; const char *source_pll; u32 cm_reg; u32 a2w_reg; u32 load_mask; u32 hold_mask; u32 fixed_divider; u32 flags; }; struct bcm2835_clock_data { const char *name; const char *const *parents; int num_mux_parents; /* Bitmap encoding which parents accept rate change propagation. */ unsigned int set_rate_parent; u32 ctl_reg; u32 div_reg; /* Number of integer bits in the divider */ u32 int_bits; /* Number of fractional bits in the divider */ u32 frac_bits; u32 flags; bool is_vpu_clock; bool is_mash_clock; bool low_jitter; u32 tcnt_mux; }; struct bcm2835_gate_data { const char *name; const char *parent; u32 ctl_reg; }; struct bcm2835_pll { struct clk_hw hw; struct bcm2835_cprman *cprman; const struct bcm2835_pll_data *data; }; static int bcm2835_pll_is_on(struct clk_hw *hw) { struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); struct bcm2835_cprman *cprman = pll->cprman; const struct bcm2835_pll_data *data = pll->data; return cprman_read(cprman, data->a2w_ctrl_reg) & A2W_PLL_CTRL_PRST_DISABLE; } static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate, unsigned long parent_rate, u32 *ndiv, u32 *fdiv) { u64 div; div = (u64)rate << A2W_PLL_FRAC_BITS; do_div(div, parent_rate); *ndiv = div >> A2W_PLL_FRAC_BITS; *fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1); } static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate, u32 ndiv, u32 fdiv, u32 pdiv) { u64 rate; if (pdiv == 0) return 0; rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv); do_div(rate, pdiv); return rate >> A2W_PLL_FRAC_BITS; } static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); const struct bcm2835_pll_data *data = pll->data; u32 ndiv, fdiv; rate = clamp(rate, data->min_rate, data->max_rate); bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv); return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1); } static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw, unsigned long parent_rate) { struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); struct bcm2835_cprman *cprman = pll->cprman; const struct bcm2835_pll_data *data = pll->data; u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg); u32 ndiv, pdiv, fdiv; bool using_prediv; if (parent_rate == 0) return 0; fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK; ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT; pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT; using_prediv = cprman_read(cprman, data->ana_reg_base + 4) & data->ana->fb_prediv_mask; if (using_prediv) { ndiv *= 2; fdiv *= 2; } return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv); } static void bcm2835_pll_off(struct clk_hw *hw) { struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); struct bcm2835_cprman *cprman = pll->cprman; const struct bcm2835_pll_data *data = pll->data; spin_lock(&cprman->regs_lock); cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST); cprman_write(cprman, data->a2w_ctrl_reg, cprman_read(cprman, data->a2w_ctrl_reg) | A2W_PLL_CTRL_PWRDN); spin_unlock(&cprman->regs_lock); } static int bcm2835_pll_on(struct clk_hw *hw) { struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); struct bcm2835_cprman *cprman = pll->cprman; const struct bcm2835_pll_data *data = pll->data; ktime_t timeout; cprman_write(cprman, data->a2w_ctrl_reg, cprman_read(cprman, data->a2w_ctrl_reg) & ~A2W_PLL_CTRL_PWRDN); /* Take the PLL out of reset. */ spin_lock(&cprman->regs_lock); cprman_write(cprman, data->cm_ctrl_reg, cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST); spin_unlock(&cprman->regs_lock); /* Wait for the PLL to lock. */ timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) { if (ktime_after(ktime_get(), timeout)) { dev_err(cprman->dev, "%s: couldn't lock PLL\n", clk_hw_get_name(hw)); return -ETIMEDOUT; } cpu_relax(); } cprman_write(cprman, data->a2w_ctrl_reg, cprman_read(cprman, data->a2w_ctrl_reg) | A2W_PLL_CTRL_PRST_DISABLE); return 0; } static void bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana) { int i; /* * ANA register setup is done as a series of writes to * ANA3-ANA0, in that order. This lets us write all 4 * registers as a single cycle of the serdes interface (taking * 100 xosc clocks), whereas if we were to update ana0, 1, and * 3 individually through their partial-write registers, each * would be their own serdes cycle. */ for (i = 3; i >= 0; i--) cprman_write(cprman, ana_reg_base + i * 4, ana[i]); } static int bcm2835_pll_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); struct bcm2835_cprman *cprman = pll->cprman; const struct bcm2835_pll_data *data = pll->data; bool was_using_prediv, use_fb_prediv, do_ana_setup_first; u32 ndiv, fdiv, a2w_ctl; u32 ana[4]; int i; if (rate > data->max_fb_rate) { use_fb_prediv = true; rate /= 2; } else { use_fb_prediv = false; } bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv); for (i = 3; i >= 0; i--) ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4); was_using_prediv = ana[1] & data->ana->fb_prediv_mask; ana[0] &= ~data->ana->mask0; ana[0] |= data->ana->set0; ana[1] &= ~data->ana->mask1; ana[1] |= data->ana->set1; ana[3] &= ~data->ana->mask3; ana[3] |= data->ana->set3; if (was_using_prediv && !use_fb_prediv) { ana[1] &= ~data->ana->fb_prediv_mask; do_ana_setup_first = true; } else if (!was_using_prediv && use_fb_prediv) { ana[1] |= data->ana->fb_prediv_mask; do_ana_setup_first = false; } else { do_ana_setup_first = true; } /* Unmask the reference clock from the oscillator. */ spin_lock(&cprman->regs_lock); cprman_write(cprman, A2W_XOSC_CTRL, cprman_read(cprman, A2W_XOSC_CTRL) | data->reference_enable_mask); spin_unlock(&cprman->regs_lock); if (do_ana_setup_first) bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana); /* Set the PLL multiplier from the oscillator. */ cprman_write(cprman, data->frac_reg, fdiv); a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg); a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK; a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT; a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK; a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT; cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl); if (!do_ana_setup_first) bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana); return 0; } static void bcm2835_pll_debug_init(struct clk_hw *hw, struct dentry *dentry) { struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw); struct bcm2835_cprman *cprman = pll->cprman; const struct bcm2835_pll_data *data = pll->data; struct debugfs_reg32 *regs; regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL); if (!regs) return; regs[0].name = "cm_ctrl"; regs[0].offset = data->cm_ctrl_reg; regs[1].name = "a2w_ctrl"; regs[1].offset = data->a2w_ctrl_reg; regs[2].name = "frac"; regs[2].offset = data->frac_reg; regs[3].name = "ana0"; regs[3].offset = data->ana_reg_base + 0 * 4; regs[4].name = "ana1"; regs[4].offset = data->ana_reg_base + 1 * 4; regs[5].name = "ana2"; regs[5].offset = data->ana_reg_base + 2 * 4; regs[6].name = "ana3"; regs[6].offset = data->ana_reg_base + 3 * 4; bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry); } static const struct clk_ops bcm2835_pll_clk_ops = { .is_prepared = bcm2835_pll_is_on, .prepare = bcm2835_pll_on, .unprepare = bcm2835_pll_off, .recalc_rate = bcm2835_pll_get_rate, .set_rate = bcm2835_pll_set_rate, .round_rate = bcm2835_pll_round_rate, .debug_init = bcm2835_pll_debug_init, }; struct bcm2835_pll_divider { struct clk_divider div; struct bcm2835_cprman *cprman; const struct bcm2835_pll_divider_data *data; }; static struct bcm2835_pll_divider * bcm2835_pll_divider_from_hw(struct clk_hw *hw) { return container_of(hw, struct bcm2835_pll_divider, div.hw); } static int bcm2835_pll_divider_is_on(struct clk_hw *hw) { struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); struct bcm2835_cprman *cprman = divider->cprman; const struct bcm2835_pll_divider_data *data = divider->data; return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE); } static long bcm2835_pll_divider_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { return clk_divider_ops.round_rate(hw, rate, parent_rate); } static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw, unsigned long parent_rate) { return clk_divider_ops.recalc_rate(hw, parent_rate); } static void bcm2835_pll_divider_off(struct clk_hw *hw) { struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); struct bcm2835_cprman *cprman = divider->cprman; const struct bcm2835_pll_divider_data *data = divider->data; spin_lock(&cprman->regs_lock); cprman_write(cprman, data->cm_reg, (cprman_read(cprman, data->cm_reg) & ~data->load_mask) | data->hold_mask); cprman_write(cprman, data->a2w_reg, cprman_read(cprman, data->a2w_reg) | A2W_PLL_CHANNEL_DISABLE); spin_unlock(&cprman->regs_lock); } static int bcm2835_pll_divider_on(struct clk_hw *hw) { struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); struct bcm2835_cprman *cprman = divider->cprman; const struct bcm2835_pll_divider_data *data = divider->data; spin_lock(&cprman->regs_lock); cprman_write(cprman, data->a2w_reg, cprman_read(cprman, data->a2w_reg) & ~A2W_PLL_CHANNEL_DISABLE); cprman_write(cprman, data->cm_reg, cprman_read(cprman, data->cm_reg) & ~data->hold_mask); spin_unlock(&cprman->regs_lock); return 0; } static int bcm2835_pll_divider_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); struct bcm2835_cprman *cprman = divider->cprman; const struct bcm2835_pll_divider_data *data = divider->data; u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS; div = DIV_ROUND_UP_ULL(parent_rate, rate); div = min(div, max_div); if (div == max_div) div = 0; cprman_write(cprman, data->a2w_reg, div); cm = cprman_read(cprman, data->cm_reg); cprman_write(cprman, data->cm_reg, cm | data->load_mask); cprman_write(cprman, data->cm_reg, cm & ~data->load_mask); return 0; } static void bcm2835_pll_divider_debug_init(struct clk_hw *hw, struct dentry *dentry) { struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw); struct bcm2835_cprman *cprman = divider->cprman; const struct bcm2835_pll_divider_data *data = divider->data; struct debugfs_reg32 *regs; regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL); if (!regs) return; regs[0].name = "cm"; regs[0].offset = data->cm_reg; regs[1].name = "a2w"; regs[1].offset = data->a2w_reg; bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry); } static const struct clk_ops bcm2835_pll_divider_clk_ops = { .is_prepared = bcm2835_pll_divider_is_on, .prepare = bcm2835_pll_divider_on, .unprepare = bcm2835_pll_divider_off, .recalc_rate = bcm2835_pll_divider_get_rate, .set_rate = bcm2835_pll_divider_set_rate, .round_rate = bcm2835_pll_divider_round_rate, .debug_init = bcm2835_pll_divider_debug_init, }; /* * The CM dividers do fixed-point division, so we can't use the * generic integer divider code like the PLL dividers do (and we can't * fake it by having some fixed shifts preceding it in the clock tree, * because we'd run out of bits in a 32-bit unsigned long). */ struct bcm2835_clock { struct clk_hw hw; struct bcm2835_cprman *cprman; const struct bcm2835_clock_data *data; }; static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw) { return container_of(hw, struct bcm2835_clock, hw); } static int bcm2835_clock_is_on(struct clk_hw *hw) { struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); struct bcm2835_cprman *cprman = clock->cprman; const struct bcm2835_clock_data *data = clock->data; return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0; } static u32 bcm2835_clock_choose_div(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate, bool round_up) { struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); const struct bcm2835_clock_data *data = clock->data; u32 unused_frac_mask = GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1; u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS; u64 rem; u32 div, mindiv, maxdiv; rem = do_div(temp, rate); div = temp; /* Round up and mask off the unused bits */ if (round_up && ((div & unused_frac_mask) != 0 || rem != 0)) div += unused_frac_mask + 1; div &= ~unused_frac_mask; /* different clamping limits apply for a mash clock */ if (data->is_mash_clock) { /* clamp to min divider of 2 */ mindiv = 2 << CM_DIV_FRAC_BITS; /* clamp to the highest possible integer divider */ maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS; } else { /* clamp to min divider of 1 */ mindiv = 1 << CM_DIV_FRAC_BITS; /* clamp to the highest possible fractional divider */ maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1, CM_DIV_FRAC_BITS - data->frac_bits); } /* apply the clamping limits */ div = max_t(u32, div, mindiv); div = min_t(u32, div, maxdiv); return div; } static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock, unsigned long parent_rate, u32 div) { const struct bcm2835_clock_data *data = clock->data; u64 temp; if (data->int_bits == 0 && data->frac_bits == 0) return parent_rate; /* * The divisor is a 12.12 fixed point field, but only some of * the bits are populated in any given clock. */ div >>= CM_DIV_FRAC_BITS - data->frac_bits; div &= (1 << (data->int_bits + data->frac_bits)) - 1; if (div == 0) return 0; temp = (u64)parent_rate << data->frac_bits; do_div(temp, div); return temp; } static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw, unsigned long parent_rate) { struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); struct bcm2835_cprman *cprman = clock->cprman; const struct bcm2835_clock_data *data = clock->data; u32 div; if (data->int_bits == 0 && data->frac_bits == 0) return parent_rate; div = cprman_read(cprman, data->div_reg); return bcm2835_clock_rate_from_divisor(clock, parent_rate, div); } static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock) { struct bcm2835_cprman *cprman = clock->cprman; const struct bcm2835_clock_data *data = clock->data; ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS); while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) { if (ktime_after(ktime_get(), timeout)) { dev_err(cprman->dev, "%s: couldn't lock PLL\n", clk_hw_get_name(&clock->hw)); return; } cpu_relax(); } } static void bcm2835_clock_off(struct clk_hw *hw) { struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); struct bcm2835_cprman *cprman = clock->cprman; const struct bcm2835_clock_data *data = clock->data; spin_lock(&cprman->regs_lock); cprman_write(cprman, data->ctl_reg, cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE); spin_unlock(&cprman->regs_lock); /* BUSY will remain high until the divider completes its cycle. */ bcm2835_clock_wait_busy(clock); } static int bcm2835_clock_on(struct clk_hw *hw) { struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); struct bcm2835_cprman *cprman = clock->cprman; const struct bcm2835_clock_data *data = clock->data; spin_lock(&cprman->regs_lock); cprman_write(cprman, data->ctl_reg, cprman_read(cprman, data->ctl_reg) | CM_ENABLE | CM_GATE); spin_unlock(&cprman->regs_lock); /* Debug code to measure the clock once it's turned on to see * if it's ticking at the rate we expect. */ if (data->tcnt_mux && false) { dev_info(cprman->dev, "clk %s: rate %ld, measure %ld\n", data->name, clk_hw_get_rate(hw), bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux)); } return 0; } static int bcm2835_clock_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); struct bcm2835_cprman *cprman = clock->cprman; const struct bcm2835_clock_data *data = clock->data; u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false); u32 ctl; spin_lock(&cprman->regs_lock); /* * Setting up frac support * * In principle it is recommended to stop/start the clock first, * but as we set CLK_SET_RATE_GATE during registration of the * clock this requirement should be take care of by the * clk-framework. */ ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC; ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0; cprman_write(cprman, data->ctl_reg, ctl); cprman_write(cprman, data->div_reg, div); spin_unlock(&cprman->regs_lock); return 0; } static bool bcm2835_clk_is_pllc(struct clk_hw *hw) { if (!hw) return false; return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0; } static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw, int parent_idx, unsigned long rate, u32 *div, unsigned long *prate, unsigned long *avgrate) { struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); struct bcm2835_cprman *cprman = clock->cprman; const struct bcm2835_clock_data *data = clock->data; unsigned long best_rate = 0; u32 curdiv, mindiv, maxdiv; struct clk_hw *parent; parent = clk_hw_get_parent_by_index(hw, parent_idx); if (!(BIT(parent_idx) & data->set_rate_parent)) { *prate = clk_hw_get_rate(parent); *div = bcm2835_clock_choose_div(hw, rate, *prate, true); *avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div); if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) { unsigned long high, low; u32 int_div = *div & ~CM_DIV_FRAC_MASK; high = bcm2835_clock_rate_from_divisor(clock, *prate, int_div); int_div += CM_DIV_FRAC_MASK + 1; low = bcm2835_clock_rate_from_divisor(clock, *prate, int_div); /* * Return a value which is the maximum deviation * below the ideal rate, for use as a metric. */ return *avgrate - max(*avgrate - low, high - *avgrate); } return *avgrate; } if (data->frac_bits) dev_warn(cprman->dev, "frac bits are not used when propagating rate change"); /* clamp to min divider of 2 if we're dealing with a mash clock */ mindiv = data->is_mash_clock ? 2 : 1; maxdiv = BIT(data->int_bits) - 1; /* TODO: Be smart, and only test a subset of the available divisors. */ for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) { unsigned long tmp_rate; tmp_rate = clk_hw_round_rate(parent, rate * curdiv); tmp_rate /= curdiv; if (curdiv == mindiv || (tmp_rate > best_rate && tmp_rate <= rate)) best_rate = tmp_rate; if (best_rate == rate) break; } *div = curdiv << CM_DIV_FRAC_BITS; *prate = curdiv * best_rate; *avgrate = best_rate; return best_rate; } static int bcm2835_clock_determine_rate(struct clk_hw *hw, struct clk_rate_request *req) { struct clk_hw *parent, *best_parent = NULL; bool current_parent_is_pllc; unsigned long rate, best_rate = 0; unsigned long prate, best_prate = 0; unsigned long avgrate, best_avgrate = 0; size_t i; u32 div; current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw)); /* * Select parent clock that results in the closest but lower rate */ for (i = 0; i < clk_hw_get_num_parents(hw); ++i) { parent = clk_hw_get_parent_by_index(hw, i); if (!parent) continue; /* * Don't choose a PLLC-derived clock as our parent * unless it had been manually set that way. PLLC's * frequency gets adjusted by the firmware due to * over-temp or under-voltage conditions, without * prior notification to our clock consumer. */ if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc) continue; rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate, &div, &prate, &avgrate); if (rate > best_rate && rate <= req->rate) { best_parent = parent; best_prate = prate; best_rate = rate; best_avgrate = avgrate; } } if (!best_parent) return -EINVAL; req->best_parent_hw = best_parent; req->best_parent_rate = best_prate; req->rate = best_avgrate; return 0; } static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index) { struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); struct bcm2835_cprman *cprman = clock->cprman; const struct bcm2835_clock_data *data = clock->data; u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK; cprman_write(cprman, data->ctl_reg, src); return 0; } static u8 bcm2835_clock_get_parent(struct clk_hw *hw) { struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); struct bcm2835_cprman *cprman = clock->cprman; const struct bcm2835_clock_data *data = clock->data; u32 src = cprman_read(cprman, data->ctl_reg); return (src & CM_SRC_MASK) >> CM_SRC_SHIFT; } static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = { { .name = "ctl", .offset = 0, }, { .name = "div", .offset = 4, }, }; static void bcm2835_clock_debug_init(struct clk_hw *hw, struct dentry *dentry) { struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw); struct bcm2835_cprman *cprman = clock->cprman; const struct bcm2835_clock_data *data = clock->data; bcm2835_debugfs_regset(cprman, data->ctl_reg, bcm2835_debugfs_clock_reg32, ARRAY_SIZE(bcm2835_debugfs_clock_reg32), dentry); } static const struct clk_ops bcm2835_clock_clk_ops = { .is_prepared = bcm2835_clock_is_on, .prepare = bcm2835_clock_on, .unprepare = bcm2835_clock_off, .recalc_rate = bcm2835_clock_get_rate, .set_rate = bcm2835_clock_set_rate, .determine_rate = bcm2835_clock_determine_rate, .set_parent = bcm2835_clock_set_parent, .get_parent = bcm2835_clock_get_parent, .debug_init = bcm2835_clock_debug_init, }; static int bcm2835_vpu_clock_is_on(struct clk_hw *hw) { return true; } /* * The VPU clock can never be disabled (it doesn't have an ENABLE * bit), so it gets its own set of clock ops. */ static const struct clk_ops bcm2835_vpu_clock_clk_ops = { .is_prepared = bcm2835_vpu_clock_is_on, .recalc_rate = bcm2835_clock_get_rate, .set_rate = bcm2835_clock_set_rate, .determine_rate = bcm2835_clock_determine_rate, .set_parent = bcm2835_clock_set_parent, .get_parent = bcm2835_clock_get_parent, .debug_init = bcm2835_clock_debug_init, }; static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman, const struct bcm2835_pll_data *data) { struct bcm2835_pll *pll; struct clk_init_data init; int ret; memset(&init, 0, sizeof(init)); /* All of the PLLs derive from the external oscillator. */ init.parent_names = &cprman->real_parent_names[0]; init.num_parents = 1; init.name = data->name; init.ops = &bcm2835_pll_clk_ops; init.flags = CLK_IGNORE_UNUSED; pll = kzalloc(sizeof(*pll), GFP_KERNEL); if (!pll) return NULL; pll->cprman = cprman; pll->data = data; pll->hw.init = &init; ret = devm_clk_hw_register(cprman->dev, &pll->hw); if (ret) return NULL; return &pll->hw; } static struct clk_hw * bcm2835_register_pll_divider(struct bcm2835_cprman *cprman, const struct bcm2835_pll_divider_data *data) { struct bcm2835_pll_divider *divider; struct clk_init_data init; const char *divider_name; int ret; if (data->fixed_divider != 1) { divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL, "%s_prediv", data->name); if (!divider_name) return NULL; } else { divider_name = data->name; } memset(&init, 0, sizeof(init)); init.parent_names = &data->source_pll; init.num_parents = 1; init.name = divider_name; init.ops = &bcm2835_pll_divider_clk_ops; init.flags = data->flags | CLK_IGNORE_UNUSED; divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL); if (!divider) return NULL; divider->div.reg = cprman->regs + data->a2w_reg; divider->div.shift = A2W_PLL_DIV_SHIFT; divider->div.width = A2W_PLL_DIV_BITS; divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO; divider->div.lock = &cprman->regs_lock; divider->div.hw.init = &init; divider->div.table = NULL; divider->cprman = cprman; divider->data = data; ret = devm_clk_hw_register(cprman->dev, ÷r->div.hw); if (ret) return ERR_PTR(ret); /* * PLLH's channels have a fixed divide by 10 afterwards, which * is what our consumers are actually using. */ if (data->fixed_divider != 1) { return clk_hw_register_fixed_factor(cprman->dev, data->name, divider_name, CLK_SET_RATE_PARENT, 1, data->fixed_divider); } return ÷r->div.hw; } static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman, const struct bcm2835_clock_data *data) { struct bcm2835_clock *clock; struct clk_init_data init; const char *parents[1 << CM_SRC_BITS]; size_t i; int ret; /* * Replace our strings referencing parent clocks with the * actual clock-output-name of the parent. */ for (i = 0; i < data->num_mux_parents; i++) { parents[i] = data->parents[i]; ret = match_string(cprman_parent_names, ARRAY_SIZE(cprman_parent_names), parents[i]); if (ret >= 0) parents[i] = cprman->real_parent_names[ret]; } memset(&init, 0, sizeof(init)); init.parent_names = parents; init.num_parents = data->num_mux_parents; init.name = data->name; init.flags = data->flags | CLK_IGNORE_UNUSED; /* * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate * rate changes on at least of the parents. */ if (data->set_rate_parent) init.flags |= CLK_SET_RATE_PARENT; if (data->is_vpu_clock) { init.ops = &bcm2835_vpu_clock_clk_ops; } else { init.ops = &bcm2835_clock_clk_ops; init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE; /* If the clock wasn't actually enabled at boot, it's not * critical. */ if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE)) init.flags &= ~CLK_IS_CRITICAL; } clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL); if (!clock) return NULL; clock->cprman = cprman; clock->data = data; clock->hw.init = &init; ret = devm_clk_hw_register(cprman->dev, &clock->hw); if (ret) return ERR_PTR(ret); return &clock->hw; } static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman, const struct bcm2835_gate_data *data) { return clk_register_gate(cprman->dev, data->name, data->parent, CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE, cprman->regs + data->ctl_reg, CM_GATE_BIT, 0, &cprman->regs_lock); } typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman, const void *data); struct bcm2835_clk_desc { bcm2835_clk_register clk_register; unsigned int supported; const void *data; }; /* assignment helper macros for different clock types */ #define _REGISTER(f, s, ...) { .clk_register = (bcm2835_clk_register)f, \ .supported = s, \ .data = __VA_ARGS__ } #define REGISTER_PLL(s, ...) _REGISTER(&bcm2835_register_pll, \ s, \ &(struct bcm2835_pll_data) \ {__VA_ARGS__}) #define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \ s, \ &(struct bcm2835_pll_divider_data) \ {__VA_ARGS__}) #define REGISTER_CLK(s, ...) _REGISTER(&bcm2835_register_clock, \ s, \ &(struct bcm2835_clock_data) \ {__VA_ARGS__}) #define REGISTER_GATE(s, ...) _REGISTER(&bcm2835_register_gate, \ s, \ &(struct bcm2835_gate_data) \ {__VA_ARGS__}) /* parent mux arrays plus helper macros */ /* main oscillator parent mux */ static const char *const bcm2835_clock_osc_parents[] = { "gnd", "xosc", "testdebug0", "testdebug1" }; #define REGISTER_OSC_CLK(s, ...) REGISTER_CLK( \ s, \ .num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents), \ .parents = bcm2835_clock_osc_parents, \ __VA_ARGS__) /* main peripherial parent mux */ static const char *const bcm2835_clock_per_parents[] = { "gnd", "xosc", "testdebug0", "testdebug1", "plla_per", "pllc_per", "plld_per", "pllh_aux", }; #define REGISTER_PER_CLK(s, ...) REGISTER_CLK( \ s, \ .num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents), \ .parents = bcm2835_clock_per_parents, \ __VA_ARGS__) /* * Restrict clock sources for the PCM peripheral to the oscillator and * PLLD_PER because other source may have varying rates or be switched * off. * * Prevent other sources from being selected by replacing their names in * the list of potential parents with dummy entries (entry index is * significant). */ static const char *const bcm2835_pcm_per_parents[] = { "-", "xosc", "-", "-", "-", "-", "plld_per", "-", }; #define REGISTER_PCM_CLK(s, ...) REGISTER_CLK( \ s, \ .num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents), \ .parents = bcm2835_pcm_per_parents, \ __VA_ARGS__) /* main vpu parent mux */ static const char *const bcm2835_clock_vpu_parents[] = { "gnd", "xosc", "testdebug0", "testdebug1", "plla_core", "pllc_core0", "plld_core", "pllh_aux", "pllc_core1", "pllc_core2", }; #define REGISTER_VPU_CLK(s, ...) REGISTER_CLK( \ s, \ .num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents), \ .parents = bcm2835_clock_vpu_parents, \ __VA_ARGS__) /* * DSI parent clocks. The DSI byte/DDR/DDR2 clocks come from the DSI * analog PHY. The _inv variants are generated internally to cprman, * but we don't use them so they aren't hooked up. */ static const char *const bcm2835_clock_dsi0_parents[] = { "gnd", "xosc", "testdebug0", "testdebug1", "dsi0_ddr", "dsi0_ddr_inv", "dsi0_ddr2", "dsi0_ddr2_inv", "dsi0_byte", "dsi0_byte_inv", }; static const char *const bcm2835_clock_dsi1_parents[] = { "gnd", "xosc", "testdebug0", "testdebug1", "dsi1_ddr", "dsi1_ddr_inv", "dsi1_ddr2", "dsi1_ddr2_inv", "dsi1_byte", "dsi1_byte_inv", }; #define REGISTER_DSI0_CLK(s, ...) REGISTER_CLK( \ s, \ .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents), \ .parents = bcm2835_clock_dsi0_parents, \ __VA_ARGS__) #define REGISTER_DSI1_CLK(s, ...) REGISTER_CLK( \ s, \ .num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents), \ .parents = bcm2835_clock_dsi1_parents, \ __VA_ARGS__) /* * the real definition of all the pll, pll_dividers and clocks * these make use of the above REGISTER_* macros */ static const struct bcm2835_clk_desc clk_desc_array[] = { /* the PLL + PLL dividers */ /* * PLLA is the auxiliary PLL, used to drive the CCP2 * (Compact Camera Port 2) transmitter clock. * * It is in the PX LDO power domain, which is on when the * AUDIO domain is on. */ [BCM2835_PLLA] = REGISTER_PLL( SOC_ALL, .name = "plla", .cm_ctrl_reg = CM_PLLA, .a2w_ctrl_reg = A2W_PLLA_CTRL, .frac_reg = A2W_PLLA_FRAC, .ana_reg_base = A2W_PLLA_ANA0, .reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE, .lock_mask = CM_LOCK_FLOCKA, .ana = &bcm2835_ana_default, .min_rate = 600000000u, .max_rate = 2400000000u, .max_fb_rate = BCM2835_MAX_FB_RATE), [BCM2835_PLLA_CORE] = REGISTER_PLL_DIV( SOC_ALL, .name = "plla_core", .source_pll = "plla", .cm_reg = CM_PLLA, .a2w_reg = A2W_PLLA_CORE, .load_mask = CM_PLLA_LOADCORE, .hold_mask = CM_PLLA_HOLDCORE, .fixed_divider = 1, .flags = CLK_SET_RATE_PARENT), [BCM2835_PLLA_PER] = REGISTER_PLL_DIV( SOC_ALL, .name = "plla_per", .source_pll = "plla", .cm_reg = CM_PLLA, .a2w_reg = A2W_PLLA_PER, .load_mask = CM_PLLA_LOADPER, .hold_mask = CM_PLLA_HOLDPER, .fixed_divider = 1, .flags = CLK_SET_RATE_PARENT), [BCM2835_PLLA_DSI0] = REGISTER_PLL_DIV( SOC_ALL, .name = "plla_dsi0", .source_pll = "plla", .cm_reg = CM_PLLA, .a2w_reg = A2W_PLLA_DSI0, .load_mask = CM_PLLA_LOADDSI0, .hold_mask = CM_PLLA_HOLDDSI0, .fixed_divider = 1), [BCM2835_PLLA_CCP2] = REGISTER_PLL_DIV( SOC_ALL, .name = "plla_ccp2", .source_pll = "plla", .cm_reg = CM_PLLA, .a2w_reg = A2W_PLLA_CCP2, .load_mask = CM_PLLA_LOADCCP2, .hold_mask = CM_PLLA_HOLDCCP2, .fixed_divider = 1, .flags = CLK_SET_RATE_PARENT), /* * PLLB is used for the ARM's clock. Controlled by firmware, see * clk-raspberrypi.c. */ /* * PLLC is the core PLL, used to drive the core VPU clock. * * It is in the PX LDO power domain, which is on when the * AUDIO domain is on. */ [BCM2835_PLLC] = REGISTER_PLL( SOC_ALL, .name = "pllc", .cm_ctrl_reg = CM_PLLC, .a2w_ctrl_reg = A2W_PLLC_CTRL, .frac_reg = A2W_PLLC_FRAC, .ana_reg_base = A2W_PLLC_ANA0, .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE, .lock_mask = CM_LOCK_FLOCKC, .ana = &bcm2835_ana_default, .min_rate = 600000000u, .max_rate = 3000000000u, .max_fb_rate = BCM2835_MAX_FB_RATE), [BCM2835_PLLC_CORE0] = REGISTER_PLL_DIV( SOC_ALL, .name = "pllc_core0", .source_pll = "pllc", .cm_reg = CM_PLLC, .a2w_reg = A2W_PLLC_CORE0, .load_mask = CM_PLLC_LOADCORE0, .hold_mask = CM_PLLC_HOLDCORE0, .fixed_divider = 1, .flags = CLK_SET_RATE_PARENT), [BCM2835_PLLC_CORE1] = REGISTER_PLL_DIV( SOC_ALL, .name = "pllc_core1", .source_pll = "pllc", .cm_reg = CM_PLLC, .a2w_reg = A2W_PLLC_CORE1, .load_mask = CM_PLLC_LOADCORE1, .hold_mask = CM_PLLC_HOLDCORE1, .fixed_divider = 1, .flags = CLK_SET_RATE_PARENT), [BCM2835_PLLC_CORE2] = REGISTER_PLL_DIV( SOC_ALL, .name = "pllc_core2", .source_pll = "pllc", .cm_reg = CM_PLLC, .a2w_reg = A2W_PLLC_CORE2, .load_mask = CM_PLLC_LOADCORE2, .hold_mask = CM_PLLC_HOLDCORE2, .fixed_divider = 1, .flags = CLK_SET_RATE_PARENT), [BCM2835_PLLC_PER] = REGISTER_PLL_DIV( SOC_ALL, .name = "pllc_per", .source_pll = "pllc", .cm_reg = CM_PLLC, .a2w_reg = A2W_PLLC_PER, .load_mask = CM_PLLC_LOADPER, .hold_mask = CM_PLLC_HOLDPER, .fixed_divider = 1, .flags = CLK_SET_RATE_PARENT), /* * PLLD is the display PLL, used to drive DSI display panels. * * It is in the PX LDO power domain, which is on when the * AUDIO domain is on. */ [BCM2835_PLLD] = REGISTER_PLL( SOC_ALL, .name = "plld", .cm_ctrl_reg = CM_PLLD, .a2w_ctrl_reg = A2W_PLLD_CTRL, .frac_reg = A2W_PLLD_FRAC, .ana_reg_base = A2W_PLLD_ANA0, .reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE, .lock_mask = CM_LOCK_FLOCKD, .ana = &bcm2835_ana_default, .min_rate = 600000000u, .max_rate = 2400000000u, .max_fb_rate = BCM2835_MAX_FB_RATE), [BCM2835_PLLD_CORE] = REGISTER_PLL_DIV( SOC_ALL, .name = "plld_core", .source_pll = "plld", .cm_reg = CM_PLLD, .a2w_reg = A2W_PLLD_CORE, .load_mask = CM_PLLD_LOADCORE, .hold_mask = CM_PLLD_HOLDCORE, .fixed_divider = 1, .flags = CLK_SET_RATE_PARENT), /* * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core. * Otherwise this could cause firmware lookups. That's why we mark * it as critical. */ [BCM2835_PLLD_PER] = REGISTER_PLL_DIV( SOC_ALL, .name = "plld_per", .source_pll = "plld", .cm_reg = CM_PLLD, .a2w_reg = A2W_PLLD_PER, .load_mask = CM_PLLD_LOADPER, .hold_mask = CM_PLLD_HOLDPER, .fixed_divider = 1, .flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT), [BCM2835_PLLD_DSI0] = REGISTER_PLL_DIV( SOC_ALL, .name = "plld_dsi0", .source_pll = "plld", .cm_reg = CM_PLLD, .a2w_reg = A2W_PLLD_DSI0, .load_mask = CM_PLLD_LOADDSI0, .hold_mask = CM_PLLD_HOLDDSI0, .fixed_divider = 1), [BCM2835_PLLD_DSI1] = REGISTER_PLL_DIV( SOC_ALL, .name = "plld_dsi1", .source_pll = "plld", .cm_reg = CM_PLLD, .a2w_reg = A2W_PLLD_DSI1, .load_mask = CM_PLLD_LOADDSI1, .hold_mask = CM_PLLD_HOLDDSI1, .fixed_divider = 1), /* * PLLH is used to supply the pixel clock or the AUX clock for the * TV encoder. * * It is in the HDMI power domain. */ [BCM2835_PLLH] = REGISTER_PLL( SOC_BCM2835, "pllh", .cm_ctrl_reg = CM_PLLH, .a2w_ctrl_reg = A2W_PLLH_CTRL, .frac_reg = A2W_PLLH_FRAC, .ana_reg_base = A2W_PLLH_ANA0, .reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE, .lock_mask = CM_LOCK_FLOCKH, .ana = &bcm2835_ana_pllh, .min_rate = 600000000u, .max_rate = 3000000000u, .max_fb_rate = BCM2835_MAX_FB_RATE), [BCM2835_PLLH_RCAL] = REGISTER_PLL_DIV( SOC_BCM2835, .name = "pllh_rcal", .source_pll = "pllh", .cm_reg = CM_PLLH, .a2w_reg = A2W_PLLH_RCAL, .load_mask = CM_PLLH_LOADRCAL, .hold_mask = 0, .fixed_divider = 10, .flags = CLK_SET_RATE_PARENT), [BCM2835_PLLH_AUX] = REGISTER_PLL_DIV( SOC_BCM2835, .name = "pllh_aux", .source_pll = "pllh", .cm_reg = CM_PLLH, .a2w_reg = A2W_PLLH_AUX, .load_mask = CM_PLLH_LOADAUX, .hold_mask = 0, .fixed_divider = 1, .flags = CLK_SET_RATE_PARENT), [BCM2835_PLLH_PIX] = REGISTER_PLL_DIV( SOC_BCM2835, .name = "pllh_pix", .source_pll = "pllh", .cm_reg = CM_PLLH, .a2w_reg = A2W_PLLH_PIX, .load_mask = CM_PLLH_LOADPIX, .hold_mask = 0, .fixed_divider = 10, .flags = CLK_SET_RATE_PARENT), /* the clocks */ /* clocks with oscillator parent mux */ /* One Time Programmable Memory clock. Maximum 10Mhz. */ [BCM2835_CLOCK_OTP] = REGISTER_OSC_CLK( SOC_ALL, .name = "otp", .ctl_reg = CM_OTPCTL, .div_reg = CM_OTPDIV, .int_bits = 4, .frac_bits = 0, .tcnt_mux = 6), /* * Used for a 1Mhz clock for the system clocksource, and also used * bythe watchdog timer and the camera pulse generator. */ [BCM2835_CLOCK_TIMER] = REGISTER_OSC_CLK( SOC_ALL, .name = "timer", .ctl_reg = CM_TIMERCTL, .div_reg = CM_TIMERDIV, .int_bits = 6, .frac_bits = 12), /* * Clock for the temperature sensor. * Generally run at 2Mhz, max 5Mhz. */ [BCM2835_CLOCK_TSENS] = REGISTER_OSC_CLK( SOC_ALL, .name = "tsens", .ctl_reg = CM_TSENSCTL, .div_reg = CM_TSENSDIV, .int_bits = 5, .frac_bits = 0), [BCM2835_CLOCK_TEC] = REGISTER_OSC_CLK( SOC_ALL, .name = "tec", .ctl_reg = CM_TECCTL, .div_reg = CM_TECDIV, .int_bits = 6, .frac_bits = 0), /* clocks with vpu parent mux */ [BCM2835_CLOCK_H264] = REGISTER_VPU_CLK( SOC_ALL, .name = "h264", .ctl_reg = CM_H264CTL, .div_reg = CM_H264DIV, .int_bits = 4, .frac_bits = 8, .tcnt_mux = 1), [BCM2835_CLOCK_ISP] = REGISTER_VPU_CLK( SOC_ALL, .name = "isp", .ctl_reg = CM_ISPCTL, .div_reg = CM_ISPDIV, .int_bits = 4, .frac_bits = 8, .tcnt_mux = 2), /* * Secondary SDRAM clock. Used for low-voltage modes when the PLL * in the SDRAM controller can't be used. */ [BCM2835_CLOCK_SDRAM] = REGISTER_VPU_CLK( SOC_ALL, .name = "sdram", .ctl_reg = CM_SDCCTL, .div_reg = CM_SDCDIV, .int_bits = 6, .frac_bits = 0, .tcnt_mux = 3), [BCM2835_CLOCK_V3D] = REGISTER_VPU_CLK( SOC_ALL, .name = "v3d", .ctl_reg = CM_V3DCTL, .div_reg = CM_V3DDIV, .int_bits = 4, .frac_bits = 8, .tcnt_mux = 4), /* * VPU clock. This doesn't have an enable bit, since it drives * the bus for everything else, and is special so it doesn't need * to be gated for rate changes. It is also known as "clk_audio" * in various hardware documentation. */ [BCM2835_CLOCK_VPU] = REGISTER_VPU_CLK( SOC_ALL, .name = "vpu", .ctl_reg = CM_VPUCTL, .div_reg = CM_VPUDIV, .int_bits = 12, .frac_bits = 8, .flags = CLK_IS_CRITICAL, .is_vpu_clock = true, .tcnt_mux = 5), /* clocks with per parent mux */ [BCM2835_CLOCK_AVEO] = REGISTER_PER_CLK( SOC_ALL, .name = "aveo", .ctl_reg = CM_AVEOCTL, .div_reg = CM_AVEODIV, .int_bits = 4, .frac_bits = 0, .tcnt_mux = 38), [BCM2835_CLOCK_CAM0] = REGISTER_PER_CLK( SOC_ALL, .name = "cam0", .ctl_reg = CM_CAM0CTL, .div_reg = CM_CAM0DIV, .int_bits = 4, .frac_bits = 8, .tcnt_mux = 14), [BCM2835_CLOCK_CAM1] = REGISTER_PER_CLK( SOC_ALL, .name = "cam1", .ctl_reg = CM_CAM1CTL, .div_reg = CM_CAM1DIV, .int_bits = 4, .frac_bits = 8, .tcnt_mux = 15), [BCM2835_CLOCK_DFT] = REGISTER_PER_CLK( SOC_ALL, .name = "dft", .ctl_reg = CM_DFTCTL, .div_reg = CM_DFTDIV, .int_bits = 5, .frac_bits = 0), [BCM2835_CLOCK_DPI] = REGISTER_PER_CLK( SOC_ALL, .name = "dpi", .ctl_reg = CM_DPICTL, .div_reg = CM_DPIDIV, .int_bits = 4, .frac_bits = 8, .tcnt_mux = 17), /* Arasan EMMC clock */ [BCM2835_CLOCK_EMMC] = REGISTER_PER_CLK( SOC_ALL, .name = "emmc", .ctl_reg = CM_EMMCCTL, .div_reg = CM_EMMCDIV, .int_bits = 4, .frac_bits = 8, .tcnt_mux = 39), /* EMMC2 clock (only available for BCM2711) */ [BCM2711_CLOCK_EMMC2] = REGISTER_PER_CLK( SOC_BCM2711, .name = "emmc2", .ctl_reg = CM_EMMC2CTL, .div_reg = CM_EMMC2DIV, .int_bits = 4, .frac_bits = 8, .tcnt_mux = 42), /* General purpose (GPIO) clocks */ [BCM2835_CLOCK_GP0] = REGISTER_PER_CLK( SOC_ALL, .name = "gp0", .ctl_reg = CM_GP0CTL, .div_reg = CM_GP0DIV, .int_bits = 12, .frac_bits = 12, .is_mash_clock = true, .tcnt_mux = 20), [BCM2835_CLOCK_GP1] = REGISTER_PER_CLK( SOC_ALL, .name = "gp1", .ctl_reg = CM_GP1CTL, .div_reg = CM_GP1DIV, .int_bits = 12, .frac_bits = 12, .flags = CLK_IS_CRITICAL, .is_mash_clock = true, .tcnt_mux = 21), [BCM2835_CLOCK_GP2] = REGISTER_PER_CLK( SOC_ALL, .name = "gp2", .ctl_reg = CM_GP2CTL, .div_reg = CM_GP2DIV, .int_bits = 12, .frac_bits = 12, .flags = CLK_IS_CRITICAL), /* HDMI state machine */ [BCM2835_CLOCK_HSM] = REGISTER_PER_CLK( SOC_ALL, .name = "hsm", .ctl_reg = CM_HSMCTL, .div_reg = CM_HSMDIV, .int_bits = 4, .frac_bits = 8, .tcnt_mux = 22), [BCM2835_CLOCK_PCM] = REGISTER_PCM_CLK( SOC_ALL, .name = "pcm", .ctl_reg = CM_PCMCTL, .div_reg = CM_PCMDIV, .int_bits = 12, .frac_bits = 12, .is_mash_clock = true, .low_jitter = true, .tcnt_mux = 23), [BCM2835_CLOCK_PWM] = REGISTER_PER_CLK( SOC_ALL, .name = "pwm", .ctl_reg = CM_PWMCTL, .div_reg = CM_PWMDIV, .int_bits = 12, .frac_bits = 12, .is_mash_clock = true, .tcnt_mux = 24), [BCM2835_CLOCK_SLIM] = REGISTER_PER_CLK( SOC_ALL, .name = "slim", .ctl_reg = CM_SLIMCTL, .div_reg = CM_SLIMDIV, .int_bits = 12, .frac_bits = 12, .is_mash_clock = true, .tcnt_mux = 25), [BCM2835_CLOCK_SMI] = REGISTER_PER_CLK( SOC_ALL, .name = "smi", .ctl_reg = CM_SMICTL, .div_reg = CM_SMIDIV, .int_bits = 4, .frac_bits = 8, .tcnt_mux = 27), [BCM2835_CLOCK_UART] = REGISTER_PER_CLK( SOC_ALL, .name = "uart", .ctl_reg = CM_UARTCTL, .div_reg = CM_UARTDIV, .int_bits = 10, .frac_bits = 12, .tcnt_mux = 28), /* TV encoder clock. Only operating frequency is 108Mhz. */ [BCM2835_CLOCK_VEC] = REGISTER_PER_CLK( SOC_ALL, .name = "vec", .ctl_reg = CM_VECCTL, .div_reg = CM_VECDIV, .int_bits = 4, .frac_bits = 0, /* * Allow rate change propagation only on PLLH_AUX which is * assigned index 7 in the parent array. */ .set_rate_parent = BIT(7), .tcnt_mux = 29), /* dsi clocks */ [BCM2835_CLOCK_DSI0E] = REGISTER_PER_CLK( SOC_ALL, .name = "dsi0e", .ctl_reg = CM_DSI0ECTL, .div_reg = CM_DSI0EDIV, .int_bits = 4, .frac_bits = 8, .tcnt_mux = 18), [BCM2835_CLOCK_DSI1E] = REGISTER_PER_CLK( SOC_ALL, .name = "dsi1e", .ctl_reg = CM_DSI1ECTL, .div_reg = CM_DSI1EDIV, .int_bits = 4, .frac_bits = 8, .tcnt_mux = 19), [BCM2835_CLOCK_DSI0P] = REGISTER_DSI0_CLK( SOC_ALL, .name = "dsi0p", .ctl_reg = CM_DSI0PCTL, .div_reg = CM_DSI0PDIV, .int_bits = 0, .frac_bits = 0, .tcnt_mux = 12), [BCM2835_CLOCK_DSI1P] = REGISTER_DSI1_CLK( SOC_ALL, .name = "dsi1p", .ctl_reg = CM_DSI1PCTL, .div_reg = CM_DSI1PDIV, .int_bits = 0, .frac_bits = 0, .tcnt_mux = 13), /* the gates */ /* * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if * you have the debug bit set in the power manager, which we * don't bother exposing) are individual gates off of the * non-stop vpu clock. */ [BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE( SOC_ALL, .name = "peri_image", .parent = "vpu", .ctl_reg = CM_PERIICTL), }; /* * Permanently take a reference on the parent of the SDRAM clock. * * While the SDRAM is being driven by its dedicated PLL most of the * time, there is a little loop running in the firmware that * periodically switches the SDRAM to using our CM clock to do PVT * recalibration, with the assumption that the previously configured * SDRAM parent is still enabled and running. */ static int bcm2835_mark_sdc_parent_critical(struct clk *sdc) { struct clk *parent = clk_get_parent(sdc); if (IS_ERR(parent)) return PTR_ERR(parent); return clk_prepare_enable(parent); } static int bcm2835_clk_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct clk_hw **hws; struct bcm2835_cprman *cprman; const struct bcm2835_clk_desc *desc; const size_t asize = ARRAY_SIZE(clk_desc_array); const struct cprman_plat_data *pdata; size_t i; int ret; pdata = of_device_get_match_data(&pdev->dev); if (!pdata) return -ENODEV; cprman = devm_kzalloc(dev, struct_size(cprman, onecell.hws, asize), GFP_KERNEL); if (!cprman) return -ENOMEM; spin_lock_init(&cprman->regs_lock); cprman->dev = dev; cprman->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(cprman->regs)) return PTR_ERR(cprman->regs); memcpy(cprman->real_parent_names, cprman_parent_names, sizeof(cprman_parent_names)); of_clk_parent_fill(dev->of_node, cprman->real_parent_names, ARRAY_SIZE(cprman_parent_names)); /* * Make sure the external oscillator has been registered. * * The other (DSI) clocks are not present on older device * trees, which we still need to support for backwards * compatibility. */ if (!cprman->real_parent_names[0]) return -ENODEV; platform_set_drvdata(pdev, cprman); cprman->onecell.num = asize; hws = cprman->onecell.hws; for (i = 0; i < asize; i++) { desc = &clk_desc_array[i]; if (desc->clk_register && desc->data && (desc->supported & pdata->soc)) { hws[i] = desc->clk_register(cprman, desc->data); } } ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk); if (ret) return ret; return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get, &cprman->onecell); } static const struct cprman_plat_data cprman_bcm2835_plat_data = { .soc = SOC_BCM2835, }; static const struct cprman_plat_data cprman_bcm2711_plat_data = { .soc = SOC_BCM2711, }; static const struct of_device_id bcm2835_clk_of_match[] = { { .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data }, { .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data }, {} }; MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match); static struct platform_driver bcm2835_clk_driver = { .driver = { .name = "bcm2835-clk", .of_match_table = bcm2835_clk_of_match, }, .probe = bcm2835_clk_probe, }; builtin_platform_driver(bcm2835_clk_driver); MODULE_AUTHOR("Eric Anholt <eric@anholt.net>"); MODULE_DESCRIPTION("BCM2835 clock driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1