Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Heikki Krogerus | 549 | 49.73% | 2 | 13.33% |
Stephen Boyd | 199 | 18.03% | 4 | 26.67% |
Andy Shevchenko | 128 | 11.59% | 3 | 20.00% |
Elaine Zhang | 102 | 9.24% | 1 | 6.67% |
Jonas Gorski | 83 | 7.52% | 2 | 13.33% |
Dong Aisheng | 32 | 2.90% | 1 | 6.67% |
Katsuhiro Suzuki | 8 | 0.72% | 1 | 6.67% |
Heiko Stübner | 3 | 0.27% | 1 | 6.67% |
Total | 1104 | 15 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2014 Intel Corporation * * Adjustable fractional divider clock implementation. * Output rate = (m / n) * parent_rate. * Uses rational best approximation algorithm. */ #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/module.h> #include <linux/device.h> #include <linux/slab.h> #include <linux/rational.h> static inline u32 clk_fd_readl(struct clk_fractional_divider *fd) { if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN) return ioread32be(fd->reg); return readl(fd->reg); } static inline void clk_fd_writel(struct clk_fractional_divider *fd, u32 val) { if (fd->flags & CLK_FRAC_DIVIDER_BIG_ENDIAN) iowrite32be(val, fd->reg); else writel(val, fd->reg); } static unsigned long clk_fd_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct clk_fractional_divider *fd = to_clk_fd(hw); unsigned long flags = 0; unsigned long m, n; u32 val; u64 ret; if (fd->lock) spin_lock_irqsave(fd->lock, flags); else __acquire(fd->lock); val = clk_fd_readl(fd); if (fd->lock) spin_unlock_irqrestore(fd->lock, flags); else __release(fd->lock); m = (val & fd->mmask) >> fd->mshift; n = (val & fd->nmask) >> fd->nshift; if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) { m++; n++; } if (!n || !m) return parent_rate; ret = (u64)parent_rate * m; do_div(ret, n); return ret; } static void clk_fd_general_approximation(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate, unsigned long *m, unsigned long *n) { struct clk_fractional_divider *fd = to_clk_fd(hw); unsigned long scale; /* * Get rate closer to *parent_rate to guarantee there is no overflow * for m and n. In the result it will be the nearest rate left shifted * by (scale - fd->nwidth) bits. */ scale = fls_long(*parent_rate / rate - 1); if (scale > fd->nwidth) rate <<= scale - fd->nwidth; rational_best_approximation(rate, *parent_rate, GENMASK(fd->mwidth - 1, 0), GENMASK(fd->nwidth - 1, 0), m, n); } static long clk_fd_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate) { struct clk_fractional_divider *fd = to_clk_fd(hw); unsigned long m, n; u64 ret; if (!rate || (!clk_hw_can_set_rate_parent(hw) && rate >= *parent_rate)) return *parent_rate; if (fd->approximation) fd->approximation(hw, rate, parent_rate, &m, &n); else clk_fd_general_approximation(hw, rate, parent_rate, &m, &n); ret = (u64)*parent_rate * m; do_div(ret, n); return ret; } static int clk_fd_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate) { struct clk_fractional_divider *fd = to_clk_fd(hw); unsigned long flags = 0; unsigned long m, n; u32 val; rational_best_approximation(rate, parent_rate, GENMASK(fd->mwidth - 1, 0), GENMASK(fd->nwidth - 1, 0), &m, &n); if (fd->flags & CLK_FRAC_DIVIDER_ZERO_BASED) { m--; n--; } if (fd->lock) spin_lock_irqsave(fd->lock, flags); else __acquire(fd->lock); val = clk_fd_readl(fd); val &= ~(fd->mmask | fd->nmask); val |= (m << fd->mshift) | (n << fd->nshift); clk_fd_writel(fd, val); if (fd->lock) spin_unlock_irqrestore(fd->lock, flags); else __release(fd->lock); return 0; } const struct clk_ops clk_fractional_divider_ops = { .recalc_rate = clk_fd_recalc_rate, .round_rate = clk_fd_round_rate, .set_rate = clk_fd_set_rate, }; EXPORT_SYMBOL_GPL(clk_fractional_divider_ops); struct clk_hw *clk_hw_register_fractional_divider(struct device *dev, const char *name, const char *parent_name, unsigned long flags, void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth, u8 clk_divider_flags, spinlock_t *lock) { struct clk_fractional_divider *fd; struct clk_init_data init; struct clk_hw *hw; int ret; fd = kzalloc(sizeof(*fd), GFP_KERNEL); if (!fd) return ERR_PTR(-ENOMEM); init.name = name; init.ops = &clk_fractional_divider_ops; init.flags = flags; init.parent_names = parent_name ? &parent_name : NULL; init.num_parents = parent_name ? 1 : 0; fd->reg = reg; fd->mshift = mshift; fd->mwidth = mwidth; fd->mmask = GENMASK(mwidth - 1, 0) << mshift; fd->nshift = nshift; fd->nwidth = nwidth; fd->nmask = GENMASK(nwidth - 1, 0) << nshift; fd->flags = clk_divider_flags; fd->lock = lock; fd->hw.init = &init; hw = &fd->hw; ret = clk_hw_register(dev, hw); if (ret) { kfree(fd); hw = ERR_PTR(ret); } return hw; } EXPORT_SYMBOL_GPL(clk_hw_register_fractional_divider); struct clk *clk_register_fractional_divider(struct device *dev, const char *name, const char *parent_name, unsigned long flags, void __iomem *reg, u8 mshift, u8 mwidth, u8 nshift, u8 nwidth, u8 clk_divider_flags, spinlock_t *lock) { struct clk_hw *hw; hw = clk_hw_register_fractional_divider(dev, name, parent_name, flags, reg, mshift, mwidth, nshift, nwidth, clk_divider_flags, lock); if (IS_ERR(hw)) return ERR_CAST(hw); return hw->clk; } EXPORT_SYMBOL_GPL(clk_register_fractional_divider); void clk_hw_unregister_fractional_divider(struct clk_hw *hw) { struct clk_fractional_divider *fd; fd = to_clk_fd(hw); clk_hw_unregister(hw); kfree(fd); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1