Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexandru M Stan | 500 | 65.45% | 1 | 5.88% |
Shawn Lin | 202 | 26.44% | 5 | 29.41% |
Doug Anderson | 35 | 4.58% | 4 | 23.53% |
Heiko Stübner | 18 | 2.36% | 2 | 11.76% |
Stephen Boyd | 4 | 0.52% | 2 | 11.76% |
Thomas Gleixner | 2 | 0.26% | 1 | 5.88% |
Jerome Brunet | 2 | 0.26% | 1 | 5.88% |
Uwe Kleine-König | 1 | 0.13% | 1 | 5.88% |
Total | 764 | 17 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2014 Google, Inc * Author: Alexandru M Stan <amstan@chromium.org> */ #include <linux/slab.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/io.h> #include <linux/kernel.h> #include "clk.h" struct rockchip_mmc_clock { struct clk_hw hw; void __iomem *reg; int id; int shift; int cached_phase; struct notifier_block clk_rate_change_nb; }; #define to_mmc_clock(_hw) container_of(_hw, struct rockchip_mmc_clock, hw) #define RK3288_MMC_CLKGEN_DIV 2 static unsigned long rockchip_mmc_recalc(struct clk_hw *hw, unsigned long parent_rate) { return parent_rate / RK3288_MMC_CLKGEN_DIV; } #define ROCKCHIP_MMC_DELAY_SEL BIT(10) #define ROCKCHIP_MMC_DEGREE_MASK 0x3 #define ROCKCHIP_MMC_DELAYNUM_OFFSET 2 #define ROCKCHIP_MMC_DELAYNUM_MASK (0xff << ROCKCHIP_MMC_DELAYNUM_OFFSET) #define PSECS_PER_SEC 1000000000000LL /* * Each fine delay is between 44ps-77ps. Assume each fine delay is 60ps to * simplify calculations. So 45degs could be anywhere between 33deg and 57.8deg. */ #define ROCKCHIP_MMC_DELAY_ELEMENT_PSEC 60 static int rockchip_mmc_get_phase(struct clk_hw *hw) { struct rockchip_mmc_clock *mmc_clock = to_mmc_clock(hw); unsigned long rate = clk_hw_get_rate(hw); u32 raw_value; u16 degrees; u32 delay_num = 0; /* Constant signal, no measurable phase shift */ if (!rate) return 0; raw_value = readl(mmc_clock->reg) >> (mmc_clock->shift); degrees = (raw_value & ROCKCHIP_MMC_DEGREE_MASK) * 90; if (raw_value & ROCKCHIP_MMC_DELAY_SEL) { /* degrees/delaynum * 1000000 */ unsigned long factor = (ROCKCHIP_MMC_DELAY_ELEMENT_PSEC / 10) * 36 * (rate / 10000); delay_num = (raw_value & ROCKCHIP_MMC_DELAYNUM_MASK); delay_num >>= ROCKCHIP_MMC_DELAYNUM_OFFSET; degrees += DIV_ROUND_CLOSEST(delay_num * factor, 1000000); } return degrees % 360; } static int rockchip_mmc_set_phase(struct clk_hw *hw, int degrees) { struct rockchip_mmc_clock *mmc_clock = to_mmc_clock(hw); unsigned long rate = clk_hw_get_rate(hw); u8 nineties, remainder; u8 delay_num; u32 raw_value; u32 delay; /* * The below calculation is based on the output clock from * MMC host to the card, which expects the phase clock inherits * the clock rate from its parent, namely the output clock * provider of MMC host. However, things may go wrong if * (1) It is orphan. * (2) It is assigned to the wrong parent. * * This check help debug the case (1), which seems to be the * most likely problem we often face and which makes it difficult * for people to debug unstable mmc tuning results. */ if (!rate) { pr_err("%s: invalid clk rate\n", __func__); return -EINVAL; } nineties = degrees / 90; remainder = (degrees % 90); /* * Due to the inexact nature of the "fine" delay, we might * actually go non-monotonic. We don't go _too_ monotonic * though, so we should be OK. Here are options of how we may * work: * * Ideally we end up with: * 1.0, 2.0, ..., 69.0, 70.0, ..., 89.0, 90.0 * * On one extreme (if delay is actually 44ps): * .73, 1.5, ..., 50.6, 51.3, ..., 65.3, 90.0 * The other (if delay is actually 77ps): * 1.3, 2.6, ..., 88.6. 89.8, ..., 114.0, 90 * * It's possible we might make a delay that is up to 25 * degrees off from what we think we're making. That's OK * though because we should be REALLY far from any bad range. */ /* * Convert to delay; do a little extra work to make sure we * don't overflow 32-bit / 64-bit numbers. */ delay = 10000000; /* PSECS_PER_SEC / 10000 / 10 */ delay *= remainder; delay = DIV_ROUND_CLOSEST(delay, (rate / 1000) * 36 * (ROCKCHIP_MMC_DELAY_ELEMENT_PSEC / 10)); delay_num = (u8) min_t(u32, delay, 255); raw_value = delay_num ? ROCKCHIP_MMC_DELAY_SEL : 0; raw_value |= delay_num << ROCKCHIP_MMC_DELAYNUM_OFFSET; raw_value |= nineties; writel(HIWORD_UPDATE(raw_value, 0x07ff, mmc_clock->shift), mmc_clock->reg); pr_debug("%s->set_phase(%d) delay_nums=%u reg[0x%p]=0x%03x actual_degrees=%d\n", clk_hw_get_name(hw), degrees, delay_num, mmc_clock->reg, raw_value>>(mmc_clock->shift), rockchip_mmc_get_phase(hw) ); return 0; } static const struct clk_ops rockchip_mmc_clk_ops = { .recalc_rate = rockchip_mmc_recalc, .get_phase = rockchip_mmc_get_phase, .set_phase = rockchip_mmc_set_phase, }; #define to_rockchip_mmc_clock(x) \ container_of(x, struct rockchip_mmc_clock, clk_rate_change_nb) static int rockchip_mmc_clk_rate_notify(struct notifier_block *nb, unsigned long event, void *data) { struct rockchip_mmc_clock *mmc_clock = to_rockchip_mmc_clock(nb); struct clk_notifier_data *ndata = data; /* * rockchip_mmc_clk is mostly used by mmc controllers to sample * the intput data, which expects the fixed phase after the tuning * process. However if the clock rate is changed, the phase is stale * and may break the data sampling. So here we try to restore the phase * for that case, except that * (1) cached_phase is invaild since we inevitably cached it when the * clock provider be reparented from orphan to its real parent in the * first place. Otherwise we may mess up the initialization of MMC cards * since we only set the default sample phase and drive phase later on. * (2) the new coming rate is higher than the older one since mmc driver * set the max-frequency to match the boards' ability but we can't go * over the heads of that, otherwise the tests smoke out the issue. */ if (ndata->old_rate <= ndata->new_rate) return NOTIFY_DONE; if (event == PRE_RATE_CHANGE) mmc_clock->cached_phase = rockchip_mmc_get_phase(&mmc_clock->hw); else if (mmc_clock->cached_phase != -EINVAL && event == POST_RATE_CHANGE) rockchip_mmc_set_phase(&mmc_clock->hw, mmc_clock->cached_phase); return NOTIFY_DONE; } struct clk *rockchip_clk_register_mmc(const char *name, const char *const *parent_names, u8 num_parents, void __iomem *reg, int shift) { struct clk_init_data init; struct rockchip_mmc_clock *mmc_clock; struct clk *clk; int ret; mmc_clock = kmalloc(sizeof(*mmc_clock), GFP_KERNEL); if (!mmc_clock) return ERR_PTR(-ENOMEM); init.name = name; init.flags = 0; init.num_parents = num_parents; init.parent_names = parent_names; init.ops = &rockchip_mmc_clk_ops; mmc_clock->hw.init = &init; mmc_clock->reg = reg; mmc_clock->shift = shift; clk = clk_register(NULL, &mmc_clock->hw); if (IS_ERR(clk)) { ret = PTR_ERR(clk); goto err_register; } mmc_clock->clk_rate_change_nb.notifier_call = &rockchip_mmc_clk_rate_notify; ret = clk_notifier_register(clk, &mmc_clock->clk_rate_change_nb); if (ret) goto err_notifier; return clk; err_notifier: clk_unregister(clk); err_register: kfree(mmc_clock); return ERR_PTR(ret); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1