Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Boris Brezillon | 1891 | 80.74% | 5 | 18.52% |
Romain Perier | 323 | 13.79% | 7 | 25.93% |
Russell King | 51 | 2.18% | 8 | 29.63% |
Thomas Petazzoni | 42 | 1.79% | 1 | 3.70% |
Arnaud Ebalard | 28 | 1.20% | 3 | 11.11% |
Ard Biesheuvel | 4 | 0.17% | 1 | 3.70% |
SrujanaChalla | 2 | 0.09% | 1 | 3.70% |
Greg Kroah-Hartman | 1 | 0.04% | 1 | 3.70% |
Total | 2342 | 27 |
/* SPDX-License-Identifier: GPL-2.0 */ #ifndef __MARVELL_CESA_H__ #define __MARVELL_CESA_H__ #include <crypto/algapi.h> #include <crypto/hash.h> #include <crypto/internal/hash.h> #include <crypto/internal/skcipher.h> #include <linux/crypto.h> #include <linux/dmapool.h> #define CESA_ENGINE_OFF(i) (((i) * 0x2000)) #define CESA_TDMA_BYTE_CNT 0x800 #define CESA_TDMA_SRC_ADDR 0x810 #define CESA_TDMA_DST_ADDR 0x820 #define CESA_TDMA_NEXT_ADDR 0x830 #define CESA_TDMA_CONTROL 0x840 #define CESA_TDMA_DST_BURST GENMASK(2, 0) #define CESA_TDMA_DST_BURST_32B 3 #define CESA_TDMA_DST_BURST_128B 4 #define CESA_TDMA_OUT_RD_EN BIT(4) #define CESA_TDMA_SRC_BURST GENMASK(8, 6) #define CESA_TDMA_SRC_BURST_32B (3 << 6) #define CESA_TDMA_SRC_BURST_128B (4 << 6) #define CESA_TDMA_CHAIN BIT(9) #define CESA_TDMA_BYTE_SWAP BIT(11) #define CESA_TDMA_NO_BYTE_SWAP BIT(11) #define CESA_TDMA_EN BIT(12) #define CESA_TDMA_FETCH_ND BIT(13) #define CESA_TDMA_ACT BIT(14) #define CESA_TDMA_CUR 0x870 #define CESA_TDMA_ERROR_CAUSE 0x8c8 #define CESA_TDMA_ERROR_MSK 0x8cc #define CESA_TDMA_WINDOW_BASE(x) (((x) * 0x8) + 0xa00) #define CESA_TDMA_WINDOW_CTRL(x) (((x) * 0x8) + 0xa04) #define CESA_IVDIG(x) (0xdd00 + ((x) * 4) + \ (((x) < 5) ? 0 : 0x14)) #define CESA_SA_CMD 0xde00 #define CESA_SA_CMD_EN_CESA_SA_ACCL0 BIT(0) #define CESA_SA_CMD_EN_CESA_SA_ACCL1 BIT(1) #define CESA_SA_CMD_DISABLE_SEC BIT(2) #define CESA_SA_DESC_P0 0xde04 #define CESA_SA_DESC_P1 0xde14 #define CESA_SA_CFG 0xde08 #define CESA_SA_CFG_STOP_DIG_ERR GENMASK(1, 0) #define CESA_SA_CFG_DIG_ERR_CONT 0 #define CESA_SA_CFG_DIG_ERR_SKIP 1 #define CESA_SA_CFG_DIG_ERR_STOP 3 #define CESA_SA_CFG_CH0_W_IDMA BIT(7) #define CESA_SA_CFG_CH1_W_IDMA BIT(8) #define CESA_SA_CFG_ACT_CH0_IDMA BIT(9) #define CESA_SA_CFG_ACT_CH1_IDMA BIT(10) #define CESA_SA_CFG_MULTI_PKT BIT(11) #define CESA_SA_CFG_PARA_DIS BIT(13) #define CESA_SA_ACCEL_STATUS 0xde0c #define CESA_SA_ST_ACT_0 BIT(0) #define CESA_SA_ST_ACT_1 BIT(1) /* * CESA_SA_FPGA_INT_STATUS looks like a FPGA leftover and is documented only * in Errata 4.12. It looks like that it was part of an IRQ-controller in FPGA * and someone forgot to remove it while switching to the core and moving to * CESA_SA_INT_STATUS. */ #define CESA_SA_FPGA_INT_STATUS 0xdd68 #define CESA_SA_INT_STATUS 0xde20 #define CESA_SA_INT_AUTH_DONE BIT(0) #define CESA_SA_INT_DES_E_DONE BIT(1) #define CESA_SA_INT_AES_E_DONE BIT(2) #define CESA_SA_INT_AES_D_DONE BIT(3) #define CESA_SA_INT_ENC_DONE BIT(4) #define CESA_SA_INT_ACCEL0_DONE BIT(5) #define CESA_SA_INT_ACCEL1_DONE BIT(6) #define CESA_SA_INT_ACC0_IDMA_DONE BIT(7) #define CESA_SA_INT_ACC1_IDMA_DONE BIT(8) #define CESA_SA_INT_IDMA_DONE BIT(9) #define CESA_SA_INT_IDMA_OWN_ERR BIT(10) #define CESA_SA_INT_MSK 0xde24 #define CESA_SA_DESC_CFG_OP_MAC_ONLY 0 #define CESA_SA_DESC_CFG_OP_CRYPT_ONLY 1 #define CESA_SA_DESC_CFG_OP_MAC_CRYPT 2 #define CESA_SA_DESC_CFG_OP_CRYPT_MAC 3 #define CESA_SA_DESC_CFG_OP_MSK GENMASK(1, 0) #define CESA_SA_DESC_CFG_MACM_SHA256 (1 << 4) #define CESA_SA_DESC_CFG_MACM_HMAC_SHA256 (3 << 4) #define CESA_SA_DESC_CFG_MACM_MD5 (4 << 4) #define CESA_SA_DESC_CFG_MACM_SHA1 (5 << 4) #define CESA_SA_DESC_CFG_MACM_HMAC_MD5 (6 << 4) #define CESA_SA_DESC_CFG_MACM_HMAC_SHA1 (7 << 4) #define CESA_SA_DESC_CFG_MACM_MSK GENMASK(6, 4) #define CESA_SA_DESC_CFG_CRYPTM_DES (1 << 8) #define CESA_SA_DESC_CFG_CRYPTM_3DES (2 << 8) #define CESA_SA_DESC_CFG_CRYPTM_AES (3 << 8) #define CESA_SA_DESC_CFG_CRYPTM_MSK GENMASK(9, 8) #define CESA_SA_DESC_CFG_DIR_ENC (0 << 12) #define CESA_SA_DESC_CFG_DIR_DEC (1 << 12) #define CESA_SA_DESC_CFG_CRYPTCM_ECB (0 << 16) #define CESA_SA_DESC_CFG_CRYPTCM_CBC (1 << 16) #define CESA_SA_DESC_CFG_CRYPTCM_MSK BIT(16) #define CESA_SA_DESC_CFG_3DES_EEE (0 << 20) #define CESA_SA_DESC_CFG_3DES_EDE (1 << 20) #define CESA_SA_DESC_CFG_AES_LEN_128 (0 << 24) #define CESA_SA_DESC_CFG_AES_LEN_192 (1 << 24) #define CESA_SA_DESC_CFG_AES_LEN_256 (2 << 24) #define CESA_SA_DESC_CFG_AES_LEN_MSK GENMASK(25, 24) #define CESA_SA_DESC_CFG_NOT_FRAG (0 << 30) #define CESA_SA_DESC_CFG_FIRST_FRAG (1 << 30) #define CESA_SA_DESC_CFG_LAST_FRAG (2 << 30) #define CESA_SA_DESC_CFG_MID_FRAG (3 << 30) #define CESA_SA_DESC_CFG_FRAG_MSK GENMASK(31, 30) /* * /-----------\ 0 * | ACCEL CFG | 4 * 8 * |-----------| 0x20 * | CRYPT KEY | 8 * 4 * |-----------| 0x40 * | IV IN | 4 * 4 * |-----------| 0x40 (inplace) * | IV BUF | 4 * 4 * |-----------| 0x80 * | DATA IN | 16 * x (max ->max_req_size) * |-----------| 0x80 (inplace operation) * | DATA OUT | 16 * x (max ->max_req_size) * \-----------/ SRAM size */ /* * Hashing memory map: * /-----------\ 0 * | ACCEL CFG | 4 * 8 * |-----------| 0x20 * | Inner IV | 8 * 4 * |-----------| 0x40 * | Outer IV | 8 * 4 * |-----------| 0x60 * | Output BUF| 8 * 4 * |-----------| 0x80 * | DATA IN | 64 * x (max ->max_req_size) * \-----------/ SRAM size */ #define CESA_SA_CFG_SRAM_OFFSET 0x00 #define CESA_SA_DATA_SRAM_OFFSET 0x80 #define CESA_SA_CRYPT_KEY_SRAM_OFFSET 0x20 #define CESA_SA_CRYPT_IV_SRAM_OFFSET 0x40 #define CESA_SA_MAC_IIV_SRAM_OFFSET 0x20 #define CESA_SA_MAC_OIV_SRAM_OFFSET 0x40 #define CESA_SA_MAC_DIG_SRAM_OFFSET 0x60 #define CESA_SA_DESC_CRYPT_DATA(offset) \ cpu_to_le32((CESA_SA_DATA_SRAM_OFFSET + (offset)) | \ ((CESA_SA_DATA_SRAM_OFFSET + (offset)) << 16)) #define CESA_SA_DESC_CRYPT_IV(offset) \ cpu_to_le32((CESA_SA_CRYPT_IV_SRAM_OFFSET + (offset)) | \ ((CESA_SA_CRYPT_IV_SRAM_OFFSET + (offset)) << 16)) #define CESA_SA_DESC_CRYPT_KEY(offset) \ cpu_to_le32(CESA_SA_CRYPT_KEY_SRAM_OFFSET + (offset)) #define CESA_SA_DESC_MAC_DATA(offset) \ cpu_to_le32(CESA_SA_DATA_SRAM_OFFSET + (offset)) #define CESA_SA_DESC_MAC_DATA_MSK cpu_to_le32(GENMASK(15, 0)) #define CESA_SA_DESC_MAC_TOTAL_LEN(total_len) cpu_to_le32((total_len) << 16) #define CESA_SA_DESC_MAC_TOTAL_LEN_MSK cpu_to_le32(GENMASK(31, 16)) #define CESA_SA_DESC_MAC_SRC_TOTAL_LEN_MAX 0xffff #define CESA_SA_DESC_MAC_DIGEST(offset) \ cpu_to_le32(CESA_SA_MAC_DIG_SRAM_OFFSET + (offset)) #define CESA_SA_DESC_MAC_DIGEST_MSK cpu_to_le32(GENMASK(15, 0)) #define CESA_SA_DESC_MAC_FRAG_LEN(frag_len) cpu_to_le32((frag_len) << 16) #define CESA_SA_DESC_MAC_FRAG_LEN_MSK cpu_to_le32(GENMASK(31, 16)) #define CESA_SA_DESC_MAC_IV(offset) \ cpu_to_le32((CESA_SA_MAC_IIV_SRAM_OFFSET + (offset)) | \ ((CESA_SA_MAC_OIV_SRAM_OFFSET + (offset)) << 16)) #define CESA_SA_SRAM_SIZE 2048 #define CESA_SA_SRAM_PAYLOAD_SIZE (cesa_dev->sram_size - \ CESA_SA_DATA_SRAM_OFFSET) #define CESA_SA_DEFAULT_SRAM_SIZE 2048 #define CESA_SA_MIN_SRAM_SIZE 1024 #define CESA_SA_SRAM_MSK (2048 - 1) #define CESA_MAX_HASH_BLOCK_SIZE 64 #define CESA_HASH_BLOCK_SIZE_MSK (CESA_MAX_HASH_BLOCK_SIZE - 1) /** * struct mv_cesa_sec_accel_desc - security accelerator descriptor * @config: engine config * @enc_p: input and output data pointers for a cipher operation * @enc_len: cipher operation length * @enc_key_p: cipher key pointer * @enc_iv: cipher IV pointers * @mac_src_p: input pointer and total hash length * @mac_digest: digest pointer and hash operation length * @mac_iv: hmac IV pointers * * Structure passed to the CESA engine to describe the crypto operation * to be executed. */ struct mv_cesa_sec_accel_desc { __le32 config; __le32 enc_p; __le32 enc_len; __le32 enc_key_p; __le32 enc_iv; __le32 mac_src_p; __le32 mac_digest; __le32 mac_iv; }; /** * struct mv_cesa_skcipher_op_ctx - cipher operation context * @key: cipher key * @iv: cipher IV * * Context associated to a cipher operation. */ struct mv_cesa_skcipher_op_ctx { u32 key[8]; u32 iv[4]; }; /** * struct mv_cesa_hash_op_ctx - hash or hmac operation context * @key: cipher key * @iv: cipher IV * * Context associated to an hash or hmac operation. */ struct mv_cesa_hash_op_ctx { u32 iv[16]; u32 hash[8]; }; /** * struct mv_cesa_op_ctx - crypto operation context * @desc: CESA descriptor * @ctx: context associated to the crypto operation * * Context associated to a crypto operation. */ struct mv_cesa_op_ctx { struct mv_cesa_sec_accel_desc desc; union { struct mv_cesa_skcipher_op_ctx skcipher; struct mv_cesa_hash_op_ctx hash; } ctx; }; /* TDMA descriptor flags */ #define CESA_TDMA_DST_IN_SRAM BIT(31) #define CESA_TDMA_SRC_IN_SRAM BIT(30) #define CESA_TDMA_END_OF_REQ BIT(29) #define CESA_TDMA_BREAK_CHAIN BIT(28) #define CESA_TDMA_SET_STATE BIT(27) #define CESA_TDMA_TYPE_MSK GENMASK(26, 0) #define CESA_TDMA_DUMMY 0 #define CESA_TDMA_DATA 1 #define CESA_TDMA_OP 2 #define CESA_TDMA_RESULT 3 /** * struct mv_cesa_tdma_desc - TDMA descriptor * @byte_cnt: number of bytes to transfer * @src: DMA address of the source * @dst: DMA address of the destination * @next_dma: DMA address of the next TDMA descriptor * @cur_dma: DMA address of this TDMA descriptor * @next: pointer to the next TDMA descriptor * @op: CESA operation attached to this TDMA descriptor * @data: raw data attached to this TDMA descriptor * @flags: flags describing the TDMA transfer. See the * "TDMA descriptor flags" section above * * TDMA descriptor used to create a transfer chain describing a crypto * operation. */ struct mv_cesa_tdma_desc { __le32 byte_cnt; __le32 src; __le32 dst; __le32 next_dma; /* Software state */ dma_addr_t cur_dma; struct mv_cesa_tdma_desc *next; union { struct mv_cesa_op_ctx *op; void *data; }; u32 flags; }; /** * struct mv_cesa_sg_dma_iter - scatter-gather iterator * @dir: transfer direction * @sg: scatter list * @offset: current position in the scatter list * @op_offset: current position in the crypto operation * * Iterator used to iterate over a scatterlist while creating a TDMA chain for * a crypto operation. */ struct mv_cesa_sg_dma_iter { enum dma_data_direction dir; struct scatterlist *sg; unsigned int offset; unsigned int op_offset; }; /** * struct mv_cesa_dma_iter - crypto operation iterator * @len: the crypto operation length * @offset: current position in the crypto operation * @op_len: sub-operation length (the crypto engine can only act on 2kb * chunks) * * Iterator used to create a TDMA chain for a given crypto operation. */ struct mv_cesa_dma_iter { unsigned int len; unsigned int offset; unsigned int op_len; }; /** * struct mv_cesa_tdma_chain - TDMA chain * @first: first entry in the TDMA chain * @last: last entry in the TDMA chain * * Stores a TDMA chain for a specific crypto operation. */ struct mv_cesa_tdma_chain { struct mv_cesa_tdma_desc *first; struct mv_cesa_tdma_desc *last; }; struct mv_cesa_engine; /** * struct mv_cesa_caps - CESA device capabilities * @engines: number of engines * @has_tdma: whether this device has a TDMA block * @cipher_algs: supported cipher algorithms * @ncipher_algs: number of supported cipher algorithms * @ahash_algs: supported hash algorithms * @nahash_algs: number of supported hash algorithms * * Structure used to describe CESA device capabilities. */ struct mv_cesa_caps { int nengines; bool has_tdma; struct skcipher_alg **cipher_algs; int ncipher_algs; struct ahash_alg **ahash_algs; int nahash_algs; }; /** * struct mv_cesa_dev_dma - DMA pools * @tdma_desc_pool: TDMA desc pool * @op_pool: crypto operation pool * @cache_pool: data cache pool (used by hash implementation when the * hash request is smaller than the hash block size) * @padding_pool: padding pool (used by hash implementation when hardware * padding cannot be used) * * Structure containing the different DMA pools used by this driver. */ struct mv_cesa_dev_dma { struct dma_pool *tdma_desc_pool; struct dma_pool *op_pool; struct dma_pool *cache_pool; struct dma_pool *padding_pool; }; /** * struct mv_cesa_dev - CESA device * @caps: device capabilities * @regs: device registers * @sram_size: usable SRAM size * @lock: device lock * @engines: array of engines * @dma: dma pools * * Structure storing CESA device information. */ struct mv_cesa_dev { const struct mv_cesa_caps *caps; void __iomem *regs; struct device *dev; unsigned int sram_size; spinlock_t lock; struct mv_cesa_engine *engines; struct mv_cesa_dev_dma *dma; }; /** * struct mv_cesa_engine - CESA engine * @id: engine id * @regs: engine registers * @sram: SRAM memory region * @sram_dma: DMA address of the SRAM memory region * @lock: engine lock * @req: current crypto request * @clk: engine clk * @zclk: engine zclk * @max_req_len: maximum chunk length (useful to create the TDMA chain) * @int_mask: interrupt mask cache * @pool: memory pool pointing to the memory region reserved in * SRAM * @queue: fifo of the pending crypto requests * @load: engine load counter, useful for load balancing * @chain: list of the current tdma descriptors being processed * by this engine. * @complete_queue: fifo of the processed requests by the engine * * Structure storing CESA engine information. */ struct mv_cesa_engine { int id; void __iomem *regs; void __iomem *sram; dma_addr_t sram_dma; spinlock_t lock; struct crypto_async_request *req; struct clk *clk; struct clk *zclk; size_t max_req_len; u32 int_mask; struct gen_pool *pool; struct crypto_queue queue; atomic_t load; struct mv_cesa_tdma_chain chain; struct list_head complete_queue; }; /** * struct mv_cesa_req_ops - CESA request operations * @process: process a request chunk result (should return 0 if the * operation, -EINPROGRESS if it needs more steps or an error * code) * @step: launch the crypto operation on the next chunk * @cleanup: cleanup the crypto request (release associated data) * @complete: complete the request, i.e copy result or context from sram when * needed. */ struct mv_cesa_req_ops { int (*process)(struct crypto_async_request *req, u32 status); void (*step)(struct crypto_async_request *req); void (*cleanup)(struct crypto_async_request *req); void (*complete)(struct crypto_async_request *req); }; /** * struct mv_cesa_ctx - CESA operation context * @ops: crypto operations * * Base context structure inherited by operation specific ones. */ struct mv_cesa_ctx { const struct mv_cesa_req_ops *ops; }; /** * struct mv_cesa_hash_ctx - CESA hash operation context * @base: base context structure * * Hash context structure. */ struct mv_cesa_hash_ctx { struct mv_cesa_ctx base; }; /** * struct mv_cesa_hash_ctx - CESA hmac operation context * @base: base context structure * @iv: initialization vectors * * HMAC context structure. */ struct mv_cesa_hmac_ctx { struct mv_cesa_ctx base; u32 iv[16]; }; /** * enum mv_cesa_req_type - request type definitions * @CESA_STD_REQ: standard request * @CESA_DMA_REQ: DMA request */ enum mv_cesa_req_type { CESA_STD_REQ, CESA_DMA_REQ, }; /** * struct mv_cesa_req - CESA request * @engine: engine associated with this request * @chain: list of tdma descriptors associated with this request */ struct mv_cesa_req { struct mv_cesa_engine *engine; struct mv_cesa_tdma_chain chain; }; /** * struct mv_cesa_sg_std_iter - CESA scatter-gather iterator for standard * requests * @iter: sg mapping iterator * @offset: current offset in the SG entry mapped in memory */ struct mv_cesa_sg_std_iter { struct sg_mapping_iter iter; unsigned int offset; }; /** * struct mv_cesa_skcipher_std_req - cipher standard request * @op: operation context * @offset: current operation offset * @size: size of the crypto operation */ struct mv_cesa_skcipher_std_req { struct mv_cesa_op_ctx op; unsigned int offset; unsigned int size; bool skip_ctx; }; /** * struct mv_cesa_skcipher_req - cipher request * @req: type specific request information * @src_nents: number of entries in the src sg list * @dst_nents: number of entries in the dest sg list */ struct mv_cesa_skcipher_req { struct mv_cesa_req base; struct mv_cesa_skcipher_std_req std; int src_nents; int dst_nents; }; /** * struct mv_cesa_ahash_std_req - standard hash request * @offset: current operation offset */ struct mv_cesa_ahash_std_req { unsigned int offset; }; /** * struct mv_cesa_ahash_dma_req - DMA hash request * @padding: padding buffer * @padding_dma: DMA address of the padding buffer * @cache_dma: DMA address of the cache buffer */ struct mv_cesa_ahash_dma_req { u8 *padding; dma_addr_t padding_dma; u8 *cache; dma_addr_t cache_dma; }; /** * struct mv_cesa_ahash_req - hash request * @req: type specific request information * @cache: cache buffer * @cache_ptr: write pointer in the cache buffer * @len: hash total length * @src_nents: number of entries in the scatterlist * @last_req: define whether the current operation is the last one * or not * @state: hash state */ struct mv_cesa_ahash_req { struct mv_cesa_req base; union { struct mv_cesa_ahash_dma_req dma; struct mv_cesa_ahash_std_req std; } req; struct mv_cesa_op_ctx op_tmpl; u8 cache[CESA_MAX_HASH_BLOCK_SIZE]; unsigned int cache_ptr; u64 len; int src_nents; bool last_req; bool algo_le; u32 state[8]; }; /* CESA functions */ extern struct mv_cesa_dev *cesa_dev; static inline void mv_cesa_engine_enqueue_complete_request(struct mv_cesa_engine *engine, struct crypto_async_request *req) { list_add_tail(&req->list, &engine->complete_queue); } static inline struct crypto_async_request * mv_cesa_engine_dequeue_complete_request(struct mv_cesa_engine *engine) { struct crypto_async_request *req; req = list_first_entry_or_null(&engine->complete_queue, struct crypto_async_request, list); if (req) list_del(&req->list); return req; } static inline enum mv_cesa_req_type mv_cesa_req_get_type(struct mv_cesa_req *req) { return req->chain.first ? CESA_DMA_REQ : CESA_STD_REQ; } static inline void mv_cesa_update_op_cfg(struct mv_cesa_op_ctx *op, u32 cfg, u32 mask) { op->desc.config &= cpu_to_le32(~mask); op->desc.config |= cpu_to_le32(cfg); } static inline u32 mv_cesa_get_op_cfg(const struct mv_cesa_op_ctx *op) { return le32_to_cpu(op->desc.config); } static inline void mv_cesa_set_op_cfg(struct mv_cesa_op_ctx *op, u32 cfg) { op->desc.config = cpu_to_le32(cfg); } static inline void mv_cesa_adjust_op(struct mv_cesa_engine *engine, struct mv_cesa_op_ctx *op) { u32 offset = engine->sram_dma & CESA_SA_SRAM_MSK; op->desc.enc_p = CESA_SA_DESC_CRYPT_DATA(offset); op->desc.enc_key_p = CESA_SA_DESC_CRYPT_KEY(offset); op->desc.enc_iv = CESA_SA_DESC_CRYPT_IV(offset); op->desc.mac_src_p &= ~CESA_SA_DESC_MAC_DATA_MSK; op->desc.mac_src_p |= CESA_SA_DESC_MAC_DATA(offset); op->desc.mac_digest &= ~CESA_SA_DESC_MAC_DIGEST_MSK; op->desc.mac_digest |= CESA_SA_DESC_MAC_DIGEST(offset); op->desc.mac_iv = CESA_SA_DESC_MAC_IV(offset); } static inline void mv_cesa_set_crypt_op_len(struct mv_cesa_op_ctx *op, int len) { op->desc.enc_len = cpu_to_le32(len); } static inline void mv_cesa_set_mac_op_total_len(struct mv_cesa_op_ctx *op, int len) { op->desc.mac_src_p &= ~CESA_SA_DESC_MAC_TOTAL_LEN_MSK; op->desc.mac_src_p |= CESA_SA_DESC_MAC_TOTAL_LEN(len); } static inline void mv_cesa_set_mac_op_frag_len(struct mv_cesa_op_ctx *op, int len) { op->desc.mac_digest &= ~CESA_SA_DESC_MAC_FRAG_LEN_MSK; op->desc.mac_digest |= CESA_SA_DESC_MAC_FRAG_LEN(len); } static inline void mv_cesa_set_int_mask(struct mv_cesa_engine *engine, u32 int_mask) { if (int_mask == engine->int_mask) return; writel_relaxed(int_mask, engine->regs + CESA_SA_INT_MSK); engine->int_mask = int_mask; } static inline u32 mv_cesa_get_int_mask(struct mv_cesa_engine *engine) { return engine->int_mask; } static inline bool mv_cesa_mac_op_is_first_frag(const struct mv_cesa_op_ctx *op) { return (mv_cesa_get_op_cfg(op) & CESA_SA_DESC_CFG_FRAG_MSK) == CESA_SA_DESC_CFG_FIRST_FRAG; } int mv_cesa_queue_req(struct crypto_async_request *req, struct mv_cesa_req *creq); struct crypto_async_request * mv_cesa_dequeue_req_locked(struct mv_cesa_engine *engine, struct crypto_async_request **backlog); static inline struct mv_cesa_engine *mv_cesa_select_engine(int weight) { int i; u32 min_load = U32_MAX; struct mv_cesa_engine *selected = NULL; for (i = 0; i < cesa_dev->caps->nengines; i++) { struct mv_cesa_engine *engine = cesa_dev->engines + i; u32 load = atomic_read(&engine->load); if (load < min_load) { min_load = load; selected = engine; } } atomic_add(weight, &selected->load); return selected; } /* * Helper function that indicates whether a crypto request needs to be * cleaned up or not after being enqueued using mv_cesa_queue_req(). */ static inline int mv_cesa_req_needs_cleanup(struct crypto_async_request *req, int ret) { /* * The queue still had some space, the request was queued * normally, so there's no need to clean it up. */ if (ret == -EINPROGRESS) return false; /* * The queue had not space left, but since the request is * flagged with CRYPTO_TFM_REQ_MAY_BACKLOG, it was added to * the backlog and will be processed later. There's no need to * clean it up. */ if (ret == -EBUSY) return false; /* Request wasn't queued, we need to clean it up */ return true; } /* TDMA functions */ static inline void mv_cesa_req_dma_iter_init(struct mv_cesa_dma_iter *iter, unsigned int len) { iter->len = len; iter->op_len = min(len, CESA_SA_SRAM_PAYLOAD_SIZE); iter->offset = 0; } static inline void mv_cesa_sg_dma_iter_init(struct mv_cesa_sg_dma_iter *iter, struct scatterlist *sg, enum dma_data_direction dir) { iter->op_offset = 0; iter->offset = 0; iter->sg = sg; iter->dir = dir; } static inline unsigned int mv_cesa_req_dma_iter_transfer_len(struct mv_cesa_dma_iter *iter, struct mv_cesa_sg_dma_iter *sgiter) { return min(iter->op_len - sgiter->op_offset, sg_dma_len(sgiter->sg) - sgiter->offset); } bool mv_cesa_req_dma_iter_next_transfer(struct mv_cesa_dma_iter *chain, struct mv_cesa_sg_dma_iter *sgiter, unsigned int len); static inline bool mv_cesa_req_dma_iter_next_op(struct mv_cesa_dma_iter *iter) { iter->offset += iter->op_len; iter->op_len = min(iter->len - iter->offset, CESA_SA_SRAM_PAYLOAD_SIZE); return iter->op_len; } void mv_cesa_dma_step(struct mv_cesa_req *dreq); static inline int mv_cesa_dma_process(struct mv_cesa_req *dreq, u32 status) { if (!(status & CESA_SA_INT_ACC0_IDMA_DONE)) return -EINPROGRESS; if (status & CESA_SA_INT_IDMA_OWN_ERR) return -EINVAL; return 0; } void mv_cesa_dma_prepare(struct mv_cesa_req *dreq, struct mv_cesa_engine *engine); void mv_cesa_dma_cleanup(struct mv_cesa_req *dreq); void mv_cesa_tdma_chain(struct mv_cesa_engine *engine, struct mv_cesa_req *dreq); int mv_cesa_tdma_process(struct mv_cesa_engine *engine, u32 status); static inline void mv_cesa_tdma_desc_iter_init(struct mv_cesa_tdma_chain *chain) { memset(chain, 0, sizeof(*chain)); } int mv_cesa_dma_add_result_op(struct mv_cesa_tdma_chain *chain, dma_addr_t src, u32 size, u32 flags, gfp_t gfp_flags); struct mv_cesa_op_ctx *mv_cesa_dma_add_op(struct mv_cesa_tdma_chain *chain, const struct mv_cesa_op_ctx *op_templ, bool skip_ctx, gfp_t flags); int mv_cesa_dma_add_data_transfer(struct mv_cesa_tdma_chain *chain, dma_addr_t dst, dma_addr_t src, u32 size, u32 flags, gfp_t gfp_flags); int mv_cesa_dma_add_dummy_launch(struct mv_cesa_tdma_chain *chain, gfp_t flags); int mv_cesa_dma_add_dummy_end(struct mv_cesa_tdma_chain *chain, gfp_t flags); int mv_cesa_dma_add_op_transfers(struct mv_cesa_tdma_chain *chain, struct mv_cesa_dma_iter *dma_iter, struct mv_cesa_sg_dma_iter *sgiter, gfp_t gfp_flags); /* Algorithm definitions */ extern struct ahash_alg mv_md5_alg; extern struct ahash_alg mv_sha1_alg; extern struct ahash_alg mv_sha256_alg; extern struct ahash_alg mv_ahmac_md5_alg; extern struct ahash_alg mv_ahmac_sha1_alg; extern struct ahash_alg mv_ahmac_sha256_alg; extern struct skcipher_alg mv_cesa_ecb_des_alg; extern struct skcipher_alg mv_cesa_cbc_des_alg; extern struct skcipher_alg mv_cesa_ecb_des3_ede_alg; extern struct skcipher_alg mv_cesa_cbc_des3_ede_alg; extern struct skcipher_alg mv_cesa_ecb_aes_alg; extern struct skcipher_alg mv_cesa_cbc_aes_alg; #endif /* __MARVELL_CESA_H__ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1