Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Logan Gunthorpe | 2732 | 100.00% | 3 | 100.00% |
Total | 2732 | 3 |
// SPDX-License-Identifier: GPL-2.0 /* * Microsemi Switchtec(tm) PCIe Management Driver * Copyright (c) 2019, Logan Gunthorpe <logang@deltatee.com> * Copyright (c) 2019, GigaIO Networks, Inc */ #include "dmaengine.h" #include <linux/circ_buf.h> #include <linux/dmaengine.h> #include <linux/kref.h> #include <linux/list.h> #include <linux/module.h> #include <linux/pci.h> MODULE_DESCRIPTION("PLX ExpressLane PEX PCI Switch DMA Engine"); MODULE_VERSION("0.1"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Logan Gunthorpe"); #define PLX_REG_DESC_RING_ADDR 0x214 #define PLX_REG_DESC_RING_ADDR_HI 0x218 #define PLX_REG_DESC_RING_NEXT_ADDR 0x21C #define PLX_REG_DESC_RING_COUNT 0x220 #define PLX_REG_DESC_RING_LAST_ADDR 0x224 #define PLX_REG_DESC_RING_LAST_SIZE 0x228 #define PLX_REG_PREF_LIMIT 0x234 #define PLX_REG_CTRL 0x238 #define PLX_REG_CTRL2 0x23A #define PLX_REG_INTR_CTRL 0x23C #define PLX_REG_INTR_STATUS 0x23E #define PLX_REG_PREF_LIMIT_PREF_FOUR 8 #define PLX_REG_CTRL_GRACEFUL_PAUSE BIT(0) #define PLX_REG_CTRL_ABORT BIT(1) #define PLX_REG_CTRL_WRITE_BACK_EN BIT(2) #define PLX_REG_CTRL_START BIT(3) #define PLX_REG_CTRL_RING_STOP_MODE BIT(4) #define PLX_REG_CTRL_DESC_MODE_BLOCK (0 << 5) #define PLX_REG_CTRL_DESC_MODE_ON_CHIP (1 << 5) #define PLX_REG_CTRL_DESC_MODE_OFF_CHIP (2 << 5) #define PLX_REG_CTRL_DESC_INVALID BIT(8) #define PLX_REG_CTRL_GRACEFUL_PAUSE_DONE BIT(9) #define PLX_REG_CTRL_ABORT_DONE BIT(10) #define PLX_REG_CTRL_IMM_PAUSE_DONE BIT(12) #define PLX_REG_CTRL_IN_PROGRESS BIT(30) #define PLX_REG_CTRL_RESET_VAL (PLX_REG_CTRL_DESC_INVALID | \ PLX_REG_CTRL_GRACEFUL_PAUSE_DONE | \ PLX_REG_CTRL_ABORT_DONE | \ PLX_REG_CTRL_IMM_PAUSE_DONE) #define PLX_REG_CTRL_START_VAL (PLX_REG_CTRL_WRITE_BACK_EN | \ PLX_REG_CTRL_DESC_MODE_OFF_CHIP | \ PLX_REG_CTRL_START | \ PLX_REG_CTRL_RESET_VAL) #define PLX_REG_CTRL2_MAX_TXFR_SIZE_64B 0 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_128B 1 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_256B 2 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_512B 3 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_1KB 4 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_2KB 5 #define PLX_REG_CTRL2_MAX_TXFR_SIZE_4B 7 #define PLX_REG_INTR_CRTL_ERROR_EN BIT(0) #define PLX_REG_INTR_CRTL_INV_DESC_EN BIT(1) #define PLX_REG_INTR_CRTL_ABORT_DONE_EN BIT(3) #define PLX_REG_INTR_CRTL_PAUSE_DONE_EN BIT(4) #define PLX_REG_INTR_CRTL_IMM_PAUSE_DONE_EN BIT(5) #define PLX_REG_INTR_STATUS_ERROR BIT(0) #define PLX_REG_INTR_STATUS_INV_DESC BIT(1) #define PLX_REG_INTR_STATUS_DESC_DONE BIT(2) #define PLX_REG_INTR_CRTL_ABORT_DONE BIT(3) struct plx_dma_hw_std_desc { __le32 flags_and_size; __le16 dst_addr_hi; __le16 src_addr_hi; __le32 dst_addr_lo; __le32 src_addr_lo; }; #define PLX_DESC_SIZE_MASK 0x7ffffff #define PLX_DESC_FLAG_VALID BIT(31) #define PLX_DESC_FLAG_INT_WHEN_DONE BIT(30) #define PLX_DESC_WB_SUCCESS BIT(30) #define PLX_DESC_WB_RD_FAIL BIT(29) #define PLX_DESC_WB_WR_FAIL BIT(28) #define PLX_DMA_RING_COUNT 2048 struct plx_dma_desc { struct dma_async_tx_descriptor txd; struct plx_dma_hw_std_desc *hw; u32 orig_size; }; struct plx_dma_dev { struct dma_device dma_dev; struct dma_chan dma_chan; struct pci_dev __rcu *pdev; void __iomem *bar; struct tasklet_struct desc_task; spinlock_t ring_lock; bool ring_active; int head; int tail; struct plx_dma_hw_std_desc *hw_ring; dma_addr_t hw_ring_dma; struct plx_dma_desc **desc_ring; }; static struct plx_dma_dev *chan_to_plx_dma_dev(struct dma_chan *c) { return container_of(c, struct plx_dma_dev, dma_chan); } static struct plx_dma_desc *to_plx_desc(struct dma_async_tx_descriptor *txd) { return container_of(txd, struct plx_dma_desc, txd); } static struct plx_dma_desc *plx_dma_get_desc(struct plx_dma_dev *plxdev, int i) { return plxdev->desc_ring[i & (PLX_DMA_RING_COUNT - 1)]; } static void plx_dma_process_desc(struct plx_dma_dev *plxdev) { struct dmaengine_result res; struct plx_dma_desc *desc; u32 flags; spin_lock_bh(&plxdev->ring_lock); while (plxdev->tail != plxdev->head) { desc = plx_dma_get_desc(plxdev, plxdev->tail); flags = le32_to_cpu(READ_ONCE(desc->hw->flags_and_size)); if (flags & PLX_DESC_FLAG_VALID) break; res.residue = desc->orig_size - (flags & PLX_DESC_SIZE_MASK); if (flags & PLX_DESC_WB_SUCCESS) res.result = DMA_TRANS_NOERROR; else if (flags & PLX_DESC_WB_WR_FAIL) res.result = DMA_TRANS_WRITE_FAILED; else res.result = DMA_TRANS_READ_FAILED; dma_cookie_complete(&desc->txd); dma_descriptor_unmap(&desc->txd); dmaengine_desc_get_callback_invoke(&desc->txd, &res); desc->txd.callback = NULL; desc->txd.callback_result = NULL; plxdev->tail++; } spin_unlock_bh(&plxdev->ring_lock); } static void plx_dma_abort_desc(struct plx_dma_dev *plxdev) { struct dmaengine_result res; struct plx_dma_desc *desc; plx_dma_process_desc(plxdev); spin_lock_bh(&plxdev->ring_lock); while (plxdev->tail != plxdev->head) { desc = plx_dma_get_desc(plxdev, plxdev->tail); res.residue = desc->orig_size; res.result = DMA_TRANS_ABORTED; dma_cookie_complete(&desc->txd); dma_descriptor_unmap(&desc->txd); dmaengine_desc_get_callback_invoke(&desc->txd, &res); desc->txd.callback = NULL; desc->txd.callback_result = NULL; plxdev->tail++; } spin_unlock_bh(&plxdev->ring_lock); } static void __plx_dma_stop(struct plx_dma_dev *plxdev) { unsigned long timeout = jiffies + msecs_to_jiffies(1000); u32 val; val = readl(plxdev->bar + PLX_REG_CTRL); if (!(val & ~PLX_REG_CTRL_GRACEFUL_PAUSE)) return; writel(PLX_REG_CTRL_RESET_VAL | PLX_REG_CTRL_GRACEFUL_PAUSE, plxdev->bar + PLX_REG_CTRL); while (!time_after(jiffies, timeout)) { val = readl(plxdev->bar + PLX_REG_CTRL); if (val & PLX_REG_CTRL_GRACEFUL_PAUSE_DONE) break; cpu_relax(); } if (!(val & PLX_REG_CTRL_GRACEFUL_PAUSE_DONE)) dev_err(plxdev->dma_dev.dev, "Timeout waiting for graceful pause!\n"); writel(PLX_REG_CTRL_RESET_VAL | PLX_REG_CTRL_GRACEFUL_PAUSE, plxdev->bar + PLX_REG_CTRL); writel(0, plxdev->bar + PLX_REG_DESC_RING_COUNT); writel(0, plxdev->bar + PLX_REG_DESC_RING_ADDR); writel(0, plxdev->bar + PLX_REG_DESC_RING_ADDR_HI); writel(0, plxdev->bar + PLX_REG_DESC_RING_NEXT_ADDR); } static void plx_dma_stop(struct plx_dma_dev *plxdev) { rcu_read_lock(); if (!rcu_dereference(plxdev->pdev)) { rcu_read_unlock(); return; } __plx_dma_stop(plxdev); rcu_read_unlock(); } static void plx_dma_desc_task(unsigned long data) { struct plx_dma_dev *plxdev = (void *)data; plx_dma_process_desc(plxdev); } static struct dma_async_tx_descriptor *plx_dma_prep_memcpy(struct dma_chan *c, dma_addr_t dma_dst, dma_addr_t dma_src, size_t len, unsigned long flags) __acquires(plxdev->ring_lock) { struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(c); struct plx_dma_desc *plxdesc; spin_lock_bh(&plxdev->ring_lock); if (!plxdev->ring_active) goto err_unlock; if (!CIRC_SPACE(plxdev->head, plxdev->tail, PLX_DMA_RING_COUNT)) goto err_unlock; if (len > PLX_DESC_SIZE_MASK) goto err_unlock; plxdesc = plx_dma_get_desc(plxdev, plxdev->head); plxdev->head++; plxdesc->hw->dst_addr_lo = cpu_to_le32(lower_32_bits(dma_dst)); plxdesc->hw->dst_addr_hi = cpu_to_le16(upper_32_bits(dma_dst)); plxdesc->hw->src_addr_lo = cpu_to_le32(lower_32_bits(dma_src)); plxdesc->hw->src_addr_hi = cpu_to_le16(upper_32_bits(dma_src)); plxdesc->orig_size = len; if (flags & DMA_PREP_INTERRUPT) len |= PLX_DESC_FLAG_INT_WHEN_DONE; plxdesc->hw->flags_and_size = cpu_to_le32(len); plxdesc->txd.flags = flags; /* return with the lock held, it will be released in tx_submit */ return &plxdesc->txd; err_unlock: /* * Keep sparse happy by restoring an even lock count on * this lock. */ __acquire(plxdev->ring_lock); spin_unlock_bh(&plxdev->ring_lock); return NULL; } static dma_cookie_t plx_dma_tx_submit(struct dma_async_tx_descriptor *desc) __releases(plxdev->ring_lock) { struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(desc->chan); struct plx_dma_desc *plxdesc = to_plx_desc(desc); dma_cookie_t cookie; cookie = dma_cookie_assign(desc); /* * Ensure the descriptor updates are visible to the dma device * before setting the valid bit. */ wmb(); plxdesc->hw->flags_and_size |= cpu_to_le32(PLX_DESC_FLAG_VALID); spin_unlock_bh(&plxdev->ring_lock); return cookie; } static enum dma_status plx_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(chan); enum dma_status ret; ret = dma_cookie_status(chan, cookie, txstate); if (ret == DMA_COMPLETE) return ret; plx_dma_process_desc(plxdev); return dma_cookie_status(chan, cookie, txstate); } static void plx_dma_issue_pending(struct dma_chan *chan) { struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(chan); rcu_read_lock(); if (!rcu_dereference(plxdev->pdev)) { rcu_read_unlock(); return; } /* * Ensure the valid bits are visible before starting the * DMA engine. */ wmb(); writew(PLX_REG_CTRL_START_VAL, plxdev->bar + PLX_REG_CTRL); rcu_read_unlock(); } static irqreturn_t plx_dma_isr(int irq, void *devid) { struct plx_dma_dev *plxdev = devid; u32 status; status = readw(plxdev->bar + PLX_REG_INTR_STATUS); if (!status) return IRQ_NONE; if (status & PLX_REG_INTR_STATUS_DESC_DONE && plxdev->ring_active) tasklet_schedule(&plxdev->desc_task); writew(status, plxdev->bar + PLX_REG_INTR_STATUS); return IRQ_HANDLED; } static int plx_dma_alloc_desc(struct plx_dma_dev *plxdev) { struct plx_dma_desc *desc; int i; plxdev->desc_ring = kcalloc(PLX_DMA_RING_COUNT, sizeof(*plxdev->desc_ring), GFP_KERNEL); if (!plxdev->desc_ring) return -ENOMEM; for (i = 0; i < PLX_DMA_RING_COUNT; i++) { desc = kzalloc(sizeof(*desc), GFP_KERNEL); if (!desc) goto free_and_exit; dma_async_tx_descriptor_init(&desc->txd, &plxdev->dma_chan); desc->txd.tx_submit = plx_dma_tx_submit; desc->hw = &plxdev->hw_ring[i]; plxdev->desc_ring[i] = desc; } return 0; free_and_exit: for (i = 0; i < PLX_DMA_RING_COUNT; i++) kfree(plxdev->desc_ring[i]); kfree(plxdev->desc_ring); return -ENOMEM; } static int plx_dma_alloc_chan_resources(struct dma_chan *chan) { struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(chan); size_t ring_sz = PLX_DMA_RING_COUNT * sizeof(*plxdev->hw_ring); int rc; plxdev->head = plxdev->tail = 0; plxdev->hw_ring = dma_alloc_coherent(plxdev->dma_dev.dev, ring_sz, &plxdev->hw_ring_dma, GFP_KERNEL); if (!plxdev->hw_ring) return -ENOMEM; rc = plx_dma_alloc_desc(plxdev); if (rc) goto out_free_hw_ring; rcu_read_lock(); if (!rcu_dereference(plxdev->pdev)) { rcu_read_unlock(); rc = -ENODEV; goto out_free_hw_ring; } writel(PLX_REG_CTRL_RESET_VAL, plxdev->bar + PLX_REG_CTRL); writel(lower_32_bits(plxdev->hw_ring_dma), plxdev->bar + PLX_REG_DESC_RING_ADDR); writel(upper_32_bits(plxdev->hw_ring_dma), plxdev->bar + PLX_REG_DESC_RING_ADDR_HI); writel(lower_32_bits(plxdev->hw_ring_dma), plxdev->bar + PLX_REG_DESC_RING_NEXT_ADDR); writel(PLX_DMA_RING_COUNT, plxdev->bar + PLX_REG_DESC_RING_COUNT); writel(PLX_REG_PREF_LIMIT_PREF_FOUR, plxdev->bar + PLX_REG_PREF_LIMIT); plxdev->ring_active = true; rcu_read_unlock(); return PLX_DMA_RING_COUNT; out_free_hw_ring: dma_free_coherent(plxdev->dma_dev.dev, ring_sz, plxdev->hw_ring, plxdev->hw_ring_dma); return rc; } static void plx_dma_free_chan_resources(struct dma_chan *chan) { struct plx_dma_dev *plxdev = chan_to_plx_dma_dev(chan); size_t ring_sz = PLX_DMA_RING_COUNT * sizeof(*plxdev->hw_ring); struct pci_dev *pdev; int irq = -1; int i; spin_lock_bh(&plxdev->ring_lock); plxdev->ring_active = false; spin_unlock_bh(&plxdev->ring_lock); plx_dma_stop(plxdev); rcu_read_lock(); pdev = rcu_dereference(plxdev->pdev); if (pdev) irq = pci_irq_vector(pdev, 0); rcu_read_unlock(); if (irq > 0) synchronize_irq(irq); tasklet_kill(&plxdev->desc_task); plx_dma_abort_desc(plxdev); for (i = 0; i < PLX_DMA_RING_COUNT; i++) kfree(plxdev->desc_ring[i]); kfree(plxdev->desc_ring); dma_free_coherent(plxdev->dma_dev.dev, ring_sz, plxdev->hw_ring, plxdev->hw_ring_dma); } static void plx_dma_release(struct dma_device *dma_dev) { struct plx_dma_dev *plxdev = container_of(dma_dev, struct plx_dma_dev, dma_dev); put_device(dma_dev->dev); kfree(plxdev); } static int plx_dma_create(struct pci_dev *pdev) { struct plx_dma_dev *plxdev; struct dma_device *dma; struct dma_chan *chan; int rc; plxdev = kzalloc(sizeof(*plxdev), GFP_KERNEL); if (!plxdev) return -ENOMEM; rc = request_irq(pci_irq_vector(pdev, 0), plx_dma_isr, 0, KBUILD_MODNAME, plxdev); if (rc) { kfree(plxdev); return rc; } spin_lock_init(&plxdev->ring_lock); tasklet_init(&plxdev->desc_task, plx_dma_desc_task, (unsigned long)plxdev); RCU_INIT_POINTER(plxdev->pdev, pdev); plxdev->bar = pcim_iomap_table(pdev)[0]; dma = &plxdev->dma_dev; dma->chancnt = 1; INIT_LIST_HEAD(&dma->channels); dma_cap_set(DMA_MEMCPY, dma->cap_mask); dma->copy_align = DMAENGINE_ALIGN_1_BYTE; dma->dev = get_device(&pdev->dev); dma->device_alloc_chan_resources = plx_dma_alloc_chan_resources; dma->device_free_chan_resources = plx_dma_free_chan_resources; dma->device_prep_dma_memcpy = plx_dma_prep_memcpy; dma->device_issue_pending = plx_dma_issue_pending; dma->device_tx_status = plx_dma_tx_status; dma->device_release = plx_dma_release; chan = &plxdev->dma_chan; chan->device = dma; dma_cookie_init(chan); list_add_tail(&chan->device_node, &dma->channels); rc = dma_async_device_register(dma); if (rc) { pci_err(pdev, "Failed to register dma device: %d\n", rc); free_irq(pci_irq_vector(pdev, 0), plxdev); kfree(plxdev); return rc; } pci_set_drvdata(pdev, plxdev); return 0; } static int plx_dma_probe(struct pci_dev *pdev, const struct pci_device_id *id) { int rc; rc = pcim_enable_device(pdev); if (rc) return rc; rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(48)); if (rc) rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (rc) return rc; rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(48)); if (rc) rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); if (rc) return rc; rc = pcim_iomap_regions(pdev, 1, KBUILD_MODNAME); if (rc) return rc; rc = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); if (rc <= 0) return rc; pci_set_master(pdev); rc = plx_dma_create(pdev); if (rc) goto err_free_irq_vectors; pci_info(pdev, "PLX DMA Channel Registered\n"); return 0; err_free_irq_vectors: pci_free_irq_vectors(pdev); return rc; } static void plx_dma_remove(struct pci_dev *pdev) { struct plx_dma_dev *plxdev = pci_get_drvdata(pdev); free_irq(pci_irq_vector(pdev, 0), plxdev); rcu_assign_pointer(plxdev->pdev, NULL); synchronize_rcu(); spin_lock_bh(&plxdev->ring_lock); plxdev->ring_active = false; spin_unlock_bh(&plxdev->ring_lock); __plx_dma_stop(plxdev); plx_dma_abort_desc(plxdev); plxdev->bar = NULL; dma_async_device_unregister(&plxdev->dma_dev); pci_free_irq_vectors(pdev); } static const struct pci_device_id plx_dma_pci_tbl[] = { { .vendor = PCI_VENDOR_ID_PLX, .device = 0x87D0, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = 0xFFFFFFFF, }, {0} }; MODULE_DEVICE_TABLE(pci, plx_dma_pci_tbl); static struct pci_driver plx_dma_pci_driver = { .name = KBUILD_MODNAME, .id_table = plx_dma_pci_tbl, .probe = plx_dma_probe, .remove = plx_dma_remove, }; module_pci_driver(plx_dma_pci_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1