Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andy Gross | 3870 | 58.16% | 3 | 9.68% |
Archit Taneja | 1504 | 22.60% | 3 | 9.68% |
Pramod Gurav | 467 | 7.02% | 2 | 6.45% |
R Sricharan | 314 | 4.72% | 2 | 6.45% |
Srinivas Kandagatla | 201 | 3.02% | 7 | 22.58% |
Maxime Ripard | 131 | 1.97% | 1 | 3.23% |
Stanimir Varbanov | 94 | 1.41% | 6 | 19.35% |
Jeffrey Hugo | 38 | 0.57% | 1 | 3.23% |
Abhishek Sahu | 20 | 0.30% | 1 | 3.23% |
Gustavo A. R. Silva | 4 | 0.06% | 1 | 3.23% |
Arnd Bergmann | 4 | 0.06% | 1 | 3.23% |
Luis R. Rodriguez | 3 | 0.05% | 1 | 3.23% |
Sinan Kaya | 2 | 0.03% | 1 | 3.23% |
Thomas Gleixner | 2 | 0.03% | 1 | 3.23% |
Total | 6654 | 31 |
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved. */ /* * QCOM BAM DMA engine driver * * QCOM BAM DMA blocks are distributed amongst a number of the on-chip * peripherals on the MSM 8x74. The configuration of the channels are dependent * on the way they are hard wired to that specific peripheral. The peripheral * device tree entries specify the configuration of each channel. * * The DMA controller requires the use of external memory for storage of the * hardware descriptors for each channel. The descriptor FIFO is accessed as a * circular buffer and operations are managed according to the offset within the * FIFO. After pipe/channel reset, all of the pipe registers and internal state * are back to defaults. * * During DMA operations, we write descriptors to the FIFO, being careful to * handle wrapping and then write the last FIFO offset to that channel's * P_EVNT_REG register to kick off the transaction. The P_SW_OFSTS register * indicates the current FIFO offset that is being processed, so there is some * indication of where the hardware is currently working. */ #include <linux/kernel.h> #include <linux/io.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/scatterlist.h> #include <linux/device.h> #include <linux/platform_device.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/of_dma.h> #include <linux/circ_buf.h> #include <linux/clk.h> #include <linux/dmaengine.h> #include <linux/pm_runtime.h> #include "../dmaengine.h" #include "../virt-dma.h" struct bam_desc_hw { __le32 addr; /* Buffer physical address */ __le16 size; /* Buffer size in bytes */ __le16 flags; }; #define BAM_DMA_AUTOSUSPEND_DELAY 100 #define DESC_FLAG_INT BIT(15) #define DESC_FLAG_EOT BIT(14) #define DESC_FLAG_EOB BIT(13) #define DESC_FLAG_NWD BIT(12) #define DESC_FLAG_CMD BIT(11) struct bam_async_desc { struct virt_dma_desc vd; u32 num_desc; u32 xfer_len; /* transaction flags, EOT|EOB|NWD */ u16 flags; struct bam_desc_hw *curr_desc; /* list node for the desc in the bam_chan list of descriptors */ struct list_head desc_node; enum dma_transfer_direction dir; size_t length; struct bam_desc_hw desc[0]; }; enum bam_reg { BAM_CTRL, BAM_REVISION, BAM_NUM_PIPES, BAM_DESC_CNT_TRSHLD, BAM_IRQ_SRCS, BAM_IRQ_SRCS_MSK, BAM_IRQ_SRCS_UNMASKED, BAM_IRQ_STTS, BAM_IRQ_CLR, BAM_IRQ_EN, BAM_CNFG_BITS, BAM_IRQ_SRCS_EE, BAM_IRQ_SRCS_MSK_EE, BAM_P_CTRL, BAM_P_RST, BAM_P_HALT, BAM_P_IRQ_STTS, BAM_P_IRQ_CLR, BAM_P_IRQ_EN, BAM_P_EVNT_DEST_ADDR, BAM_P_EVNT_REG, BAM_P_SW_OFSTS, BAM_P_DATA_FIFO_ADDR, BAM_P_DESC_FIFO_ADDR, BAM_P_EVNT_GEN_TRSHLD, BAM_P_FIFO_SIZES, }; struct reg_offset_data { u32 base_offset; unsigned int pipe_mult, evnt_mult, ee_mult; }; static const struct reg_offset_data bam_v1_3_reg_info[] = { [BAM_CTRL] = { 0x0F80, 0x00, 0x00, 0x00 }, [BAM_REVISION] = { 0x0F84, 0x00, 0x00, 0x00 }, [BAM_NUM_PIPES] = { 0x0FBC, 0x00, 0x00, 0x00 }, [BAM_DESC_CNT_TRSHLD] = { 0x0F88, 0x00, 0x00, 0x00 }, [BAM_IRQ_SRCS] = { 0x0F8C, 0x00, 0x00, 0x00 }, [BAM_IRQ_SRCS_MSK] = { 0x0F90, 0x00, 0x00, 0x00 }, [BAM_IRQ_SRCS_UNMASKED] = { 0x0FB0, 0x00, 0x00, 0x00 }, [BAM_IRQ_STTS] = { 0x0F94, 0x00, 0x00, 0x00 }, [BAM_IRQ_CLR] = { 0x0F98, 0x00, 0x00, 0x00 }, [BAM_IRQ_EN] = { 0x0F9C, 0x00, 0x00, 0x00 }, [BAM_CNFG_BITS] = { 0x0FFC, 0x00, 0x00, 0x00 }, [BAM_IRQ_SRCS_EE] = { 0x1800, 0x00, 0x00, 0x80 }, [BAM_IRQ_SRCS_MSK_EE] = { 0x1804, 0x00, 0x00, 0x80 }, [BAM_P_CTRL] = { 0x0000, 0x80, 0x00, 0x00 }, [BAM_P_RST] = { 0x0004, 0x80, 0x00, 0x00 }, [BAM_P_HALT] = { 0x0008, 0x80, 0x00, 0x00 }, [BAM_P_IRQ_STTS] = { 0x0010, 0x80, 0x00, 0x00 }, [BAM_P_IRQ_CLR] = { 0x0014, 0x80, 0x00, 0x00 }, [BAM_P_IRQ_EN] = { 0x0018, 0x80, 0x00, 0x00 }, [BAM_P_EVNT_DEST_ADDR] = { 0x102C, 0x00, 0x40, 0x00 }, [BAM_P_EVNT_REG] = { 0x1018, 0x00, 0x40, 0x00 }, [BAM_P_SW_OFSTS] = { 0x1000, 0x00, 0x40, 0x00 }, [BAM_P_DATA_FIFO_ADDR] = { 0x1024, 0x00, 0x40, 0x00 }, [BAM_P_DESC_FIFO_ADDR] = { 0x101C, 0x00, 0x40, 0x00 }, [BAM_P_EVNT_GEN_TRSHLD] = { 0x1028, 0x00, 0x40, 0x00 }, [BAM_P_FIFO_SIZES] = { 0x1020, 0x00, 0x40, 0x00 }, }; static const struct reg_offset_data bam_v1_4_reg_info[] = { [BAM_CTRL] = { 0x0000, 0x00, 0x00, 0x00 }, [BAM_REVISION] = { 0x0004, 0x00, 0x00, 0x00 }, [BAM_NUM_PIPES] = { 0x003C, 0x00, 0x00, 0x00 }, [BAM_DESC_CNT_TRSHLD] = { 0x0008, 0x00, 0x00, 0x00 }, [BAM_IRQ_SRCS] = { 0x000C, 0x00, 0x00, 0x00 }, [BAM_IRQ_SRCS_MSK] = { 0x0010, 0x00, 0x00, 0x00 }, [BAM_IRQ_SRCS_UNMASKED] = { 0x0030, 0x00, 0x00, 0x00 }, [BAM_IRQ_STTS] = { 0x0014, 0x00, 0x00, 0x00 }, [BAM_IRQ_CLR] = { 0x0018, 0x00, 0x00, 0x00 }, [BAM_IRQ_EN] = { 0x001C, 0x00, 0x00, 0x00 }, [BAM_CNFG_BITS] = { 0x007C, 0x00, 0x00, 0x00 }, [BAM_IRQ_SRCS_EE] = { 0x0800, 0x00, 0x00, 0x80 }, [BAM_IRQ_SRCS_MSK_EE] = { 0x0804, 0x00, 0x00, 0x80 }, [BAM_P_CTRL] = { 0x1000, 0x1000, 0x00, 0x00 }, [BAM_P_RST] = { 0x1004, 0x1000, 0x00, 0x00 }, [BAM_P_HALT] = { 0x1008, 0x1000, 0x00, 0x00 }, [BAM_P_IRQ_STTS] = { 0x1010, 0x1000, 0x00, 0x00 }, [BAM_P_IRQ_CLR] = { 0x1014, 0x1000, 0x00, 0x00 }, [BAM_P_IRQ_EN] = { 0x1018, 0x1000, 0x00, 0x00 }, [BAM_P_EVNT_DEST_ADDR] = { 0x182C, 0x00, 0x1000, 0x00 }, [BAM_P_EVNT_REG] = { 0x1818, 0x00, 0x1000, 0x00 }, [BAM_P_SW_OFSTS] = { 0x1800, 0x00, 0x1000, 0x00 }, [BAM_P_DATA_FIFO_ADDR] = { 0x1824, 0x00, 0x1000, 0x00 }, [BAM_P_DESC_FIFO_ADDR] = { 0x181C, 0x00, 0x1000, 0x00 }, [BAM_P_EVNT_GEN_TRSHLD] = { 0x1828, 0x00, 0x1000, 0x00 }, [BAM_P_FIFO_SIZES] = { 0x1820, 0x00, 0x1000, 0x00 }, }; static const struct reg_offset_data bam_v1_7_reg_info[] = { [BAM_CTRL] = { 0x00000, 0x00, 0x00, 0x00 }, [BAM_REVISION] = { 0x01000, 0x00, 0x00, 0x00 }, [BAM_NUM_PIPES] = { 0x01008, 0x00, 0x00, 0x00 }, [BAM_DESC_CNT_TRSHLD] = { 0x00008, 0x00, 0x00, 0x00 }, [BAM_IRQ_SRCS] = { 0x03010, 0x00, 0x00, 0x00 }, [BAM_IRQ_SRCS_MSK] = { 0x03014, 0x00, 0x00, 0x00 }, [BAM_IRQ_SRCS_UNMASKED] = { 0x03018, 0x00, 0x00, 0x00 }, [BAM_IRQ_STTS] = { 0x00014, 0x00, 0x00, 0x00 }, [BAM_IRQ_CLR] = { 0x00018, 0x00, 0x00, 0x00 }, [BAM_IRQ_EN] = { 0x0001C, 0x00, 0x00, 0x00 }, [BAM_CNFG_BITS] = { 0x0007C, 0x00, 0x00, 0x00 }, [BAM_IRQ_SRCS_EE] = { 0x03000, 0x00, 0x00, 0x1000 }, [BAM_IRQ_SRCS_MSK_EE] = { 0x03004, 0x00, 0x00, 0x1000 }, [BAM_P_CTRL] = { 0x13000, 0x1000, 0x00, 0x00 }, [BAM_P_RST] = { 0x13004, 0x1000, 0x00, 0x00 }, [BAM_P_HALT] = { 0x13008, 0x1000, 0x00, 0x00 }, [BAM_P_IRQ_STTS] = { 0x13010, 0x1000, 0x00, 0x00 }, [BAM_P_IRQ_CLR] = { 0x13014, 0x1000, 0x00, 0x00 }, [BAM_P_IRQ_EN] = { 0x13018, 0x1000, 0x00, 0x00 }, [BAM_P_EVNT_DEST_ADDR] = { 0x1382C, 0x00, 0x1000, 0x00 }, [BAM_P_EVNT_REG] = { 0x13818, 0x00, 0x1000, 0x00 }, [BAM_P_SW_OFSTS] = { 0x13800, 0x00, 0x1000, 0x00 }, [BAM_P_DATA_FIFO_ADDR] = { 0x13824, 0x00, 0x1000, 0x00 }, [BAM_P_DESC_FIFO_ADDR] = { 0x1381C, 0x00, 0x1000, 0x00 }, [BAM_P_EVNT_GEN_TRSHLD] = { 0x13828, 0x00, 0x1000, 0x00 }, [BAM_P_FIFO_SIZES] = { 0x13820, 0x00, 0x1000, 0x00 }, }; /* BAM CTRL */ #define BAM_SW_RST BIT(0) #define BAM_EN BIT(1) #define BAM_EN_ACCUM BIT(4) #define BAM_TESTBUS_SEL_SHIFT 5 #define BAM_TESTBUS_SEL_MASK 0x3F #define BAM_DESC_CACHE_SEL_SHIFT 13 #define BAM_DESC_CACHE_SEL_MASK 0x3 #define BAM_CACHED_DESC_STORE BIT(15) #define IBC_DISABLE BIT(16) /* BAM REVISION */ #define REVISION_SHIFT 0 #define REVISION_MASK 0xFF #define NUM_EES_SHIFT 8 #define NUM_EES_MASK 0xF #define CE_BUFFER_SIZE BIT(13) #define AXI_ACTIVE BIT(14) #define USE_VMIDMT BIT(15) #define SECURED BIT(16) #define BAM_HAS_NO_BYPASS BIT(17) #define HIGH_FREQUENCY_BAM BIT(18) #define INACTIV_TMRS_EXST BIT(19) #define NUM_INACTIV_TMRS BIT(20) #define DESC_CACHE_DEPTH_SHIFT 21 #define DESC_CACHE_DEPTH_1 (0 << DESC_CACHE_DEPTH_SHIFT) #define DESC_CACHE_DEPTH_2 (1 << DESC_CACHE_DEPTH_SHIFT) #define DESC_CACHE_DEPTH_3 (2 << DESC_CACHE_DEPTH_SHIFT) #define DESC_CACHE_DEPTH_4 (3 << DESC_CACHE_DEPTH_SHIFT) #define CMD_DESC_EN BIT(23) #define INACTIV_TMR_BASE_SHIFT 24 #define INACTIV_TMR_BASE_MASK 0xFF /* BAM NUM PIPES */ #define BAM_NUM_PIPES_SHIFT 0 #define BAM_NUM_PIPES_MASK 0xFF #define PERIPH_NON_PIPE_GRP_SHIFT 16 #define PERIPH_NON_PIP_GRP_MASK 0xFF #define BAM_NON_PIPE_GRP_SHIFT 24 #define BAM_NON_PIPE_GRP_MASK 0xFF /* BAM CNFG BITS */ #define BAM_PIPE_CNFG BIT(2) #define BAM_FULL_PIPE BIT(11) #define BAM_NO_EXT_P_RST BIT(12) #define BAM_IBC_DISABLE BIT(13) #define BAM_SB_CLK_REQ BIT(14) #define BAM_PSM_CSW_REQ BIT(15) #define BAM_PSM_P_RES BIT(16) #define BAM_AU_P_RES BIT(17) #define BAM_SI_P_RES BIT(18) #define BAM_WB_P_RES BIT(19) #define BAM_WB_BLK_CSW BIT(20) #define BAM_WB_CSW_ACK_IDL BIT(21) #define BAM_WB_RETR_SVPNT BIT(22) #define BAM_WB_DSC_AVL_P_RST BIT(23) #define BAM_REG_P_EN BIT(24) #define BAM_PSM_P_HD_DATA BIT(25) #define BAM_AU_ACCUMED BIT(26) #define BAM_CMD_ENABLE BIT(27) #define BAM_CNFG_BITS_DEFAULT (BAM_PIPE_CNFG | \ BAM_NO_EXT_P_RST | \ BAM_IBC_DISABLE | \ BAM_SB_CLK_REQ | \ BAM_PSM_CSW_REQ | \ BAM_PSM_P_RES | \ BAM_AU_P_RES | \ BAM_SI_P_RES | \ BAM_WB_P_RES | \ BAM_WB_BLK_CSW | \ BAM_WB_CSW_ACK_IDL | \ BAM_WB_RETR_SVPNT | \ BAM_WB_DSC_AVL_P_RST | \ BAM_REG_P_EN | \ BAM_PSM_P_HD_DATA | \ BAM_AU_ACCUMED | \ BAM_CMD_ENABLE) /* PIPE CTRL */ #define P_EN BIT(1) #define P_DIRECTION BIT(3) #define P_SYS_STRM BIT(4) #define P_SYS_MODE BIT(5) #define P_AUTO_EOB BIT(6) #define P_AUTO_EOB_SEL_SHIFT 7 #define P_AUTO_EOB_SEL_512 (0 << P_AUTO_EOB_SEL_SHIFT) #define P_AUTO_EOB_SEL_256 (1 << P_AUTO_EOB_SEL_SHIFT) #define P_AUTO_EOB_SEL_128 (2 << P_AUTO_EOB_SEL_SHIFT) #define P_AUTO_EOB_SEL_64 (3 << P_AUTO_EOB_SEL_SHIFT) #define P_PREFETCH_LIMIT_SHIFT 9 #define P_PREFETCH_LIMIT_32 (0 << P_PREFETCH_LIMIT_SHIFT) #define P_PREFETCH_LIMIT_16 (1 << P_PREFETCH_LIMIT_SHIFT) #define P_PREFETCH_LIMIT_4 (2 << P_PREFETCH_LIMIT_SHIFT) #define P_WRITE_NWD BIT(11) #define P_LOCK_GROUP_SHIFT 16 #define P_LOCK_GROUP_MASK 0x1F /* BAM_DESC_CNT_TRSHLD */ #define CNT_TRSHLD 0xffff #define DEFAULT_CNT_THRSHLD 0x4 /* BAM_IRQ_SRCS */ #define BAM_IRQ BIT(31) #define P_IRQ 0x7fffffff /* BAM_IRQ_SRCS_MSK */ #define BAM_IRQ_MSK BAM_IRQ #define P_IRQ_MSK P_IRQ /* BAM_IRQ_STTS */ #define BAM_TIMER_IRQ BIT(4) #define BAM_EMPTY_IRQ BIT(3) #define BAM_ERROR_IRQ BIT(2) #define BAM_HRESP_ERR_IRQ BIT(1) /* BAM_IRQ_CLR */ #define BAM_TIMER_CLR BIT(4) #define BAM_EMPTY_CLR BIT(3) #define BAM_ERROR_CLR BIT(2) #define BAM_HRESP_ERR_CLR BIT(1) /* BAM_IRQ_EN */ #define BAM_TIMER_EN BIT(4) #define BAM_EMPTY_EN BIT(3) #define BAM_ERROR_EN BIT(2) #define BAM_HRESP_ERR_EN BIT(1) /* BAM_P_IRQ_EN */ #define P_PRCSD_DESC_EN BIT(0) #define P_TIMER_EN BIT(1) #define P_WAKE_EN BIT(2) #define P_OUT_OF_DESC_EN BIT(3) #define P_ERR_EN BIT(4) #define P_TRNSFR_END_EN BIT(5) #define P_DEFAULT_IRQS_EN (P_PRCSD_DESC_EN | P_ERR_EN | P_TRNSFR_END_EN) /* BAM_P_SW_OFSTS */ #define P_SW_OFSTS_MASK 0xffff #define BAM_DESC_FIFO_SIZE SZ_32K #define MAX_DESCRIPTORS (BAM_DESC_FIFO_SIZE / sizeof(struct bam_desc_hw) - 1) #define BAM_FIFO_SIZE (SZ_32K - 8) #define IS_BUSY(chan) (CIRC_SPACE(bchan->tail, bchan->head,\ MAX_DESCRIPTORS + 1) == 0) struct bam_chan { struct virt_dma_chan vc; struct bam_device *bdev; /* configuration from device tree */ u32 id; /* runtime configuration */ struct dma_slave_config slave; /* fifo storage */ struct bam_desc_hw *fifo_virt; dma_addr_t fifo_phys; /* fifo markers */ unsigned short head; /* start of active descriptor entries */ unsigned short tail; /* end of active descriptor entries */ unsigned int initialized; /* is the channel hw initialized? */ unsigned int paused; /* is the channel paused? */ unsigned int reconfigure; /* new slave config? */ /* list of descriptors currently processed */ struct list_head desc_list; struct list_head node; }; static inline struct bam_chan *to_bam_chan(struct dma_chan *common) { return container_of(common, struct bam_chan, vc.chan); } struct bam_device { void __iomem *regs; struct device *dev; struct dma_device common; struct device_dma_parameters dma_parms; struct bam_chan *channels; u32 num_channels; u32 num_ees; /* execution environment ID, from DT */ u32 ee; bool controlled_remotely; const struct reg_offset_data *layout; struct clk *bamclk; int irq; /* dma start transaction tasklet */ struct tasklet_struct task; }; /** * bam_addr - returns BAM register address * @bdev: bam device * @pipe: pipe instance (ignored when register doesn't have multiple instances) * @reg: register enum */ static inline void __iomem *bam_addr(struct bam_device *bdev, u32 pipe, enum bam_reg reg) { const struct reg_offset_data r = bdev->layout[reg]; return bdev->regs + r.base_offset + r.pipe_mult * pipe + r.evnt_mult * pipe + r.ee_mult * bdev->ee; } /** * bam_reset_channel - Reset individual BAM DMA channel * @bchan: bam channel * * This function resets a specific BAM channel */ static void bam_reset_channel(struct bam_chan *bchan) { struct bam_device *bdev = bchan->bdev; lockdep_assert_held(&bchan->vc.lock); /* reset channel */ writel_relaxed(1, bam_addr(bdev, bchan->id, BAM_P_RST)); writel_relaxed(0, bam_addr(bdev, bchan->id, BAM_P_RST)); /* don't allow cpu to reorder BAM register accesses done after this */ wmb(); /* make sure hw is initialized when channel is used the first time */ bchan->initialized = 0; } /** * bam_chan_init_hw - Initialize channel hardware * @bchan: bam channel * @dir: DMA transfer direction * * This function resets and initializes the BAM channel */ static void bam_chan_init_hw(struct bam_chan *bchan, enum dma_transfer_direction dir) { struct bam_device *bdev = bchan->bdev; u32 val; /* Reset the channel to clear internal state of the FIFO */ bam_reset_channel(bchan); /* * write out 8 byte aligned address. We have enough space for this * because we allocated 1 more descriptor (8 bytes) than we can use */ writel_relaxed(ALIGN(bchan->fifo_phys, sizeof(struct bam_desc_hw)), bam_addr(bdev, bchan->id, BAM_P_DESC_FIFO_ADDR)); writel_relaxed(BAM_FIFO_SIZE, bam_addr(bdev, bchan->id, BAM_P_FIFO_SIZES)); /* enable the per pipe interrupts, enable EOT, ERR, and INT irqs */ writel_relaxed(P_DEFAULT_IRQS_EN, bam_addr(bdev, bchan->id, BAM_P_IRQ_EN)); /* unmask the specific pipe and EE combo */ val = readl_relaxed(bam_addr(bdev, 0, BAM_IRQ_SRCS_MSK_EE)); val |= BIT(bchan->id); writel_relaxed(val, bam_addr(bdev, 0, BAM_IRQ_SRCS_MSK_EE)); /* don't allow cpu to reorder the channel enable done below */ wmb(); /* set fixed direction and mode, then enable channel */ val = P_EN | P_SYS_MODE; if (dir == DMA_DEV_TO_MEM) val |= P_DIRECTION; writel_relaxed(val, bam_addr(bdev, bchan->id, BAM_P_CTRL)); bchan->initialized = 1; /* init FIFO pointers */ bchan->head = 0; bchan->tail = 0; } /** * bam_alloc_chan - Allocate channel resources for DMA channel. * @chan: specified channel * * This function allocates the FIFO descriptor memory */ static int bam_alloc_chan(struct dma_chan *chan) { struct bam_chan *bchan = to_bam_chan(chan); struct bam_device *bdev = bchan->bdev; if (bchan->fifo_virt) return 0; /* allocate FIFO descriptor space, but only if necessary */ bchan->fifo_virt = dma_alloc_wc(bdev->dev, BAM_DESC_FIFO_SIZE, &bchan->fifo_phys, GFP_KERNEL); if (!bchan->fifo_virt) { dev_err(bdev->dev, "Failed to allocate desc fifo\n"); return -ENOMEM; } return 0; } static int bam_pm_runtime_get_sync(struct device *dev) { if (pm_runtime_enabled(dev)) return pm_runtime_get_sync(dev); return 0; } /** * bam_free_chan - Frees dma resources associated with specific channel * @chan: specified channel * * Free the allocated fifo descriptor memory and channel resources * */ static void bam_free_chan(struct dma_chan *chan) { struct bam_chan *bchan = to_bam_chan(chan); struct bam_device *bdev = bchan->bdev; u32 val; unsigned long flags; int ret; ret = bam_pm_runtime_get_sync(bdev->dev); if (ret < 0) return; vchan_free_chan_resources(to_virt_chan(chan)); if (!list_empty(&bchan->desc_list)) { dev_err(bchan->bdev->dev, "Cannot free busy channel\n"); goto err; } spin_lock_irqsave(&bchan->vc.lock, flags); bam_reset_channel(bchan); spin_unlock_irqrestore(&bchan->vc.lock, flags); dma_free_wc(bdev->dev, BAM_DESC_FIFO_SIZE, bchan->fifo_virt, bchan->fifo_phys); bchan->fifo_virt = NULL; /* mask irq for pipe/channel */ val = readl_relaxed(bam_addr(bdev, 0, BAM_IRQ_SRCS_MSK_EE)); val &= ~BIT(bchan->id); writel_relaxed(val, bam_addr(bdev, 0, BAM_IRQ_SRCS_MSK_EE)); /* disable irq */ writel_relaxed(0, bam_addr(bdev, bchan->id, BAM_P_IRQ_EN)); err: pm_runtime_mark_last_busy(bdev->dev); pm_runtime_put_autosuspend(bdev->dev); } /** * bam_slave_config - set slave configuration for channel * @chan: dma channel * @cfg: slave configuration * * Sets slave configuration for channel * */ static int bam_slave_config(struct dma_chan *chan, struct dma_slave_config *cfg) { struct bam_chan *bchan = to_bam_chan(chan); unsigned long flag; spin_lock_irqsave(&bchan->vc.lock, flag); memcpy(&bchan->slave, cfg, sizeof(*cfg)); bchan->reconfigure = 1; spin_unlock_irqrestore(&bchan->vc.lock, flag); return 0; } /** * bam_prep_slave_sg - Prep slave sg transaction * * @chan: dma channel * @sgl: scatter gather list * @sg_len: length of sg * @direction: DMA transfer direction * @flags: DMA flags * @context: transfer context (unused) */ static struct dma_async_tx_descriptor *bam_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct bam_chan *bchan = to_bam_chan(chan); struct bam_device *bdev = bchan->bdev; struct bam_async_desc *async_desc; struct scatterlist *sg; u32 i; struct bam_desc_hw *desc; unsigned int num_alloc = 0; if (!is_slave_direction(direction)) { dev_err(bdev->dev, "invalid dma direction\n"); return NULL; } /* calculate number of required entries */ for_each_sg(sgl, sg, sg_len, i) num_alloc += DIV_ROUND_UP(sg_dma_len(sg), BAM_FIFO_SIZE); /* allocate enough room to accomodate the number of entries */ async_desc = kzalloc(struct_size(async_desc, desc, num_alloc), GFP_NOWAIT); if (!async_desc) goto err_out; if (flags & DMA_PREP_FENCE) async_desc->flags |= DESC_FLAG_NWD; if (flags & DMA_PREP_INTERRUPT) async_desc->flags |= DESC_FLAG_EOT; async_desc->num_desc = num_alloc; async_desc->curr_desc = async_desc->desc; async_desc->dir = direction; /* fill in temporary descriptors */ desc = async_desc->desc; for_each_sg(sgl, sg, sg_len, i) { unsigned int remainder = sg_dma_len(sg); unsigned int curr_offset = 0; do { if (flags & DMA_PREP_CMD) desc->flags |= cpu_to_le16(DESC_FLAG_CMD); desc->addr = cpu_to_le32(sg_dma_address(sg) + curr_offset); if (remainder > BAM_FIFO_SIZE) { desc->size = cpu_to_le16(BAM_FIFO_SIZE); remainder -= BAM_FIFO_SIZE; curr_offset += BAM_FIFO_SIZE; } else { desc->size = cpu_to_le16(remainder); remainder = 0; } async_desc->length += le16_to_cpu(desc->size); desc++; } while (remainder > 0); } return vchan_tx_prep(&bchan->vc, &async_desc->vd, flags); err_out: kfree(async_desc); return NULL; } /** * bam_dma_terminate_all - terminate all transactions on a channel * @chan: bam dma channel * * Dequeues and frees all transactions * No callbacks are done * */ static int bam_dma_terminate_all(struct dma_chan *chan) { struct bam_chan *bchan = to_bam_chan(chan); struct bam_async_desc *async_desc, *tmp; unsigned long flag; LIST_HEAD(head); /* remove all transactions, including active transaction */ spin_lock_irqsave(&bchan->vc.lock, flag); /* * If we have transactions queued, then some might be committed to the * hardware in the desc fifo. The only way to reset the desc fifo is * to do a hardware reset (either by pipe or the entire block). * bam_chan_init_hw() will trigger a pipe reset, and also reinit the * pipe. If the pipe is left disabled (default state after pipe reset) * and is accessed by a connected hardware engine, a fatal error in * the BAM will occur. There is a small window where this could happen * with bam_chan_init_hw(), but it is assumed that the caller has * stopped activity on any attached hardware engine. Make sure to do * this first so that the BAM hardware doesn't cause memory corruption * by accessing freed resources. */ if (!list_empty(&bchan->desc_list)) { async_desc = list_first_entry(&bchan->desc_list, struct bam_async_desc, desc_node); bam_chan_init_hw(bchan, async_desc->dir); } list_for_each_entry_safe(async_desc, tmp, &bchan->desc_list, desc_node) { list_add(&async_desc->vd.node, &bchan->vc.desc_issued); list_del(&async_desc->desc_node); } vchan_get_all_descriptors(&bchan->vc, &head); spin_unlock_irqrestore(&bchan->vc.lock, flag); vchan_dma_desc_free_list(&bchan->vc, &head); return 0; } /** * bam_pause - Pause DMA channel * @chan: dma channel * */ static int bam_pause(struct dma_chan *chan) { struct bam_chan *bchan = to_bam_chan(chan); struct bam_device *bdev = bchan->bdev; unsigned long flag; int ret; ret = bam_pm_runtime_get_sync(bdev->dev); if (ret < 0) return ret; spin_lock_irqsave(&bchan->vc.lock, flag); writel_relaxed(1, bam_addr(bdev, bchan->id, BAM_P_HALT)); bchan->paused = 1; spin_unlock_irqrestore(&bchan->vc.lock, flag); pm_runtime_mark_last_busy(bdev->dev); pm_runtime_put_autosuspend(bdev->dev); return 0; } /** * bam_resume - Resume DMA channel operations * @chan: dma channel * */ static int bam_resume(struct dma_chan *chan) { struct bam_chan *bchan = to_bam_chan(chan); struct bam_device *bdev = bchan->bdev; unsigned long flag; int ret; ret = bam_pm_runtime_get_sync(bdev->dev); if (ret < 0) return ret; spin_lock_irqsave(&bchan->vc.lock, flag); writel_relaxed(0, bam_addr(bdev, bchan->id, BAM_P_HALT)); bchan->paused = 0; spin_unlock_irqrestore(&bchan->vc.lock, flag); pm_runtime_mark_last_busy(bdev->dev); pm_runtime_put_autosuspend(bdev->dev); return 0; } /** * process_channel_irqs - processes the channel interrupts * @bdev: bam controller * * This function processes the channel interrupts * */ static u32 process_channel_irqs(struct bam_device *bdev) { u32 i, srcs, pipe_stts, offset, avail; unsigned long flags; struct bam_async_desc *async_desc, *tmp; srcs = readl_relaxed(bam_addr(bdev, 0, BAM_IRQ_SRCS_EE)); /* return early if no pipe/channel interrupts are present */ if (!(srcs & P_IRQ)) return srcs; for (i = 0; i < bdev->num_channels; i++) { struct bam_chan *bchan = &bdev->channels[i]; if (!(srcs & BIT(i))) continue; /* clear pipe irq */ pipe_stts = readl_relaxed(bam_addr(bdev, i, BAM_P_IRQ_STTS)); writel_relaxed(pipe_stts, bam_addr(bdev, i, BAM_P_IRQ_CLR)); spin_lock_irqsave(&bchan->vc.lock, flags); offset = readl_relaxed(bam_addr(bdev, i, BAM_P_SW_OFSTS)) & P_SW_OFSTS_MASK; offset /= sizeof(struct bam_desc_hw); /* Number of bytes available to read */ avail = CIRC_CNT(offset, bchan->head, MAX_DESCRIPTORS + 1); if (offset < bchan->head) avail--; list_for_each_entry_safe(async_desc, tmp, &bchan->desc_list, desc_node) { /* Not enough data to read */ if (avail < async_desc->xfer_len) break; /* manage FIFO */ bchan->head += async_desc->xfer_len; bchan->head %= MAX_DESCRIPTORS; async_desc->num_desc -= async_desc->xfer_len; async_desc->curr_desc += async_desc->xfer_len; avail -= async_desc->xfer_len; /* * if complete, process cookie. Otherwise * push back to front of desc_issued so that * it gets restarted by the tasklet */ if (!async_desc->num_desc) { vchan_cookie_complete(&async_desc->vd); } else { list_add(&async_desc->vd.node, &bchan->vc.desc_issued); } list_del(&async_desc->desc_node); } spin_unlock_irqrestore(&bchan->vc.lock, flags); } return srcs; } /** * bam_dma_irq - irq handler for bam controller * @irq: IRQ of interrupt * @data: callback data * * IRQ handler for the bam controller */ static irqreturn_t bam_dma_irq(int irq, void *data) { struct bam_device *bdev = data; u32 clr_mask = 0, srcs = 0; int ret; srcs |= process_channel_irqs(bdev); /* kick off tasklet to start next dma transfer */ if (srcs & P_IRQ) tasklet_schedule(&bdev->task); ret = bam_pm_runtime_get_sync(bdev->dev); if (ret < 0) return ret; if (srcs & BAM_IRQ) { clr_mask = readl_relaxed(bam_addr(bdev, 0, BAM_IRQ_STTS)); /* * don't allow reorder of the various accesses to the BAM * registers */ mb(); writel_relaxed(clr_mask, bam_addr(bdev, 0, BAM_IRQ_CLR)); } pm_runtime_mark_last_busy(bdev->dev); pm_runtime_put_autosuspend(bdev->dev); return IRQ_HANDLED; } /** * bam_tx_status - returns status of transaction * @chan: dma channel * @cookie: transaction cookie * @txstate: DMA transaction state * * Return status of dma transaction */ static enum dma_status bam_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct bam_chan *bchan = to_bam_chan(chan); struct bam_async_desc *async_desc; struct virt_dma_desc *vd; int ret; size_t residue = 0; unsigned int i; unsigned long flags; ret = dma_cookie_status(chan, cookie, txstate); if (ret == DMA_COMPLETE) return ret; if (!txstate) return bchan->paused ? DMA_PAUSED : ret; spin_lock_irqsave(&bchan->vc.lock, flags); vd = vchan_find_desc(&bchan->vc, cookie); if (vd) { residue = container_of(vd, struct bam_async_desc, vd)->length; } else { list_for_each_entry(async_desc, &bchan->desc_list, desc_node) { if (async_desc->vd.tx.cookie != cookie) continue; for (i = 0; i < async_desc->num_desc; i++) residue += le16_to_cpu( async_desc->curr_desc[i].size); } } spin_unlock_irqrestore(&bchan->vc.lock, flags); dma_set_residue(txstate, residue); if (ret == DMA_IN_PROGRESS && bchan->paused) ret = DMA_PAUSED; return ret; } /** * bam_apply_new_config * @bchan: bam dma channel * @dir: DMA direction */ static void bam_apply_new_config(struct bam_chan *bchan, enum dma_transfer_direction dir) { struct bam_device *bdev = bchan->bdev; u32 maxburst; if (!bdev->controlled_remotely) { if (dir == DMA_DEV_TO_MEM) maxburst = bchan->slave.src_maxburst; else maxburst = bchan->slave.dst_maxburst; writel_relaxed(maxburst, bam_addr(bdev, 0, BAM_DESC_CNT_TRSHLD)); } bchan->reconfigure = 0; } /** * bam_start_dma - start next transaction * @bchan: bam dma channel */ static void bam_start_dma(struct bam_chan *bchan) { struct virt_dma_desc *vd = vchan_next_desc(&bchan->vc); struct bam_device *bdev = bchan->bdev; struct bam_async_desc *async_desc = NULL; struct bam_desc_hw *desc; struct bam_desc_hw *fifo = PTR_ALIGN(bchan->fifo_virt, sizeof(struct bam_desc_hw)); int ret; unsigned int avail; struct dmaengine_desc_callback cb; lockdep_assert_held(&bchan->vc.lock); if (!vd) return; ret = bam_pm_runtime_get_sync(bdev->dev); if (ret < 0) return; while (vd && !IS_BUSY(bchan)) { list_del(&vd->node); async_desc = container_of(vd, struct bam_async_desc, vd); /* on first use, initialize the channel hardware */ if (!bchan->initialized) bam_chan_init_hw(bchan, async_desc->dir); /* apply new slave config changes, if necessary */ if (bchan->reconfigure) bam_apply_new_config(bchan, async_desc->dir); desc = async_desc->curr_desc; avail = CIRC_SPACE(bchan->tail, bchan->head, MAX_DESCRIPTORS + 1); if (async_desc->num_desc > avail) async_desc->xfer_len = avail; else async_desc->xfer_len = async_desc->num_desc; /* set any special flags on the last descriptor */ if (async_desc->num_desc == async_desc->xfer_len) desc[async_desc->xfer_len - 1].flags |= cpu_to_le16(async_desc->flags); vd = vchan_next_desc(&bchan->vc); dmaengine_desc_get_callback(&async_desc->vd.tx, &cb); /* * An interrupt is generated at this desc, if * - FIFO is FULL. * - No more descriptors to add. * - If a callback completion was requested for this DESC, * In this case, BAM will deliver the completion callback * for this desc and continue processing the next desc. */ if (((avail <= async_desc->xfer_len) || !vd || dmaengine_desc_callback_valid(&cb)) && !(async_desc->flags & DESC_FLAG_EOT)) desc[async_desc->xfer_len - 1].flags |= cpu_to_le16(DESC_FLAG_INT); if (bchan->tail + async_desc->xfer_len > MAX_DESCRIPTORS) { u32 partial = MAX_DESCRIPTORS - bchan->tail; memcpy(&fifo[bchan->tail], desc, partial * sizeof(struct bam_desc_hw)); memcpy(fifo, &desc[partial], (async_desc->xfer_len - partial) * sizeof(struct bam_desc_hw)); } else { memcpy(&fifo[bchan->tail], desc, async_desc->xfer_len * sizeof(struct bam_desc_hw)); } bchan->tail += async_desc->xfer_len; bchan->tail %= MAX_DESCRIPTORS; list_add_tail(&async_desc->desc_node, &bchan->desc_list); } /* ensure descriptor writes and dma start not reordered */ wmb(); writel_relaxed(bchan->tail * sizeof(struct bam_desc_hw), bam_addr(bdev, bchan->id, BAM_P_EVNT_REG)); pm_runtime_mark_last_busy(bdev->dev); pm_runtime_put_autosuspend(bdev->dev); } /** * dma_tasklet - DMA IRQ tasklet * @data: tasklet argument (bam controller structure) * * Sets up next DMA operation and then processes all completed transactions */ static void dma_tasklet(unsigned long data) { struct bam_device *bdev = (struct bam_device *)data; struct bam_chan *bchan; unsigned long flags; unsigned int i; /* go through the channels and kick off transactions */ for (i = 0; i < bdev->num_channels; i++) { bchan = &bdev->channels[i]; spin_lock_irqsave(&bchan->vc.lock, flags); if (!list_empty(&bchan->vc.desc_issued) && !IS_BUSY(bchan)) bam_start_dma(bchan); spin_unlock_irqrestore(&bchan->vc.lock, flags); } } /** * bam_issue_pending - starts pending transactions * @chan: dma channel * * Calls tasklet directly which in turn starts any pending transactions */ static void bam_issue_pending(struct dma_chan *chan) { struct bam_chan *bchan = to_bam_chan(chan); unsigned long flags; spin_lock_irqsave(&bchan->vc.lock, flags); /* if work pending and idle, start a transaction */ if (vchan_issue_pending(&bchan->vc) && !IS_BUSY(bchan)) bam_start_dma(bchan); spin_unlock_irqrestore(&bchan->vc.lock, flags); } /** * bam_dma_free_desc - free descriptor memory * @vd: virtual descriptor * */ static void bam_dma_free_desc(struct virt_dma_desc *vd) { struct bam_async_desc *async_desc = container_of(vd, struct bam_async_desc, vd); kfree(async_desc); } static struct dma_chan *bam_dma_xlate(struct of_phandle_args *dma_spec, struct of_dma *of) { struct bam_device *bdev = container_of(of->of_dma_data, struct bam_device, common); unsigned int request; if (dma_spec->args_count != 1) return NULL; request = dma_spec->args[0]; if (request >= bdev->num_channels) return NULL; return dma_get_slave_channel(&(bdev->channels[request].vc.chan)); } /** * bam_init * @bdev: bam device * * Initialization helper for global bam registers */ static int bam_init(struct bam_device *bdev) { u32 val; /* read revision and configuration information */ if (!bdev->num_ees) { val = readl_relaxed(bam_addr(bdev, 0, BAM_REVISION)); bdev->num_ees = (val >> NUM_EES_SHIFT) & NUM_EES_MASK; } /* check that configured EE is within range */ if (bdev->ee >= bdev->num_ees) return -EINVAL; if (!bdev->num_channels) { val = readl_relaxed(bam_addr(bdev, 0, BAM_NUM_PIPES)); bdev->num_channels = val & BAM_NUM_PIPES_MASK; } if (bdev->controlled_remotely) return 0; /* s/w reset bam */ /* after reset all pipes are disabled and idle */ val = readl_relaxed(bam_addr(bdev, 0, BAM_CTRL)); val |= BAM_SW_RST; writel_relaxed(val, bam_addr(bdev, 0, BAM_CTRL)); val &= ~BAM_SW_RST; writel_relaxed(val, bam_addr(bdev, 0, BAM_CTRL)); /* make sure previous stores are visible before enabling BAM */ wmb(); /* enable bam */ val |= BAM_EN; writel_relaxed(val, bam_addr(bdev, 0, BAM_CTRL)); /* set descriptor threshhold, start with 4 bytes */ writel_relaxed(DEFAULT_CNT_THRSHLD, bam_addr(bdev, 0, BAM_DESC_CNT_TRSHLD)); /* Enable default set of h/w workarounds, ie all except BAM_FULL_PIPE */ writel_relaxed(BAM_CNFG_BITS_DEFAULT, bam_addr(bdev, 0, BAM_CNFG_BITS)); /* enable irqs for errors */ writel_relaxed(BAM_ERROR_EN | BAM_HRESP_ERR_EN, bam_addr(bdev, 0, BAM_IRQ_EN)); /* unmask global bam interrupt */ writel_relaxed(BAM_IRQ_MSK, bam_addr(bdev, 0, BAM_IRQ_SRCS_MSK_EE)); return 0; } static void bam_channel_init(struct bam_device *bdev, struct bam_chan *bchan, u32 index) { bchan->id = index; bchan->bdev = bdev; vchan_init(&bchan->vc, &bdev->common); bchan->vc.desc_free = bam_dma_free_desc; INIT_LIST_HEAD(&bchan->desc_list); } static const struct of_device_id bam_of_match[] = { { .compatible = "qcom,bam-v1.3.0", .data = &bam_v1_3_reg_info }, { .compatible = "qcom,bam-v1.4.0", .data = &bam_v1_4_reg_info }, { .compatible = "qcom,bam-v1.7.0", .data = &bam_v1_7_reg_info }, {} }; MODULE_DEVICE_TABLE(of, bam_of_match); static int bam_dma_probe(struct platform_device *pdev) { struct bam_device *bdev; const struct of_device_id *match; struct resource *iores; int ret, i; bdev = devm_kzalloc(&pdev->dev, sizeof(*bdev), GFP_KERNEL); if (!bdev) return -ENOMEM; bdev->dev = &pdev->dev; match = of_match_node(bam_of_match, pdev->dev.of_node); if (!match) { dev_err(&pdev->dev, "Unsupported BAM module\n"); return -ENODEV; } bdev->layout = match->data; iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); bdev->regs = devm_ioremap_resource(&pdev->dev, iores); if (IS_ERR(bdev->regs)) return PTR_ERR(bdev->regs); bdev->irq = platform_get_irq(pdev, 0); if (bdev->irq < 0) return bdev->irq; ret = of_property_read_u32(pdev->dev.of_node, "qcom,ee", &bdev->ee); if (ret) { dev_err(bdev->dev, "Execution environment unspecified\n"); return ret; } bdev->controlled_remotely = of_property_read_bool(pdev->dev.of_node, "qcom,controlled-remotely"); if (bdev->controlled_remotely) { ret = of_property_read_u32(pdev->dev.of_node, "num-channels", &bdev->num_channels); if (ret) dev_err(bdev->dev, "num-channels unspecified in dt\n"); ret = of_property_read_u32(pdev->dev.of_node, "qcom,num-ees", &bdev->num_ees); if (ret) dev_err(bdev->dev, "num-ees unspecified in dt\n"); } bdev->bamclk = devm_clk_get(bdev->dev, "bam_clk"); if (IS_ERR(bdev->bamclk)) { if (!bdev->controlled_remotely) return PTR_ERR(bdev->bamclk); bdev->bamclk = NULL; } ret = clk_prepare_enable(bdev->bamclk); if (ret) { dev_err(bdev->dev, "failed to prepare/enable clock\n"); return ret; } ret = bam_init(bdev); if (ret) goto err_disable_clk; tasklet_init(&bdev->task, dma_tasklet, (unsigned long)bdev); bdev->channels = devm_kcalloc(bdev->dev, bdev->num_channels, sizeof(*bdev->channels), GFP_KERNEL); if (!bdev->channels) { ret = -ENOMEM; goto err_tasklet_kill; } /* allocate and initialize channels */ INIT_LIST_HEAD(&bdev->common.channels); for (i = 0; i < bdev->num_channels; i++) bam_channel_init(bdev, &bdev->channels[i], i); ret = devm_request_irq(bdev->dev, bdev->irq, bam_dma_irq, IRQF_TRIGGER_HIGH, "bam_dma", bdev); if (ret) goto err_bam_channel_exit; /* set max dma segment size */ bdev->common.dev = bdev->dev; bdev->common.dev->dma_parms = &bdev->dma_parms; ret = dma_set_max_seg_size(bdev->common.dev, BAM_FIFO_SIZE); if (ret) { dev_err(bdev->dev, "cannot set maximum segment size\n"); goto err_bam_channel_exit; } platform_set_drvdata(pdev, bdev); /* set capabilities */ dma_cap_zero(bdev->common.cap_mask); dma_cap_set(DMA_SLAVE, bdev->common.cap_mask); /* initialize dmaengine apis */ bdev->common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); bdev->common.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT; bdev->common.src_addr_widths = DMA_SLAVE_BUSWIDTH_4_BYTES; bdev->common.dst_addr_widths = DMA_SLAVE_BUSWIDTH_4_BYTES; bdev->common.device_alloc_chan_resources = bam_alloc_chan; bdev->common.device_free_chan_resources = bam_free_chan; bdev->common.device_prep_slave_sg = bam_prep_slave_sg; bdev->common.device_config = bam_slave_config; bdev->common.device_pause = bam_pause; bdev->common.device_resume = bam_resume; bdev->common.device_terminate_all = bam_dma_terminate_all; bdev->common.device_issue_pending = bam_issue_pending; bdev->common.device_tx_status = bam_tx_status; bdev->common.dev = bdev->dev; ret = dma_async_device_register(&bdev->common); if (ret) { dev_err(bdev->dev, "failed to register dma async device\n"); goto err_bam_channel_exit; } ret = of_dma_controller_register(pdev->dev.of_node, bam_dma_xlate, &bdev->common); if (ret) goto err_unregister_dma; if (bdev->controlled_remotely) { pm_runtime_disable(&pdev->dev); return 0; } pm_runtime_irq_safe(&pdev->dev); pm_runtime_set_autosuspend_delay(&pdev->dev, BAM_DMA_AUTOSUSPEND_DELAY); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_mark_last_busy(&pdev->dev); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); return 0; err_unregister_dma: dma_async_device_unregister(&bdev->common); err_bam_channel_exit: for (i = 0; i < bdev->num_channels; i++) tasklet_kill(&bdev->channels[i].vc.task); err_tasklet_kill: tasklet_kill(&bdev->task); err_disable_clk: clk_disable_unprepare(bdev->bamclk); return ret; } static int bam_dma_remove(struct platform_device *pdev) { struct bam_device *bdev = platform_get_drvdata(pdev); u32 i; pm_runtime_force_suspend(&pdev->dev); of_dma_controller_free(pdev->dev.of_node); dma_async_device_unregister(&bdev->common); /* mask all interrupts for this execution environment */ writel_relaxed(0, bam_addr(bdev, 0, BAM_IRQ_SRCS_MSK_EE)); devm_free_irq(bdev->dev, bdev->irq, bdev); for (i = 0; i < bdev->num_channels; i++) { bam_dma_terminate_all(&bdev->channels[i].vc.chan); tasklet_kill(&bdev->channels[i].vc.task); if (!bdev->channels[i].fifo_virt) continue; dma_free_wc(bdev->dev, BAM_DESC_FIFO_SIZE, bdev->channels[i].fifo_virt, bdev->channels[i].fifo_phys); } tasklet_kill(&bdev->task); clk_disable_unprepare(bdev->bamclk); return 0; } static int __maybe_unused bam_dma_runtime_suspend(struct device *dev) { struct bam_device *bdev = dev_get_drvdata(dev); clk_disable(bdev->bamclk); return 0; } static int __maybe_unused bam_dma_runtime_resume(struct device *dev) { struct bam_device *bdev = dev_get_drvdata(dev); int ret; ret = clk_enable(bdev->bamclk); if (ret < 0) { dev_err(dev, "clk_enable failed: %d\n", ret); return ret; } return 0; } static int __maybe_unused bam_dma_suspend(struct device *dev) { struct bam_device *bdev = dev_get_drvdata(dev); if (!bdev->controlled_remotely) pm_runtime_force_suspend(dev); clk_unprepare(bdev->bamclk); return 0; } static int __maybe_unused bam_dma_resume(struct device *dev) { struct bam_device *bdev = dev_get_drvdata(dev); int ret; ret = clk_prepare(bdev->bamclk); if (ret) return ret; if (!bdev->controlled_remotely) pm_runtime_force_resume(dev); return 0; } static const struct dev_pm_ops bam_dma_pm_ops = { SET_LATE_SYSTEM_SLEEP_PM_OPS(bam_dma_suspend, bam_dma_resume) SET_RUNTIME_PM_OPS(bam_dma_runtime_suspend, bam_dma_runtime_resume, NULL) }; static struct platform_driver bam_dma_driver = { .probe = bam_dma_probe, .remove = bam_dma_remove, .driver = { .name = "bam-dma-engine", .pm = &bam_dma_pm_ops, .of_match_table = bam_of_match, }, }; module_platform_driver(bam_dma_driver); MODULE_AUTHOR("Andy Gross <agross@codeaurora.org>"); MODULE_DESCRIPTION("QCOM BAM DMA engine driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1