Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rongjun Ying | 3055 | 53.42% | 3 | 8.57% |
Hao Liu | 1477 | 25.83% | 1 | 2.86% |
Barry Song | 1001 | 17.50% | 9 | 25.71% |
Maxime Ripard | 91 | 1.59% | 3 | 8.57% |
Yanchang Li | 24 | 0.42% | 1 | 2.86% |
Russell King | 21 | 0.37% | 4 | 11.43% |
Vinod Koul | 11 | 0.19% | 2 | 5.71% |
Julia Lawall | 9 | 0.16% | 1 | 2.86% |
Luis de Bethencourt | 7 | 0.12% | 1 | 2.86% |
Dave Jiang | 6 | 0.10% | 1 | 2.86% |
Arnd Bergmann | 5 | 0.09% | 2 | 5.71% |
Ben Dooks | 3 | 0.05% | 1 | 2.86% |
Peter Ujfalusi | 3 | 0.05% | 1 | 2.86% |
Thomas Gleixner | 2 | 0.03% | 1 | 2.86% |
Alex Bounine | 1 | 0.02% | 1 | 2.86% |
Fabian Frederick | 1 | 0.02% | 1 | 2.86% |
Jingoo Han | 1 | 0.02% | 1 | 2.86% |
Dan Carpenter | 1 | 0.02% | 1 | 2.86% |
Total | 5719 | 35 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * DMA controller driver for CSR SiRFprimaII * * Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company. */ #include <linux/module.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/pm_runtime.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/of_irq.h> #include <linux/of_address.h> #include <linux/of_device.h> #include <linux/of_platform.h> #include <linux/clk.h> #include <linux/of_dma.h> #include <linux/sirfsoc_dma.h> #include "dmaengine.h" #define SIRFSOC_DMA_VER_A7V1 1 #define SIRFSOC_DMA_VER_A7V2 2 #define SIRFSOC_DMA_VER_A6 4 #define SIRFSOC_DMA_DESCRIPTORS 16 #define SIRFSOC_DMA_CHANNELS 16 #define SIRFSOC_DMA_TABLE_NUM 256 #define SIRFSOC_DMA_CH_ADDR 0x00 #define SIRFSOC_DMA_CH_XLEN 0x04 #define SIRFSOC_DMA_CH_YLEN 0x08 #define SIRFSOC_DMA_CH_CTRL 0x0C #define SIRFSOC_DMA_WIDTH_0 0x100 #define SIRFSOC_DMA_CH_VALID 0x140 #define SIRFSOC_DMA_CH_INT 0x144 #define SIRFSOC_DMA_INT_EN 0x148 #define SIRFSOC_DMA_INT_EN_CLR 0x14C #define SIRFSOC_DMA_CH_LOOP_CTRL 0x150 #define SIRFSOC_DMA_CH_LOOP_CTRL_CLR 0x154 #define SIRFSOC_DMA_WIDTH_ATLAS7 0x10 #define SIRFSOC_DMA_VALID_ATLAS7 0x14 #define SIRFSOC_DMA_INT_ATLAS7 0x18 #define SIRFSOC_DMA_INT_EN_ATLAS7 0x1c #define SIRFSOC_DMA_LOOP_CTRL_ATLAS7 0x20 #define SIRFSOC_DMA_CUR_DATA_ADDR 0x34 #define SIRFSOC_DMA_MUL_ATLAS7 0x38 #define SIRFSOC_DMA_CH_LOOP_CTRL_ATLAS7 0x158 #define SIRFSOC_DMA_CH_LOOP_CTRL_CLR_ATLAS7 0x15C #define SIRFSOC_DMA_IOBG_SCMD_EN 0x800 #define SIRFSOC_DMA_EARLY_RESP_SET 0x818 #define SIRFSOC_DMA_EARLY_RESP_CLR 0x81C #define SIRFSOC_DMA_MODE_CTRL_BIT 4 #define SIRFSOC_DMA_DIR_CTRL_BIT 5 #define SIRFSOC_DMA_MODE_CTRL_BIT_ATLAS7 2 #define SIRFSOC_DMA_CHAIN_CTRL_BIT_ATLAS7 3 #define SIRFSOC_DMA_DIR_CTRL_BIT_ATLAS7 4 #define SIRFSOC_DMA_TAB_NUM_ATLAS7 7 #define SIRFSOC_DMA_CHAIN_INT_BIT_ATLAS7 5 #define SIRFSOC_DMA_CHAIN_FLAG_SHIFT_ATLAS7 25 #define SIRFSOC_DMA_CHAIN_ADDR_SHIFT 32 #define SIRFSOC_DMA_INT_FINI_INT_ATLAS7 BIT(0) #define SIRFSOC_DMA_INT_CNT_INT_ATLAS7 BIT(1) #define SIRFSOC_DMA_INT_PAU_INT_ATLAS7 BIT(2) #define SIRFSOC_DMA_INT_LOOP_INT_ATLAS7 BIT(3) #define SIRFSOC_DMA_INT_INV_INT_ATLAS7 BIT(4) #define SIRFSOC_DMA_INT_END_INT_ATLAS7 BIT(5) #define SIRFSOC_DMA_INT_ALL_ATLAS7 0x3F /* xlen and dma_width register is in 4 bytes boundary */ #define SIRFSOC_DMA_WORD_LEN 4 #define SIRFSOC_DMA_XLEN_MAX_V1 0x800 #define SIRFSOC_DMA_XLEN_MAX_V2 0x1000 struct sirfsoc_dma_desc { struct dma_async_tx_descriptor desc; struct list_head node; /* SiRFprimaII 2D-DMA parameters */ int xlen; /* DMA xlen */ int ylen; /* DMA ylen */ int width; /* DMA width */ int dir; bool cyclic; /* is loop DMA? */ bool chain; /* is chain DMA? */ u32 addr; /* DMA buffer address */ u64 chain_table[SIRFSOC_DMA_TABLE_NUM]; /* chain tbl */ }; struct sirfsoc_dma_chan { struct dma_chan chan; struct list_head free; struct list_head prepared; struct list_head queued; struct list_head active; struct list_head completed; unsigned long happened_cyclic; unsigned long completed_cyclic; /* Lock for this structure */ spinlock_t lock; int mode; }; struct sirfsoc_dma_regs { u32 ctrl[SIRFSOC_DMA_CHANNELS]; u32 interrupt_en; }; struct sirfsoc_dma { struct dma_device dma; struct tasklet_struct tasklet; struct sirfsoc_dma_chan channels[SIRFSOC_DMA_CHANNELS]; void __iomem *base; int irq; struct clk *clk; int type; void (*exec_desc)(struct sirfsoc_dma_desc *sdesc, int cid, int burst_mode, void __iomem *base); struct sirfsoc_dma_regs regs_save; }; struct sirfsoc_dmadata { void (*exec)(struct sirfsoc_dma_desc *sdesc, int cid, int burst_mode, void __iomem *base); int type; }; enum sirfsoc_dma_chain_flag { SIRFSOC_DMA_CHAIN_NORMAL = 0x01, SIRFSOC_DMA_CHAIN_PAUSE = 0x02, SIRFSOC_DMA_CHAIN_LOOP = 0x03, SIRFSOC_DMA_CHAIN_END = 0x04 }; #define DRV_NAME "sirfsoc_dma" static int sirfsoc_dma_runtime_suspend(struct device *dev); /* Convert struct dma_chan to struct sirfsoc_dma_chan */ static inline struct sirfsoc_dma_chan *dma_chan_to_sirfsoc_dma_chan(struct dma_chan *c) { return container_of(c, struct sirfsoc_dma_chan, chan); } /* Convert struct dma_chan to struct sirfsoc_dma */ static inline struct sirfsoc_dma *dma_chan_to_sirfsoc_dma(struct dma_chan *c) { struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(c); return container_of(schan, struct sirfsoc_dma, channels[c->chan_id]); } static void sirfsoc_dma_execute_hw_a7v2(struct sirfsoc_dma_desc *sdesc, int cid, int burst_mode, void __iomem *base) { if (sdesc->chain) { /* DMA v2 HW chain mode */ writel_relaxed((sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT_ATLAS7) | (sdesc->chain << SIRFSOC_DMA_CHAIN_CTRL_BIT_ATLAS7) | (0x8 << SIRFSOC_DMA_TAB_NUM_ATLAS7) | 0x3, base + SIRFSOC_DMA_CH_CTRL); } else { /* DMA v2 legacy mode */ writel_relaxed(sdesc->xlen, base + SIRFSOC_DMA_CH_XLEN); writel_relaxed(sdesc->ylen, base + SIRFSOC_DMA_CH_YLEN); writel_relaxed(sdesc->width, base + SIRFSOC_DMA_WIDTH_ATLAS7); writel_relaxed((sdesc->width*((sdesc->ylen+1)>>1)), base + SIRFSOC_DMA_MUL_ATLAS7); writel_relaxed((sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT_ATLAS7) | (sdesc->chain << SIRFSOC_DMA_CHAIN_CTRL_BIT_ATLAS7) | 0x3, base + SIRFSOC_DMA_CH_CTRL); } writel_relaxed(sdesc->chain ? SIRFSOC_DMA_INT_END_INT_ATLAS7 : (SIRFSOC_DMA_INT_FINI_INT_ATLAS7 | SIRFSOC_DMA_INT_LOOP_INT_ATLAS7), base + SIRFSOC_DMA_INT_EN_ATLAS7); writel(sdesc->addr, base + SIRFSOC_DMA_CH_ADDR); if (sdesc->cyclic) writel(0x10001, base + SIRFSOC_DMA_LOOP_CTRL_ATLAS7); } static void sirfsoc_dma_execute_hw_a7v1(struct sirfsoc_dma_desc *sdesc, int cid, int burst_mode, void __iomem *base) { writel_relaxed(1, base + SIRFSOC_DMA_IOBG_SCMD_EN); writel_relaxed((1 << cid), base + SIRFSOC_DMA_EARLY_RESP_SET); writel_relaxed(sdesc->width, base + SIRFSOC_DMA_WIDTH_0 + cid * 4); writel_relaxed(cid | (burst_mode << SIRFSOC_DMA_MODE_CTRL_BIT) | (sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT), base + cid * 0x10 + SIRFSOC_DMA_CH_CTRL); writel_relaxed(sdesc->xlen, base + cid * 0x10 + SIRFSOC_DMA_CH_XLEN); writel_relaxed(sdesc->ylen, base + cid * 0x10 + SIRFSOC_DMA_CH_YLEN); writel_relaxed(readl_relaxed(base + SIRFSOC_DMA_INT_EN) | (1 << cid), base + SIRFSOC_DMA_INT_EN); writel(sdesc->addr >> 2, base + cid * 0x10 + SIRFSOC_DMA_CH_ADDR); if (sdesc->cyclic) { writel((1 << cid) | 1 << (cid + 16) | readl_relaxed(base + SIRFSOC_DMA_CH_LOOP_CTRL_ATLAS7), base + SIRFSOC_DMA_CH_LOOP_CTRL_ATLAS7); } } static void sirfsoc_dma_execute_hw_a6(struct sirfsoc_dma_desc *sdesc, int cid, int burst_mode, void __iomem *base) { writel_relaxed(sdesc->width, base + SIRFSOC_DMA_WIDTH_0 + cid * 4); writel_relaxed(cid | (burst_mode << SIRFSOC_DMA_MODE_CTRL_BIT) | (sdesc->dir << SIRFSOC_DMA_DIR_CTRL_BIT), base + cid * 0x10 + SIRFSOC_DMA_CH_CTRL); writel_relaxed(sdesc->xlen, base + cid * 0x10 + SIRFSOC_DMA_CH_XLEN); writel_relaxed(sdesc->ylen, base + cid * 0x10 + SIRFSOC_DMA_CH_YLEN); writel_relaxed(readl_relaxed(base + SIRFSOC_DMA_INT_EN) | (1 << cid), base + SIRFSOC_DMA_INT_EN); writel(sdesc->addr >> 2, base + cid * 0x10 + SIRFSOC_DMA_CH_ADDR); if (sdesc->cyclic) { writel((1 << cid) | 1 << (cid + 16) | readl_relaxed(base + SIRFSOC_DMA_CH_LOOP_CTRL), base + SIRFSOC_DMA_CH_LOOP_CTRL); } } /* Execute all queued DMA descriptors */ static void sirfsoc_dma_execute(struct sirfsoc_dma_chan *schan) { struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan); int cid = schan->chan.chan_id; struct sirfsoc_dma_desc *sdesc = NULL; void __iomem *base; /* * lock has been held by functions calling this, so we don't hold * lock again */ base = sdma->base; sdesc = list_first_entry(&schan->queued, struct sirfsoc_dma_desc, node); /* Move the first queued descriptor to active list */ list_move_tail(&sdesc->node, &schan->active); if (sdma->type == SIRFSOC_DMA_VER_A7V2) cid = 0; /* Start the DMA transfer */ sdma->exec_desc(sdesc, cid, schan->mode, base); if (sdesc->cyclic) schan->happened_cyclic = schan->completed_cyclic = 0; } /* Interrupt handler */ static irqreturn_t sirfsoc_dma_irq(int irq, void *data) { struct sirfsoc_dma *sdma = data; struct sirfsoc_dma_chan *schan; struct sirfsoc_dma_desc *sdesc = NULL; u32 is; bool chain; int ch; void __iomem *reg; switch (sdma->type) { case SIRFSOC_DMA_VER_A6: case SIRFSOC_DMA_VER_A7V1: is = readl(sdma->base + SIRFSOC_DMA_CH_INT); reg = sdma->base + SIRFSOC_DMA_CH_INT; while ((ch = fls(is) - 1) >= 0) { is &= ~(1 << ch); writel_relaxed(1 << ch, reg); schan = &sdma->channels[ch]; spin_lock(&schan->lock); sdesc = list_first_entry(&schan->active, struct sirfsoc_dma_desc, node); if (!sdesc->cyclic) { /* Execute queued descriptors */ list_splice_tail_init(&schan->active, &schan->completed); dma_cookie_complete(&sdesc->desc); if (!list_empty(&schan->queued)) sirfsoc_dma_execute(schan); } else schan->happened_cyclic++; spin_unlock(&schan->lock); } break; case SIRFSOC_DMA_VER_A7V2: is = readl(sdma->base + SIRFSOC_DMA_INT_ATLAS7); reg = sdma->base + SIRFSOC_DMA_INT_ATLAS7; writel_relaxed(SIRFSOC_DMA_INT_ALL_ATLAS7, reg); schan = &sdma->channels[0]; spin_lock(&schan->lock); sdesc = list_first_entry(&schan->active, struct sirfsoc_dma_desc, node); if (!sdesc->cyclic) { chain = sdesc->chain; if ((chain && (is & SIRFSOC_DMA_INT_END_INT_ATLAS7)) || (!chain && (is & SIRFSOC_DMA_INT_FINI_INT_ATLAS7))) { /* Execute queued descriptors */ list_splice_tail_init(&schan->active, &schan->completed); dma_cookie_complete(&sdesc->desc); if (!list_empty(&schan->queued)) sirfsoc_dma_execute(schan); } } else if (sdesc->cyclic && (is & SIRFSOC_DMA_INT_LOOP_INT_ATLAS7)) schan->happened_cyclic++; spin_unlock(&schan->lock); break; default: break; } /* Schedule tasklet */ tasklet_schedule(&sdma->tasklet); return IRQ_HANDLED; } /* process completed descriptors */ static void sirfsoc_dma_process_completed(struct sirfsoc_dma *sdma) { dma_cookie_t last_cookie = 0; struct sirfsoc_dma_chan *schan; struct sirfsoc_dma_desc *sdesc; struct dma_async_tx_descriptor *desc; unsigned long flags; unsigned long happened_cyclic; LIST_HEAD(list); int i; for (i = 0; i < sdma->dma.chancnt; i++) { schan = &sdma->channels[i]; /* Get all completed descriptors */ spin_lock_irqsave(&schan->lock, flags); if (!list_empty(&schan->completed)) { list_splice_tail_init(&schan->completed, &list); spin_unlock_irqrestore(&schan->lock, flags); /* Execute callbacks and run dependencies */ list_for_each_entry(sdesc, &list, node) { desc = &sdesc->desc; dmaengine_desc_get_callback_invoke(desc, NULL); last_cookie = desc->cookie; dma_run_dependencies(desc); } /* Free descriptors */ spin_lock_irqsave(&schan->lock, flags); list_splice_tail_init(&list, &schan->free); schan->chan.completed_cookie = last_cookie; spin_unlock_irqrestore(&schan->lock, flags); } else { if (list_empty(&schan->active)) { spin_unlock_irqrestore(&schan->lock, flags); continue; } /* for cyclic channel, desc is always in active list */ sdesc = list_first_entry(&schan->active, struct sirfsoc_dma_desc, node); /* cyclic DMA */ happened_cyclic = schan->happened_cyclic; spin_unlock_irqrestore(&schan->lock, flags); desc = &sdesc->desc; while (happened_cyclic != schan->completed_cyclic) { dmaengine_desc_get_callback_invoke(desc, NULL); schan->completed_cyclic++; } } } } /* DMA Tasklet */ static void sirfsoc_dma_tasklet(unsigned long data) { struct sirfsoc_dma *sdma = (void *)data; sirfsoc_dma_process_completed(sdma); } /* Submit descriptor to hardware */ static dma_cookie_t sirfsoc_dma_tx_submit(struct dma_async_tx_descriptor *txd) { struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(txd->chan); struct sirfsoc_dma_desc *sdesc; unsigned long flags; dma_cookie_t cookie; sdesc = container_of(txd, struct sirfsoc_dma_desc, desc); spin_lock_irqsave(&schan->lock, flags); /* Move descriptor to queue */ list_move_tail(&sdesc->node, &schan->queued); cookie = dma_cookie_assign(txd); spin_unlock_irqrestore(&schan->lock, flags); return cookie; } static int sirfsoc_dma_slave_config(struct dma_chan *chan, struct dma_slave_config *config) { struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan); unsigned long flags; if ((config->src_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES) || (config->dst_addr_width != DMA_SLAVE_BUSWIDTH_4_BYTES)) return -EINVAL; spin_lock_irqsave(&schan->lock, flags); schan->mode = (config->src_maxburst == 4 ? 1 : 0); spin_unlock_irqrestore(&schan->lock, flags); return 0; } static int sirfsoc_dma_terminate_all(struct dma_chan *chan) { struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan); struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan); int cid = schan->chan.chan_id; unsigned long flags; spin_lock_irqsave(&schan->lock, flags); switch (sdma->type) { case SIRFSOC_DMA_VER_A7V1: writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_INT_EN_CLR); writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_CH_INT); writel_relaxed((1 << cid) | 1 << (cid + 16), sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL_CLR_ATLAS7); writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_CH_VALID); break; case SIRFSOC_DMA_VER_A7V2: writel_relaxed(0, sdma->base + SIRFSOC_DMA_INT_EN_ATLAS7); writel_relaxed(SIRFSOC_DMA_INT_ALL_ATLAS7, sdma->base + SIRFSOC_DMA_INT_ATLAS7); writel_relaxed(0, sdma->base + SIRFSOC_DMA_LOOP_CTRL_ATLAS7); writel_relaxed(0, sdma->base + SIRFSOC_DMA_VALID_ATLAS7); break; case SIRFSOC_DMA_VER_A6: writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_INT_EN) & ~(1 << cid), sdma->base + SIRFSOC_DMA_INT_EN); writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL) & ~((1 << cid) | 1 << (cid + 16)), sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL); writel_relaxed(1 << cid, sdma->base + SIRFSOC_DMA_CH_VALID); break; default: break; } list_splice_tail_init(&schan->active, &schan->free); list_splice_tail_init(&schan->queued, &schan->free); spin_unlock_irqrestore(&schan->lock, flags); return 0; } static int sirfsoc_dma_pause_chan(struct dma_chan *chan) { struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan); struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan); int cid = schan->chan.chan_id; unsigned long flags; spin_lock_irqsave(&schan->lock, flags); switch (sdma->type) { case SIRFSOC_DMA_VER_A7V1: writel_relaxed((1 << cid) | 1 << (cid + 16), sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL_CLR_ATLAS7); break; case SIRFSOC_DMA_VER_A7V2: writel_relaxed(0, sdma->base + SIRFSOC_DMA_LOOP_CTRL_ATLAS7); break; case SIRFSOC_DMA_VER_A6: writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL) & ~((1 << cid) | 1 << (cid + 16)), sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL); break; default: break; } spin_unlock_irqrestore(&schan->lock, flags); return 0; } static int sirfsoc_dma_resume_chan(struct dma_chan *chan) { struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan); struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(&schan->chan); int cid = schan->chan.chan_id; unsigned long flags; spin_lock_irqsave(&schan->lock, flags); switch (sdma->type) { case SIRFSOC_DMA_VER_A7V1: writel_relaxed((1 << cid) | 1 << (cid + 16), sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL_ATLAS7); break; case SIRFSOC_DMA_VER_A7V2: writel_relaxed(0x10001, sdma->base + SIRFSOC_DMA_LOOP_CTRL_ATLAS7); break; case SIRFSOC_DMA_VER_A6: writel_relaxed(readl_relaxed(sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL) | ((1 << cid) | 1 << (cid + 16)), sdma->base + SIRFSOC_DMA_CH_LOOP_CTRL); break; default: break; } spin_unlock_irqrestore(&schan->lock, flags); return 0; } /* Alloc channel resources */ static int sirfsoc_dma_alloc_chan_resources(struct dma_chan *chan) { struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan); struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan); struct sirfsoc_dma_desc *sdesc; unsigned long flags; LIST_HEAD(descs); int i; pm_runtime_get_sync(sdma->dma.dev); /* Alloc descriptors for this channel */ for (i = 0; i < SIRFSOC_DMA_DESCRIPTORS; i++) { sdesc = kzalloc(sizeof(*sdesc), GFP_KERNEL); if (!sdesc) { dev_notice(sdma->dma.dev, "Memory allocation error. " "Allocated only %u descriptors\n", i); break; } dma_async_tx_descriptor_init(&sdesc->desc, chan); sdesc->desc.flags = DMA_CTRL_ACK; sdesc->desc.tx_submit = sirfsoc_dma_tx_submit; list_add_tail(&sdesc->node, &descs); } /* Return error only if no descriptors were allocated */ if (i == 0) return -ENOMEM; spin_lock_irqsave(&schan->lock, flags); list_splice_tail_init(&descs, &schan->free); spin_unlock_irqrestore(&schan->lock, flags); return i; } /* Free channel resources */ static void sirfsoc_dma_free_chan_resources(struct dma_chan *chan) { struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan); struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan); struct sirfsoc_dma_desc *sdesc, *tmp; unsigned long flags; LIST_HEAD(descs); spin_lock_irqsave(&schan->lock, flags); /* Channel must be idle */ BUG_ON(!list_empty(&schan->prepared)); BUG_ON(!list_empty(&schan->queued)); BUG_ON(!list_empty(&schan->active)); BUG_ON(!list_empty(&schan->completed)); /* Move data */ list_splice_tail_init(&schan->free, &descs); spin_unlock_irqrestore(&schan->lock, flags); /* Free descriptors */ list_for_each_entry_safe(sdesc, tmp, &descs, node) kfree(sdesc); pm_runtime_put(sdma->dma.dev); } /* Send pending descriptor to hardware */ static void sirfsoc_dma_issue_pending(struct dma_chan *chan) { struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan); unsigned long flags; spin_lock_irqsave(&schan->lock, flags); if (list_empty(&schan->active) && !list_empty(&schan->queued)) sirfsoc_dma_execute(schan); spin_unlock_irqrestore(&schan->lock, flags); } /* Check request completion status */ static enum dma_status sirfsoc_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan); struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan); unsigned long flags; enum dma_status ret; struct sirfsoc_dma_desc *sdesc; int cid = schan->chan.chan_id; unsigned long dma_pos; unsigned long dma_request_bytes; unsigned long residue; spin_lock_irqsave(&schan->lock, flags); if (list_empty(&schan->active)) { ret = dma_cookie_status(chan, cookie, txstate); dma_set_residue(txstate, 0); spin_unlock_irqrestore(&schan->lock, flags); return ret; } sdesc = list_first_entry(&schan->active, struct sirfsoc_dma_desc, node); if (sdesc->cyclic) dma_request_bytes = (sdesc->xlen + 1) * (sdesc->ylen + 1) * (sdesc->width * SIRFSOC_DMA_WORD_LEN); else dma_request_bytes = sdesc->xlen * SIRFSOC_DMA_WORD_LEN; ret = dma_cookie_status(chan, cookie, txstate); if (sdma->type == SIRFSOC_DMA_VER_A7V2) cid = 0; if (sdma->type == SIRFSOC_DMA_VER_A7V2) { dma_pos = readl_relaxed(sdma->base + SIRFSOC_DMA_CUR_DATA_ADDR); } else { dma_pos = readl_relaxed( sdma->base + cid * 0x10 + SIRFSOC_DMA_CH_ADDR) << 2; } residue = dma_request_bytes - (dma_pos - sdesc->addr); dma_set_residue(txstate, residue); spin_unlock_irqrestore(&schan->lock, flags); return ret; } static struct dma_async_tx_descriptor *sirfsoc_dma_prep_interleaved( struct dma_chan *chan, struct dma_interleaved_template *xt, unsigned long flags) { struct sirfsoc_dma *sdma = dma_chan_to_sirfsoc_dma(chan); struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan); struct sirfsoc_dma_desc *sdesc = NULL; unsigned long iflags; int ret; if ((xt->dir != DMA_MEM_TO_DEV) && (xt->dir != DMA_DEV_TO_MEM)) { ret = -EINVAL; goto err_dir; } /* Get free descriptor */ spin_lock_irqsave(&schan->lock, iflags); if (!list_empty(&schan->free)) { sdesc = list_first_entry(&schan->free, struct sirfsoc_dma_desc, node); list_del(&sdesc->node); } spin_unlock_irqrestore(&schan->lock, iflags); if (!sdesc) { /* try to free completed descriptors */ sirfsoc_dma_process_completed(sdma); ret = 0; goto no_desc; } /* Place descriptor in prepared list */ spin_lock_irqsave(&schan->lock, iflags); /* * Number of chunks in a frame can only be 1 for prima2 * and ylen (number of frame - 1) must be at least 0 */ if ((xt->frame_size == 1) && (xt->numf > 0)) { sdesc->cyclic = 0; sdesc->xlen = xt->sgl[0].size / SIRFSOC_DMA_WORD_LEN; sdesc->width = (xt->sgl[0].size + xt->sgl[0].icg) / SIRFSOC_DMA_WORD_LEN; sdesc->ylen = xt->numf - 1; if (xt->dir == DMA_MEM_TO_DEV) { sdesc->addr = xt->src_start; sdesc->dir = 1; } else { sdesc->addr = xt->dst_start; sdesc->dir = 0; } list_add_tail(&sdesc->node, &schan->prepared); } else { pr_err("sirfsoc DMA Invalid xfer\n"); ret = -EINVAL; goto err_xfer; } spin_unlock_irqrestore(&schan->lock, iflags); return &sdesc->desc; err_xfer: spin_unlock_irqrestore(&schan->lock, iflags); no_desc: err_dir: return ERR_PTR(ret); } static struct dma_async_tx_descriptor * sirfsoc_dma_prep_cyclic(struct dma_chan *chan, dma_addr_t addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags) { struct sirfsoc_dma_chan *schan = dma_chan_to_sirfsoc_dma_chan(chan); struct sirfsoc_dma_desc *sdesc = NULL; unsigned long iflags; /* * we only support cycle transfer with 2 period * If the X-length is set to 0, it would be the loop mode. * The DMA address keeps increasing until reaching the end of a loop * area whose size is defined by (DMA_WIDTH x (Y_LENGTH + 1)). Then * the DMA address goes back to the beginning of this area. * In loop mode, the DMA data region is divided into two parts, BUFA * and BUFB. DMA controller generates interrupts twice in each loop: * when the DMA address reaches the end of BUFA or the end of the * BUFB */ if (buf_len != 2 * period_len) return ERR_PTR(-EINVAL); /* Get free descriptor */ spin_lock_irqsave(&schan->lock, iflags); if (!list_empty(&schan->free)) { sdesc = list_first_entry(&schan->free, struct sirfsoc_dma_desc, node); list_del(&sdesc->node); } spin_unlock_irqrestore(&schan->lock, iflags); if (!sdesc) return NULL; /* Place descriptor in prepared list */ spin_lock_irqsave(&schan->lock, iflags); sdesc->addr = addr; sdesc->cyclic = 1; sdesc->xlen = 0; sdesc->ylen = buf_len / SIRFSOC_DMA_WORD_LEN - 1; sdesc->width = 1; list_add_tail(&sdesc->node, &schan->prepared); spin_unlock_irqrestore(&schan->lock, iflags); return &sdesc->desc; } /* * The DMA controller consists of 16 independent DMA channels. * Each channel is allocated to a different function */ bool sirfsoc_dma_filter_id(struct dma_chan *chan, void *chan_id) { unsigned int ch_nr = (unsigned int) chan_id; if (ch_nr == chan->chan_id + chan->device->dev_id * SIRFSOC_DMA_CHANNELS) return true; return false; } EXPORT_SYMBOL(sirfsoc_dma_filter_id); #define SIRFSOC_DMA_BUSWIDTHS \ (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)) static struct dma_chan *of_dma_sirfsoc_xlate(struct of_phandle_args *dma_spec, struct of_dma *ofdma) { struct sirfsoc_dma *sdma = ofdma->of_dma_data; unsigned int request = dma_spec->args[0]; if (request >= SIRFSOC_DMA_CHANNELS) return NULL; return dma_get_slave_channel(&sdma->channels[request].chan); } static int sirfsoc_dma_probe(struct platform_device *op) { struct device_node *dn = op->dev.of_node; struct device *dev = &op->dev; struct dma_device *dma; struct sirfsoc_dma *sdma; struct sirfsoc_dma_chan *schan; struct sirfsoc_dmadata *data; struct resource res; ulong regs_start, regs_size; u32 id; int ret, i; sdma = devm_kzalloc(dev, sizeof(*sdma), GFP_KERNEL); if (!sdma) return -ENOMEM; data = (struct sirfsoc_dmadata *) (of_match_device(op->dev.driver->of_match_table, &op->dev)->data); sdma->exec_desc = data->exec; sdma->type = data->type; if (of_property_read_u32(dn, "cell-index", &id)) { dev_err(dev, "Fail to get DMAC index\n"); return -ENODEV; } sdma->irq = irq_of_parse_and_map(dn, 0); if (!sdma->irq) { dev_err(dev, "Error mapping IRQ!\n"); return -EINVAL; } sdma->clk = devm_clk_get(dev, NULL); if (IS_ERR(sdma->clk)) { dev_err(dev, "failed to get a clock.\n"); return PTR_ERR(sdma->clk); } ret = of_address_to_resource(dn, 0, &res); if (ret) { dev_err(dev, "Error parsing memory region!\n"); goto irq_dispose; } regs_start = res.start; regs_size = resource_size(&res); sdma->base = devm_ioremap(dev, regs_start, regs_size); if (!sdma->base) { dev_err(dev, "Error mapping memory region!\n"); ret = -ENOMEM; goto irq_dispose; } ret = request_irq(sdma->irq, &sirfsoc_dma_irq, 0, DRV_NAME, sdma); if (ret) { dev_err(dev, "Error requesting IRQ!\n"); ret = -EINVAL; goto irq_dispose; } dma = &sdma->dma; dma->dev = dev; dma->device_alloc_chan_resources = sirfsoc_dma_alloc_chan_resources; dma->device_free_chan_resources = sirfsoc_dma_free_chan_resources; dma->device_issue_pending = sirfsoc_dma_issue_pending; dma->device_config = sirfsoc_dma_slave_config; dma->device_pause = sirfsoc_dma_pause_chan; dma->device_resume = sirfsoc_dma_resume_chan; dma->device_terminate_all = sirfsoc_dma_terminate_all; dma->device_tx_status = sirfsoc_dma_tx_status; dma->device_prep_interleaved_dma = sirfsoc_dma_prep_interleaved; dma->device_prep_dma_cyclic = sirfsoc_dma_prep_cyclic; dma->src_addr_widths = SIRFSOC_DMA_BUSWIDTHS; dma->dst_addr_widths = SIRFSOC_DMA_BUSWIDTHS; dma->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); INIT_LIST_HEAD(&dma->channels); dma_cap_set(DMA_SLAVE, dma->cap_mask); dma_cap_set(DMA_CYCLIC, dma->cap_mask); dma_cap_set(DMA_INTERLEAVE, dma->cap_mask); dma_cap_set(DMA_PRIVATE, dma->cap_mask); for (i = 0; i < SIRFSOC_DMA_CHANNELS; i++) { schan = &sdma->channels[i]; schan->chan.device = dma; dma_cookie_init(&schan->chan); INIT_LIST_HEAD(&schan->free); INIT_LIST_HEAD(&schan->prepared); INIT_LIST_HEAD(&schan->queued); INIT_LIST_HEAD(&schan->active); INIT_LIST_HEAD(&schan->completed); spin_lock_init(&schan->lock); list_add_tail(&schan->chan.device_node, &dma->channels); } tasklet_init(&sdma->tasklet, sirfsoc_dma_tasklet, (unsigned long)sdma); /* Register DMA engine */ dev_set_drvdata(dev, sdma); ret = dma_async_device_register(dma); if (ret) goto free_irq; /* Device-tree DMA controller registration */ ret = of_dma_controller_register(dn, of_dma_sirfsoc_xlate, sdma); if (ret) { dev_err(dev, "failed to register DMA controller\n"); goto unreg_dma_dev; } pm_runtime_enable(&op->dev); dev_info(dev, "initialized SIRFSOC DMAC driver\n"); return 0; unreg_dma_dev: dma_async_device_unregister(dma); free_irq: free_irq(sdma->irq, sdma); irq_dispose: irq_dispose_mapping(sdma->irq); return ret; } static int sirfsoc_dma_remove(struct platform_device *op) { struct device *dev = &op->dev; struct sirfsoc_dma *sdma = dev_get_drvdata(dev); of_dma_controller_free(op->dev.of_node); dma_async_device_unregister(&sdma->dma); free_irq(sdma->irq, sdma); tasklet_kill(&sdma->tasklet); irq_dispose_mapping(sdma->irq); pm_runtime_disable(&op->dev); if (!pm_runtime_status_suspended(&op->dev)) sirfsoc_dma_runtime_suspend(&op->dev); return 0; } static int __maybe_unused sirfsoc_dma_runtime_suspend(struct device *dev) { struct sirfsoc_dma *sdma = dev_get_drvdata(dev); clk_disable_unprepare(sdma->clk); return 0; } static int __maybe_unused sirfsoc_dma_runtime_resume(struct device *dev) { struct sirfsoc_dma *sdma = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(sdma->clk); if (ret < 0) { dev_err(dev, "clk_enable failed: %d\n", ret); return ret; } return 0; } static int __maybe_unused sirfsoc_dma_pm_suspend(struct device *dev) { struct sirfsoc_dma *sdma = dev_get_drvdata(dev); struct sirfsoc_dma_regs *save = &sdma->regs_save; struct sirfsoc_dma_chan *schan; int ch; int ret; int count; u32 int_offset; /* * if we were runtime-suspended before, resume to enable clock * before accessing register */ if (pm_runtime_status_suspended(dev)) { ret = sirfsoc_dma_runtime_resume(dev); if (ret < 0) return ret; } if (sdma->type == SIRFSOC_DMA_VER_A7V2) { count = 1; int_offset = SIRFSOC_DMA_INT_EN_ATLAS7; } else { count = SIRFSOC_DMA_CHANNELS; int_offset = SIRFSOC_DMA_INT_EN; } /* * DMA controller will lose all registers while suspending * so we need to save registers for active channels */ for (ch = 0; ch < count; ch++) { schan = &sdma->channels[ch]; if (list_empty(&schan->active)) continue; save->ctrl[ch] = readl_relaxed(sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_CTRL); } save->interrupt_en = readl_relaxed(sdma->base + int_offset); /* Disable clock */ sirfsoc_dma_runtime_suspend(dev); return 0; } static int __maybe_unused sirfsoc_dma_pm_resume(struct device *dev) { struct sirfsoc_dma *sdma = dev_get_drvdata(dev); struct sirfsoc_dma_regs *save = &sdma->regs_save; struct sirfsoc_dma_desc *sdesc; struct sirfsoc_dma_chan *schan; int ch; int ret; int count; u32 int_offset; u32 width_offset; /* Enable clock before accessing register */ ret = sirfsoc_dma_runtime_resume(dev); if (ret < 0) return ret; if (sdma->type == SIRFSOC_DMA_VER_A7V2) { count = 1; int_offset = SIRFSOC_DMA_INT_EN_ATLAS7; width_offset = SIRFSOC_DMA_WIDTH_ATLAS7; } else { count = SIRFSOC_DMA_CHANNELS; int_offset = SIRFSOC_DMA_INT_EN; width_offset = SIRFSOC_DMA_WIDTH_0; } writel_relaxed(save->interrupt_en, sdma->base + int_offset); for (ch = 0; ch < count; ch++) { schan = &sdma->channels[ch]; if (list_empty(&schan->active)) continue; sdesc = list_first_entry(&schan->active, struct sirfsoc_dma_desc, node); writel_relaxed(sdesc->width, sdma->base + width_offset + ch * 4); writel_relaxed(sdesc->xlen, sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_XLEN); writel_relaxed(sdesc->ylen, sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_YLEN); writel_relaxed(save->ctrl[ch], sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_CTRL); if (sdma->type == SIRFSOC_DMA_VER_A7V2) { writel_relaxed(sdesc->addr, sdma->base + SIRFSOC_DMA_CH_ADDR); } else { writel_relaxed(sdesc->addr >> 2, sdma->base + ch * 0x10 + SIRFSOC_DMA_CH_ADDR); } } /* if we were runtime-suspended before, suspend again */ if (pm_runtime_status_suspended(dev)) sirfsoc_dma_runtime_suspend(dev); return 0; } static const struct dev_pm_ops sirfsoc_dma_pm_ops = { SET_RUNTIME_PM_OPS(sirfsoc_dma_runtime_suspend, sirfsoc_dma_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(sirfsoc_dma_pm_suspend, sirfsoc_dma_pm_resume) }; static struct sirfsoc_dmadata sirfsoc_dmadata_a6 = { .exec = sirfsoc_dma_execute_hw_a6, .type = SIRFSOC_DMA_VER_A6, }; static struct sirfsoc_dmadata sirfsoc_dmadata_a7v1 = { .exec = sirfsoc_dma_execute_hw_a7v1, .type = SIRFSOC_DMA_VER_A7V1, }; static struct sirfsoc_dmadata sirfsoc_dmadata_a7v2 = { .exec = sirfsoc_dma_execute_hw_a7v2, .type = SIRFSOC_DMA_VER_A7V2, }; static const struct of_device_id sirfsoc_dma_match[] = { { .compatible = "sirf,prima2-dmac", .data = &sirfsoc_dmadata_a6,}, { .compatible = "sirf,atlas7-dmac", .data = &sirfsoc_dmadata_a7v1,}, { .compatible = "sirf,atlas7-dmac-v2", .data = &sirfsoc_dmadata_a7v2,}, {}, }; MODULE_DEVICE_TABLE(of, sirfsoc_dma_match); static struct platform_driver sirfsoc_dma_driver = { .probe = sirfsoc_dma_probe, .remove = sirfsoc_dma_remove, .driver = { .name = DRV_NAME, .pm = &sirfsoc_dma_pm_ops, .of_match_table = sirfsoc_dma_match, }, }; static __init int sirfsoc_dma_init(void) { return platform_driver_register(&sirfsoc_dma_driver); } static void __exit sirfsoc_dma_exit(void) { platform_driver_unregister(&sirfsoc_dma_driver); } subsys_initcall(sirfsoc_dma_init); module_exit(sirfsoc_dma_exit); MODULE_AUTHOR("Rongjun Ying <rongjun.ying@csr.com>"); MODULE_AUTHOR("Barry Song <baohua.song@csr.com>"); MODULE_DESCRIPTION("SIRFSOC DMA control driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1