Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mauro Carvalho Chehab | 2152 | 46.43% | 21 | 29.17% |
Doug Thompson | 1311 | 28.28% | 4 | 5.56% |
Takashi Iwai | 273 | 5.89% | 2 | 2.78% |
Robert Richter | 271 | 5.85% | 7 | 9.72% |
Borislav Petkov | 168 | 3.62% | 10 | 13.89% |
Toshi Kani | 130 | 2.80% | 3 | 4.17% |
Aaron Miller | 112 | 2.42% | 1 | 1.39% |
Arthur Jones | 87 | 1.88% | 3 | 4.17% |
Dave Jiang | 36 | 0.78% | 2 | 2.78% |
Joe Perches | 16 | 0.35% | 1 | 1.39% |
Greg Kroah-Hartman | 16 | 0.35% | 2 | 2.78% |
Pan Bian | 13 | 0.28% | 1 | 1.39% |
Eiichi Tsukata | 11 | 0.24% | 1 | 1.39% |
Denis Kirjanov | 7 | 0.15% | 1 | 1.39% |
Jingoo Han | 7 | 0.15% | 2 | 2.78% |
Markus Trippelsdorf | 6 | 0.13% | 1 | 1.39% |
Tejun Heo | 3 | 0.06% | 1 | 1.39% |
Bhumika Goyal | 3 | 0.06% | 1 | 1.39% |
Lans Zhang | 3 | 0.06% | 1 | 1.39% |
Arvind Yadav | 3 | 0.06% | 1 | 1.39% |
Tony Luck | 2 | 0.04% | 1 | 1.39% |
Tan Xiaojun | 1 | 0.02% | 1 | 1.39% |
Junjie Mao | 1 | 0.02% | 1 | 1.39% |
Stephen Hemminger | 1 | 0.02% | 1 | 1.39% |
Kees Cook | 1 | 0.02% | 1 | 1.39% |
Ben Dooks | 1 | 0.02% | 1 | 1.39% |
Total | 4635 | 72 |
/* * edac_mc kernel module * (C) 2005-2007 Linux Networx (http://lnxi.com) * * This file may be distributed under the terms of the * GNU General Public License. * * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com * * (c) 2012-2013 - Mauro Carvalho Chehab * The entire API were re-written, and ported to use struct device * */ #include <linux/ctype.h> #include <linux/slab.h> #include <linux/edac.h> #include <linux/bug.h> #include <linux/pm_runtime.h> #include <linux/uaccess.h> #include "edac_mc.h" #include "edac_module.h" /* MC EDAC Controls, setable by module parameter, and sysfs */ static int edac_mc_log_ue = 1; static int edac_mc_log_ce = 1; static int edac_mc_panic_on_ue; static unsigned int edac_mc_poll_msec = 1000; /* Getter functions for above */ int edac_mc_get_log_ue(void) { return edac_mc_log_ue; } int edac_mc_get_log_ce(void) { return edac_mc_log_ce; } int edac_mc_get_panic_on_ue(void) { return edac_mc_panic_on_ue; } /* this is temporary */ unsigned int edac_mc_get_poll_msec(void) { return edac_mc_poll_msec; } static int edac_set_poll_msec(const char *val, const struct kernel_param *kp) { unsigned int i; int ret; if (!val) return -EINVAL; ret = kstrtouint(val, 0, &i); if (ret) return ret; if (i < 1000) return -EINVAL; *((unsigned int *)kp->arg) = i; /* notify edac_mc engine to reset the poll period */ edac_mc_reset_delay_period(i); return 0; } /* Parameter declarations for above */ module_param(edac_mc_panic_on_ue, int, 0644); MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on"); module_param(edac_mc_log_ue, int, 0644); MODULE_PARM_DESC(edac_mc_log_ue, "Log uncorrectable error to console: 0=off 1=on"); module_param(edac_mc_log_ce, int, 0644); MODULE_PARM_DESC(edac_mc_log_ce, "Log correctable error to console: 0=off 1=on"); module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_uint, &edac_mc_poll_msec, 0644); MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds"); static struct device *mci_pdev; /* * various constants for Memory Controllers */ static const char * const dev_types[] = { [DEV_UNKNOWN] = "Unknown", [DEV_X1] = "x1", [DEV_X2] = "x2", [DEV_X4] = "x4", [DEV_X8] = "x8", [DEV_X16] = "x16", [DEV_X32] = "x32", [DEV_X64] = "x64" }; static const char * const edac_caps[] = { [EDAC_UNKNOWN] = "Unknown", [EDAC_NONE] = "None", [EDAC_RESERVED] = "Reserved", [EDAC_PARITY] = "PARITY", [EDAC_EC] = "EC", [EDAC_SECDED] = "SECDED", [EDAC_S2ECD2ED] = "S2ECD2ED", [EDAC_S4ECD4ED] = "S4ECD4ED", [EDAC_S8ECD8ED] = "S8ECD8ED", [EDAC_S16ECD16ED] = "S16ECD16ED" }; #ifdef CONFIG_EDAC_LEGACY_SYSFS /* * EDAC sysfs CSROW data structures and methods */ #define to_csrow(k) container_of(k, struct csrow_info, dev) /* * We need it to avoid namespace conflicts between the legacy API * and the per-dimm/per-rank one */ #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \ static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store) struct dev_ch_attribute { struct device_attribute attr; unsigned int channel; }; #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \ static struct dev_ch_attribute dev_attr_legacy_##_name = \ { __ATTR(_name, _mode, _show, _store), (_var) } #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel) /* Set of more default csrow<id> attribute show/store functions */ static ssize_t csrow_ue_count_show(struct device *dev, struct device_attribute *mattr, char *data) { struct csrow_info *csrow = to_csrow(dev); return sprintf(data, "%u\n", csrow->ue_count); } static ssize_t csrow_ce_count_show(struct device *dev, struct device_attribute *mattr, char *data) { struct csrow_info *csrow = to_csrow(dev); return sprintf(data, "%u\n", csrow->ce_count); } static ssize_t csrow_size_show(struct device *dev, struct device_attribute *mattr, char *data) { struct csrow_info *csrow = to_csrow(dev); int i; u32 nr_pages = 0; for (i = 0; i < csrow->nr_channels; i++) nr_pages += csrow->channels[i]->dimm->nr_pages; return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages)); } static ssize_t csrow_mem_type_show(struct device *dev, struct device_attribute *mattr, char *data) { struct csrow_info *csrow = to_csrow(dev); return sprintf(data, "%s\n", edac_mem_types[csrow->channels[0]->dimm->mtype]); } static ssize_t csrow_dev_type_show(struct device *dev, struct device_attribute *mattr, char *data) { struct csrow_info *csrow = to_csrow(dev); return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]); } static ssize_t csrow_edac_mode_show(struct device *dev, struct device_attribute *mattr, char *data) { struct csrow_info *csrow = to_csrow(dev); return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]); } /* show/store functions for DIMM Label attributes */ static ssize_t channel_dimm_label_show(struct device *dev, struct device_attribute *mattr, char *data) { struct csrow_info *csrow = to_csrow(dev); unsigned int chan = to_channel(mattr); struct rank_info *rank = csrow->channels[chan]; /* if field has not been initialized, there is nothing to send */ if (!rank->dimm->label[0]) return 0; return snprintf(data, sizeof(rank->dimm->label) + 1, "%s\n", rank->dimm->label); } static ssize_t channel_dimm_label_store(struct device *dev, struct device_attribute *mattr, const char *data, size_t count) { struct csrow_info *csrow = to_csrow(dev); unsigned int chan = to_channel(mattr); struct rank_info *rank = csrow->channels[chan]; size_t copy_count = count; if (count == 0) return -EINVAL; if (data[count - 1] == '\0' || data[count - 1] == '\n') copy_count -= 1; if (copy_count == 0 || copy_count >= sizeof(rank->dimm->label)) return -EINVAL; strncpy(rank->dimm->label, data, copy_count); rank->dimm->label[copy_count] = '\0'; return count; } /* show function for dynamic chX_ce_count attribute */ static ssize_t channel_ce_count_show(struct device *dev, struct device_attribute *mattr, char *data) { struct csrow_info *csrow = to_csrow(dev); unsigned int chan = to_channel(mattr); struct rank_info *rank = csrow->channels[chan]; return sprintf(data, "%u\n", rank->ce_count); } /* cwrow<id>/attribute files */ DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL); DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL); DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL); DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL); DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL); DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL); /* default attributes of the CSROW<id> object */ static struct attribute *csrow_attrs[] = { &dev_attr_legacy_dev_type.attr, &dev_attr_legacy_mem_type.attr, &dev_attr_legacy_edac_mode.attr, &dev_attr_legacy_size_mb.attr, &dev_attr_legacy_ue_count.attr, &dev_attr_legacy_ce_count.attr, NULL, }; static const struct attribute_group csrow_attr_grp = { .attrs = csrow_attrs, }; static const struct attribute_group *csrow_attr_groups[] = { &csrow_attr_grp, NULL }; static const struct device_type csrow_attr_type = { .groups = csrow_attr_groups, }; /* * possible dynamic channel DIMM Label attribute files * */ DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR, channel_dimm_label_show, channel_dimm_label_store, 0); DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR, channel_dimm_label_show, channel_dimm_label_store, 1); DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR, channel_dimm_label_show, channel_dimm_label_store, 2); DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR, channel_dimm_label_show, channel_dimm_label_store, 3); DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR, channel_dimm_label_show, channel_dimm_label_store, 4); DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR, channel_dimm_label_show, channel_dimm_label_store, 5); DEVICE_CHANNEL(ch6_dimm_label, S_IRUGO | S_IWUSR, channel_dimm_label_show, channel_dimm_label_store, 6); DEVICE_CHANNEL(ch7_dimm_label, S_IRUGO | S_IWUSR, channel_dimm_label_show, channel_dimm_label_store, 7); /* Total possible dynamic DIMM Label attribute file table */ static struct attribute *dynamic_csrow_dimm_attr[] = { &dev_attr_legacy_ch0_dimm_label.attr.attr, &dev_attr_legacy_ch1_dimm_label.attr.attr, &dev_attr_legacy_ch2_dimm_label.attr.attr, &dev_attr_legacy_ch3_dimm_label.attr.attr, &dev_attr_legacy_ch4_dimm_label.attr.attr, &dev_attr_legacy_ch5_dimm_label.attr.attr, &dev_attr_legacy_ch6_dimm_label.attr.attr, &dev_attr_legacy_ch7_dimm_label.attr.attr, NULL }; /* possible dynamic channel ce_count attribute files */ DEVICE_CHANNEL(ch0_ce_count, S_IRUGO, channel_ce_count_show, NULL, 0); DEVICE_CHANNEL(ch1_ce_count, S_IRUGO, channel_ce_count_show, NULL, 1); DEVICE_CHANNEL(ch2_ce_count, S_IRUGO, channel_ce_count_show, NULL, 2); DEVICE_CHANNEL(ch3_ce_count, S_IRUGO, channel_ce_count_show, NULL, 3); DEVICE_CHANNEL(ch4_ce_count, S_IRUGO, channel_ce_count_show, NULL, 4); DEVICE_CHANNEL(ch5_ce_count, S_IRUGO, channel_ce_count_show, NULL, 5); DEVICE_CHANNEL(ch6_ce_count, S_IRUGO, channel_ce_count_show, NULL, 6); DEVICE_CHANNEL(ch7_ce_count, S_IRUGO, channel_ce_count_show, NULL, 7); /* Total possible dynamic ce_count attribute file table */ static struct attribute *dynamic_csrow_ce_count_attr[] = { &dev_attr_legacy_ch0_ce_count.attr.attr, &dev_attr_legacy_ch1_ce_count.attr.attr, &dev_attr_legacy_ch2_ce_count.attr.attr, &dev_attr_legacy_ch3_ce_count.attr.attr, &dev_attr_legacy_ch4_ce_count.attr.attr, &dev_attr_legacy_ch5_ce_count.attr.attr, &dev_attr_legacy_ch6_ce_count.attr.attr, &dev_attr_legacy_ch7_ce_count.attr.attr, NULL }; static umode_t csrow_dev_is_visible(struct kobject *kobj, struct attribute *attr, int idx) { struct device *dev = kobj_to_dev(kobj); struct csrow_info *csrow = container_of(dev, struct csrow_info, dev); if (idx >= csrow->nr_channels) return 0; if (idx >= ARRAY_SIZE(dynamic_csrow_ce_count_attr) - 1) { WARN_ONCE(1, "idx: %d\n", idx); return 0; } /* Only expose populated DIMMs */ if (!csrow->channels[idx]->dimm->nr_pages) return 0; return attr->mode; } static const struct attribute_group csrow_dev_dimm_group = { .attrs = dynamic_csrow_dimm_attr, .is_visible = csrow_dev_is_visible, }; static const struct attribute_group csrow_dev_ce_count_group = { .attrs = dynamic_csrow_ce_count_attr, .is_visible = csrow_dev_is_visible, }; static const struct attribute_group *csrow_dev_groups[] = { &csrow_dev_dimm_group, &csrow_dev_ce_count_group, NULL }; static void csrow_release(struct device *dev) { /* * Nothing to do, just unregister sysfs here. The mci * device owns the data and will also release it. */ } static inline int nr_pages_per_csrow(struct csrow_info *csrow) { int chan, nr_pages = 0; for (chan = 0; chan < csrow->nr_channels; chan++) nr_pages += csrow->channels[chan]->dimm->nr_pages; return nr_pages; } /* Create a CSROW object under specifed edac_mc_device */ static int edac_create_csrow_object(struct mem_ctl_info *mci, struct csrow_info *csrow, int index) { int err; csrow->dev.type = &csrow_attr_type; csrow->dev.groups = csrow_dev_groups; csrow->dev.release = csrow_release; device_initialize(&csrow->dev); csrow->dev.parent = &mci->dev; csrow->mci = mci; dev_set_name(&csrow->dev, "csrow%d", index); dev_set_drvdata(&csrow->dev, csrow); err = device_add(&csrow->dev); if (err) { edac_dbg(1, "failure: create device %s\n", dev_name(&csrow->dev)); put_device(&csrow->dev); return err; } edac_dbg(0, "device %s created\n", dev_name(&csrow->dev)); return 0; } /* Create a CSROW object under specifed edac_mc_device */ static int edac_create_csrow_objects(struct mem_ctl_info *mci) { int err, i; struct csrow_info *csrow; for (i = 0; i < mci->nr_csrows; i++) { csrow = mci->csrows[i]; if (!nr_pages_per_csrow(csrow)) continue; err = edac_create_csrow_object(mci, mci->csrows[i], i); if (err < 0) goto error; } return 0; error: for (--i; i >= 0; i--) { if (device_is_registered(&mci->csrows[i]->dev)) device_unregister(&mci->csrows[i]->dev); } return err; } static void edac_delete_csrow_objects(struct mem_ctl_info *mci) { int i; for (i = 0; i < mci->nr_csrows; i++) { if (device_is_registered(&mci->csrows[i]->dev)) device_unregister(&mci->csrows[i]->dev); } } #endif /* * Per-dimm (or per-rank) devices */ #define to_dimm(k) container_of(k, struct dimm_info, dev) /* show/store functions for DIMM Label attributes */ static ssize_t dimmdev_location_show(struct device *dev, struct device_attribute *mattr, char *data) { struct dimm_info *dimm = to_dimm(dev); return edac_dimm_info_location(dimm, data, PAGE_SIZE); } static ssize_t dimmdev_label_show(struct device *dev, struct device_attribute *mattr, char *data) { struct dimm_info *dimm = to_dimm(dev); /* if field has not been initialized, there is nothing to send */ if (!dimm->label[0]) return 0; return snprintf(data, sizeof(dimm->label) + 1, "%s\n", dimm->label); } static ssize_t dimmdev_label_store(struct device *dev, struct device_attribute *mattr, const char *data, size_t count) { struct dimm_info *dimm = to_dimm(dev); size_t copy_count = count; if (count == 0) return -EINVAL; if (data[count - 1] == '\0' || data[count - 1] == '\n') copy_count -= 1; if (copy_count == 0 || copy_count >= sizeof(dimm->label)) return -EINVAL; strncpy(dimm->label, data, copy_count); dimm->label[copy_count] = '\0'; return count; } static ssize_t dimmdev_size_show(struct device *dev, struct device_attribute *mattr, char *data) { struct dimm_info *dimm = to_dimm(dev); return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages)); } static ssize_t dimmdev_mem_type_show(struct device *dev, struct device_attribute *mattr, char *data) { struct dimm_info *dimm = to_dimm(dev); return sprintf(data, "%s\n", edac_mem_types[dimm->mtype]); } static ssize_t dimmdev_dev_type_show(struct device *dev, struct device_attribute *mattr, char *data) { struct dimm_info *dimm = to_dimm(dev); return sprintf(data, "%s\n", dev_types[dimm->dtype]); } static ssize_t dimmdev_edac_mode_show(struct device *dev, struct device_attribute *mattr, char *data) { struct dimm_info *dimm = to_dimm(dev); return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]); } static ssize_t dimmdev_ce_count_show(struct device *dev, struct device_attribute *mattr, char *data) { struct dimm_info *dimm = to_dimm(dev); return sprintf(data, "%u\n", dimm->ce_count); } static ssize_t dimmdev_ue_count_show(struct device *dev, struct device_attribute *mattr, char *data) { struct dimm_info *dimm = to_dimm(dev); return sprintf(data, "%u\n", dimm->ue_count); } /* dimm/rank attribute files */ static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR, dimmdev_label_show, dimmdev_label_store); static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL); static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL); static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL); static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL); static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL); static DEVICE_ATTR(dimm_ce_count, S_IRUGO, dimmdev_ce_count_show, NULL); static DEVICE_ATTR(dimm_ue_count, S_IRUGO, dimmdev_ue_count_show, NULL); /* attributes of the dimm<id>/rank<id> object */ static struct attribute *dimm_attrs[] = { &dev_attr_dimm_label.attr, &dev_attr_dimm_location.attr, &dev_attr_size.attr, &dev_attr_dimm_mem_type.attr, &dev_attr_dimm_dev_type.attr, &dev_attr_dimm_edac_mode.attr, &dev_attr_dimm_ce_count.attr, &dev_attr_dimm_ue_count.attr, NULL, }; static const struct attribute_group dimm_attr_grp = { .attrs = dimm_attrs, }; static const struct attribute_group *dimm_attr_groups[] = { &dimm_attr_grp, NULL }; static const struct device_type dimm_attr_type = { .groups = dimm_attr_groups, }; static void dimm_release(struct device *dev) { /* * Nothing to do, just unregister sysfs here. The mci * device owns the data and will also release it. */ } /* Create a DIMM object under specifed memory controller device */ static int edac_create_dimm_object(struct mem_ctl_info *mci, struct dimm_info *dimm) { int err; dimm->mci = mci; dimm->dev.type = &dimm_attr_type; dimm->dev.release = dimm_release; device_initialize(&dimm->dev); dimm->dev.parent = &mci->dev; if (mci->csbased) dev_set_name(&dimm->dev, "rank%d", dimm->idx); else dev_set_name(&dimm->dev, "dimm%d", dimm->idx); dev_set_drvdata(&dimm->dev, dimm); pm_runtime_forbid(&mci->dev); err = device_add(&dimm->dev); if (err) { edac_dbg(1, "failure: create device %s\n", dev_name(&dimm->dev)); put_device(&dimm->dev); return err; } if (IS_ENABLED(CONFIG_EDAC_DEBUG)) { char location[80]; edac_dimm_info_location(dimm, location, sizeof(location)); edac_dbg(0, "device %s created at location %s\n", dev_name(&dimm->dev), location); } return 0; } /* * Memory controller device */ #define to_mci(k) container_of(k, struct mem_ctl_info, dev) static ssize_t mci_reset_counters_store(struct device *dev, struct device_attribute *mattr, const char *data, size_t count) { struct mem_ctl_info *mci = to_mci(dev); struct dimm_info *dimm; int row, chan; mci->ue_mc = 0; mci->ce_mc = 0; mci->ue_noinfo_count = 0; mci->ce_noinfo_count = 0; for (row = 0; row < mci->nr_csrows; row++) { struct csrow_info *ri = mci->csrows[row]; ri->ue_count = 0; ri->ce_count = 0; for (chan = 0; chan < ri->nr_channels; chan++) ri->channels[chan]->ce_count = 0; } mci_for_each_dimm(mci, dimm) { dimm->ue_count = 0; dimm->ce_count = 0; } mci->start_time = jiffies; return count; } /* Memory scrubbing interface: * * A MC driver can limit the scrubbing bandwidth based on the CPU type. * Therefore, ->set_sdram_scrub_rate should be made to return the actual * bandwidth that is accepted or 0 when scrubbing is to be disabled. * * Negative value still means that an error has occurred while setting * the scrub rate. */ static ssize_t mci_sdram_scrub_rate_store(struct device *dev, struct device_attribute *mattr, const char *data, size_t count) { struct mem_ctl_info *mci = to_mci(dev); unsigned long bandwidth = 0; int new_bw = 0; if (kstrtoul(data, 10, &bandwidth) < 0) return -EINVAL; new_bw = mci->set_sdram_scrub_rate(mci, bandwidth); if (new_bw < 0) { edac_printk(KERN_WARNING, EDAC_MC, "Error setting scrub rate to: %lu\n", bandwidth); return -EINVAL; } return count; } /* * ->get_sdram_scrub_rate() return value semantics same as above. */ static ssize_t mci_sdram_scrub_rate_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); int bandwidth = 0; bandwidth = mci->get_sdram_scrub_rate(mci); if (bandwidth < 0) { edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n"); return bandwidth; } return sprintf(data, "%d\n", bandwidth); } /* default attribute files for the MCI object */ static ssize_t mci_ue_count_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); return sprintf(data, "%d\n", mci->ue_mc); } static ssize_t mci_ce_count_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); return sprintf(data, "%d\n", mci->ce_mc); } static ssize_t mci_ce_noinfo_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); return sprintf(data, "%d\n", mci->ce_noinfo_count); } static ssize_t mci_ue_noinfo_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); return sprintf(data, "%d\n", mci->ue_noinfo_count); } static ssize_t mci_seconds_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ); } static ssize_t mci_ctl_name_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); return sprintf(data, "%s\n", mci->ctl_name); } static ssize_t mci_size_mb_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); int total_pages = 0, csrow_idx, j; for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) { struct csrow_info *csrow = mci->csrows[csrow_idx]; for (j = 0; j < csrow->nr_channels; j++) { struct dimm_info *dimm = csrow->channels[j]->dimm; total_pages += dimm->nr_pages; } } return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages)); } static ssize_t mci_max_location_show(struct device *dev, struct device_attribute *mattr, char *data) { struct mem_ctl_info *mci = to_mci(dev); int i; char *p = data; for (i = 0; i < mci->n_layers; i++) { p += sprintf(p, "%s %d ", edac_layer_name[mci->layers[i].type], mci->layers[i].size - 1); } return p - data; } /* default Control file */ static DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store); /* default Attribute files */ static DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL); static DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL); static DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL); static DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL); static DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL); static DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL); static DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL); static DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL); /* memory scrubber attribute file */ static DEVICE_ATTR(sdram_scrub_rate, 0, mci_sdram_scrub_rate_show, mci_sdram_scrub_rate_store); /* umode set later in is_visible */ static struct attribute *mci_attrs[] = { &dev_attr_reset_counters.attr, &dev_attr_mc_name.attr, &dev_attr_size_mb.attr, &dev_attr_seconds_since_reset.attr, &dev_attr_ue_noinfo_count.attr, &dev_attr_ce_noinfo_count.attr, &dev_attr_ue_count.attr, &dev_attr_ce_count.attr, &dev_attr_max_location.attr, &dev_attr_sdram_scrub_rate.attr, NULL }; static umode_t mci_attr_is_visible(struct kobject *kobj, struct attribute *attr, int idx) { struct device *dev = kobj_to_dev(kobj); struct mem_ctl_info *mci = to_mci(dev); umode_t mode = 0; if (attr != &dev_attr_sdram_scrub_rate.attr) return attr->mode; if (mci->get_sdram_scrub_rate) mode |= S_IRUGO; if (mci->set_sdram_scrub_rate) mode |= S_IWUSR; return mode; } static const struct attribute_group mci_attr_grp = { .attrs = mci_attrs, .is_visible = mci_attr_is_visible, }; static const struct attribute_group *mci_attr_groups[] = { &mci_attr_grp, NULL }; static const struct device_type mci_attr_type = { .groups = mci_attr_groups, }; /* * Create a new Memory Controller kobject instance, * mc<id> under the 'mc' directory * * Return: * 0 Success * !0 Failure */ int edac_create_sysfs_mci_device(struct mem_ctl_info *mci, const struct attribute_group **groups) { struct dimm_info *dimm; int err; /* get the /sys/devices/system/edac subsys reference */ mci->dev.type = &mci_attr_type; mci->dev.parent = mci_pdev; mci->dev.groups = groups; dev_set_name(&mci->dev, "mc%d", mci->mc_idx); dev_set_drvdata(&mci->dev, mci); pm_runtime_forbid(&mci->dev); err = device_add(&mci->dev); if (err < 0) { edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev)); /* no put_device() here, free mci with _edac_mc_free() */ return err; } edac_dbg(0, "device %s created\n", dev_name(&mci->dev)); /* * Create the dimm/rank devices */ mci_for_each_dimm(mci, dimm) { /* Only expose populated DIMMs */ if (!dimm->nr_pages) continue; err = edac_create_dimm_object(mci, dimm); if (err) goto fail; } #ifdef CONFIG_EDAC_LEGACY_SYSFS err = edac_create_csrow_objects(mci); if (err < 0) goto fail; #endif edac_create_debugfs_nodes(mci); return 0; fail: edac_remove_sysfs_mci_device(mci); return err; } /* * remove a Memory Controller instance */ void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci) { struct dimm_info *dimm; if (!device_is_registered(&mci->dev)) return; edac_dbg(0, "\n"); #ifdef CONFIG_EDAC_DEBUG edac_debugfs_remove_recursive(mci->debugfs); #endif #ifdef CONFIG_EDAC_LEGACY_SYSFS edac_delete_csrow_objects(mci); #endif mci_for_each_dimm(mci, dimm) { if (!device_is_registered(&dimm->dev)) continue; edac_dbg(1, "unregistering device %s\n", dev_name(&dimm->dev)); device_unregister(&dimm->dev); } /* only remove the device, but keep mci */ device_del(&mci->dev); } static void mc_attr_release(struct device *dev) { /* * There's no container structure here, as this is just the mci * parent device, used to create the /sys/devices/mc sysfs node. * So, there are no attributes on it. */ edac_dbg(1, "device %s released\n", dev_name(dev)); kfree(dev); } /* * Init/exit code for the module. Basically, creates/removes /sys/class/rc */ int __init edac_mc_sysfs_init(void) { int err; mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL); if (!mci_pdev) return -ENOMEM; mci_pdev->bus = edac_get_sysfs_subsys(); mci_pdev->release = mc_attr_release; mci_pdev->init_name = "mc"; err = device_register(mci_pdev); if (err < 0) { edac_dbg(1, "failure: create device %s\n", dev_name(mci_pdev)); put_device(mci_pdev); return err; } edac_dbg(0, "device %s created\n", dev_name(mci_pdev)); return 0; } void edac_mc_sysfs_exit(void) { device_unregister(mci_pdev); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1