Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jean Delvare | 756 | 15.23% | 25 | 23.36% |
Andrey Panin | 511 | 10.30% | 7 | 6.54% |
Tejun Heo | 373 | 7.52% | 4 | 3.74% |
Ivan Khoronzhuk | 363 | 7.31% | 5 | 4.67% |
Lennart Poettering | 290 | 5.84% | 1 | 0.93% |
Chen Gong | 286 | 5.76% | 1 | 0.93% |
Ard Biesheuvel | 217 | 4.37% | 3 | 2.80% |
Tony Luck | 190 | 3.83% | 3 | 2.80% |
Linus Torvalds (pre-git) | 165 | 3.32% | 1 | 0.93% |
Linus Torvalds | 153 | 3.08% | 4 | 3.74% |
Andi Kleen | 150 | 3.02% | 4 | 3.74% |
Ben Hutchings | 146 | 2.94% | 3 | 2.80% |
Narendra K | 139 | 2.80% | 1 | 0.93% |
Jordan Hargrave | 134 | 2.70% | 1 | 0.93% |
Björn Helgaas | 113 | 2.28% | 3 | 2.80% |
Rafael J. Wysocki | 104 | 2.10% | 1 | 0.93% |
Matt Domsch | 103 | 2.08% | 1 | 0.93% |
Shem Multinymous | 96 | 1.93% | 1 | 0.93% |
Duan Zhenzhong | 79 | 1.59% | 2 | 1.87% |
Alan Cox | 74 | 1.49% | 2 | 1.87% |
Jiri Slaby | 53 | 1.07% | 1 | 0.93% |
Wim Van Sebroeck | 52 | 1.05% | 1 | 0.93% |
Andy Shevchenko | 50 | 1.01% | 1 | 0.93% |
Dmitry Torokhov | 48 | 0.97% | 2 | 1.87% |
Alex Hung | 39 | 0.79% | 1 | 0.93% |
Alok N Kataria | 38 | 0.77% | 1 | 0.93% |
Jeff Garzik | 36 | 0.73% | 1 | 0.93% |
Parag Warudkar | 33 | 0.66% | 1 | 0.93% |
Jani Nikula | 32 | 0.64% | 1 | 0.93% |
Chumbalkar Nagananda | 30 | 0.60% | 1 | 0.93% |
Robert Richter | 18 | 0.36% | 1 | 0.93% |
Andrea Arcangeli | 14 | 0.28% | 1 | 0.93% |
Tiezhu Yang | 10 | 0.20% | 1 | 0.93% |
Ingo Molnar | 10 | 0.20% | 2 | 1.87% |
Simon Glass | 9 | 0.18% | 1 | 0.93% |
Mika Westerberg | 9 | 0.18% | 1 | 0.93% |
Yinghai Lu | 6 | 0.12% | 1 | 0.93% |
Andrew Lutomirski | 4 | 0.08% | 1 | 0.93% |
Shane Huang | 4 | 0.08% | 1 | 0.93% |
Robert Love | 3 | 0.06% | 1 | 0.93% |
Greg Kroah-Hartman | 3 | 0.06% | 1 | 0.93% |
Randy Dunlap | 3 | 0.06% | 2 | 1.87% |
Dave Jones | 3 | 0.06% | 1 | 0.93% |
Matt Fleming | 3 | 0.06% | 1 | 0.93% |
Len Brown | 3 | 0.06% | 1 | 0.93% |
Tolentino, Matthew E | 2 | 0.04% | 1 | 0.93% |
Kefeng Wang | 2 | 0.04% | 1 | 0.93% |
Mike Rapoport | 1 | 0.02% | 1 | 0.93% |
Paul Jackson | 1 | 0.02% | 1 | 0.93% |
Thomas Gleixner | 1 | 0.02% | 1 | 0.93% |
Carol Hebert | 1 | 0.02% | 1 | 0.93% |
Total | 4963 | 107 |
// SPDX-License-Identifier: GPL-2.0-only #include <linux/types.h> #include <linux/string.h> #include <linux/init.h> #include <linux/module.h> #include <linux/ctype.h> #include <linux/dmi.h> #include <linux/efi.h> #include <linux/memblock.h> #include <linux/random.h> #include <asm/dmi.h> #include <asm/unaligned.h> #ifndef SMBIOS_ENTRY_POINT_SCAN_START #define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000 #endif struct kobject *dmi_kobj; EXPORT_SYMBOL_GPL(dmi_kobj); /* * DMI stands for "Desktop Management Interface". It is part * of and an antecedent to, SMBIOS, which stands for System * Management BIOS. See further: http://www.dmtf.org/standards */ static const char dmi_empty_string[] = ""; static u32 dmi_ver __initdata; static u32 dmi_len; static u16 dmi_num; static u8 smbios_entry_point[32]; static int smbios_entry_point_size; /* DMI system identification string used during boot */ static char dmi_ids_string[128] __initdata; static struct dmi_memdev_info { const char *device; const char *bank; u64 size; /* bytes */ u16 handle; u8 type; /* DDR2, DDR3, DDR4 etc */ } *dmi_memdev; static int dmi_memdev_nr; static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s) { const u8 *bp = ((u8 *) dm) + dm->length; const u8 *nsp; if (s) { while (--s > 0 && *bp) bp += strlen(bp) + 1; /* Strings containing only spaces are considered empty */ nsp = bp; while (*nsp == ' ') nsp++; if (*nsp != '\0') return bp; } return dmi_empty_string; } static const char * __init dmi_string(const struct dmi_header *dm, u8 s) { const char *bp = dmi_string_nosave(dm, s); char *str; size_t len; if (bp == dmi_empty_string) return dmi_empty_string; len = strlen(bp) + 1; str = dmi_alloc(len); if (str != NULL) strcpy(str, bp); return str; } /* * We have to be cautious here. We have seen BIOSes with DMI pointers * pointing to completely the wrong place for example */ static void dmi_decode_table(u8 *buf, void (*decode)(const struct dmi_header *, void *), void *private_data) { u8 *data = buf; int i = 0; /* * Stop when we have seen all the items the table claimed to have * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS * >= 3.0 only) OR we run off the end of the table (should never * happen but sometimes does on bogus implementations.) */ while ((!dmi_num || i < dmi_num) && (data - buf + sizeof(struct dmi_header)) <= dmi_len) { const struct dmi_header *dm = (const struct dmi_header *)data; /* * We want to know the total length (formatted area and * strings) before decoding to make sure we won't run off the * table in dmi_decode or dmi_string */ data += dm->length; while ((data - buf < dmi_len - 1) && (data[0] || data[1])) data++; if (data - buf < dmi_len - 1) decode(dm, private_data); data += 2; i++; /* * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0] * For tables behind a 64-bit entry point, we have no item * count and no exact table length, so stop on end-of-table * marker. For tables behind a 32-bit entry point, we have * seen OEM structures behind the end-of-table marker on * some systems, so don't trust it. */ if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE) break; } /* Trim DMI table length if needed */ if (dmi_len > data - buf) dmi_len = data - buf; } static phys_addr_t dmi_base; static int __init dmi_walk_early(void (*decode)(const struct dmi_header *, void *)) { u8 *buf; u32 orig_dmi_len = dmi_len; buf = dmi_early_remap(dmi_base, orig_dmi_len); if (buf == NULL) return -ENOMEM; dmi_decode_table(buf, decode, NULL); add_device_randomness(buf, dmi_len); dmi_early_unmap(buf, orig_dmi_len); return 0; } static int __init dmi_checksum(const u8 *buf, u8 len) { u8 sum = 0; int a; for (a = 0; a < len; a++) sum += buf[a]; return sum == 0; } static const char *dmi_ident[DMI_STRING_MAX]; static LIST_HEAD(dmi_devices); int dmi_available; /* * Save a DMI string */ static void __init dmi_save_ident(const struct dmi_header *dm, int slot, int string) { const char *d = (const char *) dm; const char *p; if (dmi_ident[slot] || dm->length <= string) return; p = dmi_string(dm, d[string]); if (p == NULL) return; dmi_ident[slot] = p; } static void __init dmi_save_uuid(const struct dmi_header *dm, int slot, int index) { const u8 *d; char *s; int is_ff = 1, is_00 = 1, i; if (dmi_ident[slot] || dm->length < index + 16) return; d = (u8 *) dm + index; for (i = 0; i < 16 && (is_ff || is_00); i++) { if (d[i] != 0x00) is_00 = 0; if (d[i] != 0xFF) is_ff = 0; } if (is_ff || is_00) return; s = dmi_alloc(16*2+4+1); if (!s) return; /* * As of version 2.6 of the SMBIOS specification, the first 3 fields of * the UUID are supposed to be little-endian encoded. The specification * says that this is the defacto standard. */ if (dmi_ver >= 0x020600) sprintf(s, "%pUl", d); else sprintf(s, "%pUb", d); dmi_ident[slot] = s; } static void __init dmi_save_type(const struct dmi_header *dm, int slot, int index) { const u8 *d; char *s; if (dmi_ident[slot] || dm->length <= index) return; s = dmi_alloc(4); if (!s) return; d = (u8 *) dm + index; sprintf(s, "%u", *d & 0x7F); dmi_ident[slot] = s; } static void __init dmi_save_one_device(int type, const char *name) { struct dmi_device *dev; /* No duplicate device */ if (dmi_find_device(type, name, NULL)) return; dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); if (!dev) return; dev->type = type; strcpy((char *)(dev + 1), name); dev->name = (char *)(dev + 1); dev->device_data = NULL; list_add(&dev->list, &dmi_devices); } static void __init dmi_save_devices(const struct dmi_header *dm) { int i, count = (dm->length - sizeof(struct dmi_header)) / 2; for (i = 0; i < count; i++) { const char *d = (char *)(dm + 1) + (i * 2); /* Skip disabled device */ if ((*d & 0x80) == 0) continue; dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1))); } } static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm) { int i, count; struct dmi_device *dev; if (dm->length < 0x05) return; count = *(u8 *)(dm + 1); for (i = 1; i <= count; i++) { const char *devname = dmi_string(dm, i); if (devname == dmi_empty_string) continue; dev = dmi_alloc(sizeof(*dev)); if (!dev) break; dev->type = DMI_DEV_TYPE_OEM_STRING; dev->name = devname; dev->device_data = NULL; list_add(&dev->list, &dmi_devices); } } static void __init dmi_save_ipmi_device(const struct dmi_header *dm) { struct dmi_device *dev; void *data; data = dmi_alloc(dm->length); if (data == NULL) return; memcpy(data, dm, dm->length); dev = dmi_alloc(sizeof(*dev)); if (!dev) return; dev->type = DMI_DEV_TYPE_IPMI; dev->name = "IPMI controller"; dev->device_data = data; list_add_tail(&dev->list, &dmi_devices); } static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus, int devfn, const char *name, int type) { struct dmi_dev_onboard *dev; /* Ignore invalid values */ if (type == DMI_DEV_TYPE_DEV_SLOT && segment == 0xFFFF && bus == 0xFF && devfn == 0xFF) return; dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1); if (!dev) return; dev->instance = instance; dev->segment = segment; dev->bus = bus; dev->devfn = devfn; strcpy((char *)&dev[1], name); dev->dev.type = type; dev->dev.name = (char *)&dev[1]; dev->dev.device_data = dev; list_add(&dev->dev.list, &dmi_devices); } static void __init dmi_save_extended_devices(const struct dmi_header *dm) { const char *name; const u8 *d = (u8 *)dm; if (dm->length < 0x0B) return; /* Skip disabled device */ if ((d[0x5] & 0x80) == 0) return; name = dmi_string_nosave(dm, d[0x4]); dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name, DMI_DEV_TYPE_DEV_ONBOARD); dmi_save_one_device(d[0x5] & 0x7f, name); } static void __init dmi_save_system_slot(const struct dmi_header *dm) { const u8 *d = (u8 *)dm; /* Need SMBIOS 2.6+ structure */ if (dm->length < 0x11) return; dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF], d[0x10], dmi_string_nosave(dm, d[0x4]), DMI_DEV_TYPE_DEV_SLOT); } static void __init count_mem_devices(const struct dmi_header *dm, void *v) { if (dm->type != DMI_ENTRY_MEM_DEVICE) return; dmi_memdev_nr++; } static void __init save_mem_devices(const struct dmi_header *dm, void *v) { const char *d = (const char *)dm; static int nr; u64 bytes; u16 size; if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13) return; if (nr >= dmi_memdev_nr) { pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n"); return; } dmi_memdev[nr].handle = get_unaligned(&dm->handle); dmi_memdev[nr].device = dmi_string(dm, d[0x10]); dmi_memdev[nr].bank = dmi_string(dm, d[0x11]); dmi_memdev[nr].type = d[0x12]; size = get_unaligned((u16 *)&d[0xC]); if (size == 0) bytes = 0; else if (size == 0xffff) bytes = ~0ull; else if (size & 0x8000) bytes = (u64)(size & 0x7fff) << 10; else if (size != 0x7fff || dm->length < 0x20) bytes = (u64)size << 20; else bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20; dmi_memdev[nr].size = bytes; nr++; } static void __init dmi_memdev_walk(void) { if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) { dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr); if (dmi_memdev) dmi_walk_early(save_mem_devices); } } /* * Process a DMI table entry. Right now all we care about are the BIOS * and machine entries. For 2.5 we should pull the smbus controller info * out of here. */ static void __init dmi_decode(const struct dmi_header *dm, void *dummy) { switch (dm->type) { case 0: /* BIOS Information */ dmi_save_ident(dm, DMI_BIOS_VENDOR, 4); dmi_save_ident(dm, DMI_BIOS_VERSION, 5); dmi_save_ident(dm, DMI_BIOS_DATE, 8); break; case 1: /* System Information */ dmi_save_ident(dm, DMI_SYS_VENDOR, 4); dmi_save_ident(dm, DMI_PRODUCT_NAME, 5); dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6); dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7); dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8); dmi_save_ident(dm, DMI_PRODUCT_SKU, 25); dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26); break; case 2: /* Base Board Information */ dmi_save_ident(dm, DMI_BOARD_VENDOR, 4); dmi_save_ident(dm, DMI_BOARD_NAME, 5); dmi_save_ident(dm, DMI_BOARD_VERSION, 6); dmi_save_ident(dm, DMI_BOARD_SERIAL, 7); dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8); break; case 3: /* Chassis Information */ dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4); dmi_save_type(dm, DMI_CHASSIS_TYPE, 5); dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6); dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7); dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8); break; case 9: /* System Slots */ dmi_save_system_slot(dm); break; case 10: /* Onboard Devices Information */ dmi_save_devices(dm); break; case 11: /* OEM Strings */ dmi_save_oem_strings_devices(dm); break; case 38: /* IPMI Device Information */ dmi_save_ipmi_device(dm); break; case 41: /* Onboard Devices Extended Information */ dmi_save_extended_devices(dm); } } static int __init print_filtered(char *buf, size_t len, const char *info) { int c = 0; const char *p; if (!info) return c; for (p = info; *p; p++) if (isprint(*p)) c += scnprintf(buf + c, len - c, "%c", *p); else c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff); return c; } static void __init dmi_format_ids(char *buf, size_t len) { int c = 0; const char *board; /* Board Name is optional */ c += print_filtered(buf + c, len - c, dmi_get_system_info(DMI_SYS_VENDOR)); c += scnprintf(buf + c, len - c, " "); c += print_filtered(buf + c, len - c, dmi_get_system_info(DMI_PRODUCT_NAME)); board = dmi_get_system_info(DMI_BOARD_NAME); if (board) { c += scnprintf(buf + c, len - c, "/"); c += print_filtered(buf + c, len - c, board); } c += scnprintf(buf + c, len - c, ", BIOS "); c += print_filtered(buf + c, len - c, dmi_get_system_info(DMI_BIOS_VERSION)); c += scnprintf(buf + c, len - c, " "); c += print_filtered(buf + c, len - c, dmi_get_system_info(DMI_BIOS_DATE)); } /* * Check for DMI/SMBIOS headers in the system firmware image. Any * SMBIOS header must start 16 bytes before the DMI header, so take a * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS * takes precedence) and return 0. Otherwise return 1. */ static int __init dmi_present(const u8 *buf) { u32 smbios_ver; if (memcmp(buf, "_SM_", 4) == 0 && buf[5] < 32 && dmi_checksum(buf, buf[5])) { smbios_ver = get_unaligned_be16(buf + 6); smbios_entry_point_size = buf[5]; memcpy(smbios_entry_point, buf, smbios_entry_point_size); /* Some BIOS report weird SMBIOS version, fix that up */ switch (smbios_ver) { case 0x021F: case 0x0221: pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", smbios_ver & 0xFF, 3); smbios_ver = 0x0203; break; case 0x0233: pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6); smbios_ver = 0x0206; break; } } else { smbios_ver = 0; } buf += 16; if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) { if (smbios_ver) dmi_ver = smbios_ver; else dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F); dmi_ver <<= 8; dmi_num = get_unaligned_le16(buf + 12); dmi_len = get_unaligned_le16(buf + 6); dmi_base = get_unaligned_le32(buf + 8); if (dmi_walk_early(dmi_decode) == 0) { if (smbios_ver) { pr_info("SMBIOS %d.%d present.\n", dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); } else { smbios_entry_point_size = 15; memcpy(smbios_entry_point, buf, smbios_entry_point_size); pr_info("Legacy DMI %d.%d present.\n", dmi_ver >> 16, (dmi_ver >> 8) & 0xFF); } dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); pr_info("DMI: %s\n", dmi_ids_string); return 0; } } return 1; } /* * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy * 32-bit entry point, there is no embedded DMI header (_DMI_) in here. */ static int __init dmi_smbios3_present(const u8 *buf) { if (memcmp(buf, "_SM3_", 5) == 0 && buf[6] < 32 && dmi_checksum(buf, buf[6])) { dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF; dmi_num = 0; /* No longer specified */ dmi_len = get_unaligned_le32(buf + 12); dmi_base = get_unaligned_le64(buf + 16); smbios_entry_point_size = buf[6]; memcpy(smbios_entry_point, buf, smbios_entry_point_size); if (dmi_walk_early(dmi_decode) == 0) { pr_info("SMBIOS %d.%d.%d present.\n", dmi_ver >> 16, (dmi_ver >> 8) & 0xFF, dmi_ver & 0xFF); dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string)); pr_info("DMI: %s\n", dmi_ids_string); return 0; } } return 1; } static void __init dmi_scan_machine(void) { char __iomem *p, *q; char buf[32]; if (efi_enabled(EFI_CONFIG_TABLES)) { /* * According to the DMTF SMBIOS reference spec v3.0.0, it is * allowed to define both the 64-bit entry point (smbios3) and * the 32-bit entry point (smbios), in which case they should * either both point to the same SMBIOS structure table, or the * table pointed to by the 64-bit entry point should contain a * superset of the table contents pointed to by the 32-bit entry * point (section 5.2) * This implies that the 64-bit entry point should have * precedence if it is defined and supported by the OS. If we * have the 64-bit entry point, but fail to decode it, fall * back to the legacy one (if available) */ if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) { p = dmi_early_remap(efi.smbios3, 32); if (p == NULL) goto error; memcpy_fromio(buf, p, 32); dmi_early_unmap(p, 32); if (!dmi_smbios3_present(buf)) { dmi_available = 1; return; } } if (efi.smbios == EFI_INVALID_TABLE_ADDR) goto error; /* This is called as a core_initcall() because it isn't * needed during early boot. This also means we can * iounmap the space when we're done with it. */ p = dmi_early_remap(efi.smbios, 32); if (p == NULL) goto error; memcpy_fromio(buf, p, 32); dmi_early_unmap(p, 32); if (!dmi_present(buf)) { dmi_available = 1; return; } } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) { p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000); if (p == NULL) goto error; /* * Same logic as above, look for a 64-bit entry point * first, and if not found, fall back to 32-bit entry point. */ memcpy_fromio(buf, p, 16); for (q = p + 16; q < p + 0x10000; q += 16) { memcpy_fromio(buf + 16, q, 16); if (!dmi_smbios3_present(buf)) { dmi_available = 1; dmi_early_unmap(p, 0x10000); return; } memcpy(buf, buf + 16, 16); } /* * Iterate over all possible DMI header addresses q. * Maintain the 32 bytes around q in buf. On the * first iteration, substitute zero for the * out-of-range bytes so there is no chance of falsely * detecting an SMBIOS header. */ memset(buf, 0, 16); for (q = p; q < p + 0x10000; q += 16) { memcpy_fromio(buf + 16, q, 16); if (!dmi_present(buf)) { dmi_available = 1; dmi_early_unmap(p, 0x10000); return; } memcpy(buf, buf + 16, 16); } dmi_early_unmap(p, 0x10000); } error: pr_info("DMI not present or invalid.\n"); } static ssize_t raw_table_read(struct file *file, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t pos, size_t count) { memcpy(buf, attr->private + pos, count); return count; } static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0); static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0); static int __init dmi_init(void) { struct kobject *tables_kobj; u8 *dmi_table; int ret = -ENOMEM; if (!dmi_available) return 0; /* * Set up dmi directory at /sys/firmware/dmi. This entry should stay * even after farther error, as it can be used by other modules like * dmi-sysfs. */ dmi_kobj = kobject_create_and_add("dmi", firmware_kobj); if (!dmi_kobj) goto err; tables_kobj = kobject_create_and_add("tables", dmi_kobj); if (!tables_kobj) goto err; dmi_table = dmi_remap(dmi_base, dmi_len); if (!dmi_table) goto err_tables; bin_attr_smbios_entry_point.size = smbios_entry_point_size; bin_attr_smbios_entry_point.private = smbios_entry_point; ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point); if (ret) goto err_unmap; bin_attr_DMI.size = dmi_len; bin_attr_DMI.private = dmi_table; ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI); if (!ret) return 0; sysfs_remove_bin_file(tables_kobj, &bin_attr_smbios_entry_point); err_unmap: dmi_unmap(dmi_table); err_tables: kobject_del(tables_kobj); kobject_put(tables_kobj); err: pr_err("dmi: Firmware registration failed.\n"); return ret; } subsys_initcall(dmi_init); /** * dmi_setup - scan and setup DMI system information * * Scan the DMI system information. This setups DMI identifiers * (dmi_system_id) for printing it out on task dumps and prepares * DIMM entry information (dmi_memdev_info) from the SMBIOS table * for using this when reporting memory errors. */ void __init dmi_setup(void) { dmi_scan_machine(); if (!dmi_available) return; dmi_memdev_walk(); dump_stack_set_arch_desc("%s", dmi_ids_string); } /** * dmi_matches - check if dmi_system_id structure matches system DMI data * @dmi: pointer to the dmi_system_id structure to check */ static bool dmi_matches(const struct dmi_system_id *dmi) { int i; for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) { int s = dmi->matches[i].slot; if (s == DMI_NONE) break; if (s == DMI_OEM_STRING) { /* DMI_OEM_STRING must be exact match */ const struct dmi_device *valid; valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING, dmi->matches[i].substr, NULL); if (valid) continue; } else if (dmi_ident[s]) { if (dmi->matches[i].exact_match) { if (!strcmp(dmi_ident[s], dmi->matches[i].substr)) continue; } else { if (strstr(dmi_ident[s], dmi->matches[i].substr)) continue; } } /* No match */ return false; } return true; } /** * dmi_is_end_of_table - check for end-of-table marker * @dmi: pointer to the dmi_system_id structure to check */ static bool dmi_is_end_of_table(const struct dmi_system_id *dmi) { return dmi->matches[0].slot == DMI_NONE; } /** * dmi_check_system - check system DMI data * @list: array of dmi_system_id structures to match against * All non-null elements of the list must match * their slot's (field index's) data (i.e., each * list string must be a substring of the specified * DMI slot's string data) to be considered a * successful match. * * Walk the blacklist table running matching functions until someone * returns non zero or we hit the end. Callback function is called for * each successful match. Returns the number of matches. * * dmi_setup must be called before this function is called. */ int dmi_check_system(const struct dmi_system_id *list) { int count = 0; const struct dmi_system_id *d; for (d = list; !dmi_is_end_of_table(d); d++) if (dmi_matches(d)) { count++; if (d->callback && d->callback(d)) break; } return count; } EXPORT_SYMBOL(dmi_check_system); /** * dmi_first_match - find dmi_system_id structure matching system DMI data * @list: array of dmi_system_id structures to match against * All non-null elements of the list must match * their slot's (field index's) data (i.e., each * list string must be a substring of the specified * DMI slot's string data) to be considered a * successful match. * * Walk the blacklist table until the first match is found. Return the * pointer to the matching entry or NULL if there's no match. * * dmi_setup must be called before this function is called. */ const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list) { const struct dmi_system_id *d; for (d = list; !dmi_is_end_of_table(d); d++) if (dmi_matches(d)) return d; return NULL; } EXPORT_SYMBOL(dmi_first_match); /** * dmi_get_system_info - return DMI data value * @field: data index (see enum dmi_field) * * Returns one DMI data value, can be used to perform * complex DMI data checks. */ const char *dmi_get_system_info(int field) { return dmi_ident[field]; } EXPORT_SYMBOL(dmi_get_system_info); /** * dmi_name_in_serial - Check if string is in the DMI product serial information * @str: string to check for */ int dmi_name_in_serial(const char *str) { int f = DMI_PRODUCT_SERIAL; if (dmi_ident[f] && strstr(dmi_ident[f], str)) return 1; return 0; } /** * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name * @str: Case sensitive Name */ int dmi_name_in_vendors(const char *str) { static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE }; int i; for (i = 0; fields[i] != DMI_NONE; i++) { int f = fields[i]; if (dmi_ident[f] && strstr(dmi_ident[f], str)) return 1; } return 0; } EXPORT_SYMBOL(dmi_name_in_vendors); /** * dmi_find_device - find onboard device by type/name * @type: device type or %DMI_DEV_TYPE_ANY to match all device types * @name: device name string or %NULL to match all * @from: previous device found in search, or %NULL for new search. * * Iterates through the list of known onboard devices. If a device is * found with a matching @type and @name, a pointer to its device * structure is returned. Otherwise, %NULL is returned. * A new search is initiated by passing %NULL as the @from argument. * If @from is not %NULL, searches continue from next device. */ const struct dmi_device *dmi_find_device(int type, const char *name, const struct dmi_device *from) { const struct list_head *head = from ? &from->list : &dmi_devices; struct list_head *d; for (d = head->next; d != &dmi_devices; d = d->next) { const struct dmi_device *dev = list_entry(d, struct dmi_device, list); if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) && ((name == NULL) || (strcmp(dev->name, name) == 0))) return dev; } return NULL; } EXPORT_SYMBOL(dmi_find_device); /** * dmi_get_date - parse a DMI date * @field: data index (see enum dmi_field) * @yearp: optional out parameter for the year * @monthp: optional out parameter for the month * @dayp: optional out parameter for the day * * The date field is assumed to be in the form resembling * [mm[/dd]]/yy[yy] and the result is stored in the out * parameters any or all of which can be omitted. * * If the field doesn't exist, all out parameters are set to zero * and false is returned. Otherwise, true is returned with any * invalid part of date set to zero. * * On return, year, month and day are guaranteed to be in the * range of [0,9999], [0,12] and [0,31] respectively. */ bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp) { int year = 0, month = 0, day = 0; bool exists; const char *s, *y; char *e; s = dmi_get_system_info(field); exists = s; if (!exists) goto out; /* * Determine year first. We assume the date string resembles * mm/dd/yy[yy] but the original code extracted only the year * from the end. Keep the behavior in the spirit of no * surprises. */ y = strrchr(s, '/'); if (!y) goto out; y++; year = simple_strtoul(y, &e, 10); if (y != e && year < 100) { /* 2-digit year */ year += 1900; if (year < 1996) /* no dates < spec 1.0 */ year += 100; } if (year > 9999) /* year should fit in %04d */ year = 0; /* parse the mm and dd */ month = simple_strtoul(s, &e, 10); if (s == e || *e != '/' || !month || month > 12) { month = 0; goto out; } s = e + 1; day = simple_strtoul(s, &e, 10); if (s == y || s == e || *e != '/' || day > 31) day = 0; out: if (yearp) *yearp = year; if (monthp) *monthp = month; if (dayp) *dayp = day; return exists; } EXPORT_SYMBOL(dmi_get_date); /** * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field * * Returns year on success, -ENXIO if DMI is not selected, * or a different negative error code if DMI field is not present * or not parseable. */ int dmi_get_bios_year(void) { bool exists; int year; exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL); if (!exists) return -ENODATA; return year ? year : -ERANGE; } EXPORT_SYMBOL(dmi_get_bios_year); /** * dmi_walk - Walk the DMI table and get called back for every record * @decode: Callback function * @private_data: Private data to be passed to the callback function * * Returns 0 on success, -ENXIO if DMI is not selected or not present, * or a different negative error code if DMI walking fails. */ int dmi_walk(void (*decode)(const struct dmi_header *, void *), void *private_data) { u8 *buf; if (!dmi_available) return -ENXIO; buf = dmi_remap(dmi_base, dmi_len); if (buf == NULL) return -ENOMEM; dmi_decode_table(buf, decode, private_data); dmi_unmap(buf); return 0; } EXPORT_SYMBOL_GPL(dmi_walk); /** * dmi_match - compare a string to the dmi field (if exists) * @f: DMI field identifier * @str: string to compare the DMI field to * * Returns true if the requested field equals to the str (including NULL). */ bool dmi_match(enum dmi_field f, const char *str) { const char *info = dmi_get_system_info(f); if (info == NULL || str == NULL) return info == str; return !strcmp(info, str); } EXPORT_SYMBOL_GPL(dmi_match); void dmi_memdev_name(u16 handle, const char **bank, const char **device) { int n; if (dmi_memdev == NULL) return; for (n = 0; n < dmi_memdev_nr; n++) { if (handle == dmi_memdev[n].handle) { *bank = dmi_memdev[n].bank; *device = dmi_memdev[n].device; break; } } } EXPORT_SYMBOL_GPL(dmi_memdev_name); u64 dmi_memdev_size(u16 handle) { int n; if (dmi_memdev) { for (n = 0; n < dmi_memdev_nr; n++) { if (handle == dmi_memdev[n].handle) return dmi_memdev[n].size; } } return ~0ull; } EXPORT_SYMBOL_GPL(dmi_memdev_size); /** * dmi_memdev_type - get the memory type * @handle: DMI structure handle * * Return the DMI memory type of the module in the slot associated with the * given DMI handle, or 0x0 if no such DMI handle exists. */ u8 dmi_memdev_type(u16 handle) { int n; if (dmi_memdev) { for (n = 0; n < dmi_memdev_nr; n++) { if (handle == dmi_memdev[n].handle) return dmi_memdev[n].type; } } return 0x0; /* Not a valid value */ } EXPORT_SYMBOL_GPL(dmi_memdev_type); /** * dmi_memdev_handle - get the DMI handle of a memory slot * @slot: slot number * * Return the DMI handle associated with a given memory slot, or %0xFFFF * if there is no such slot. */ u16 dmi_memdev_handle(int slot) { if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr) return dmi_memdev[slot].handle; return 0xffff; /* Not a valid value */ } EXPORT_SYMBOL_GPL(dmi_memdev_handle);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1