Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ken Wang | 3777 | 93.01% | 2 | 6.67% |
Christian König | 155 | 3.82% | 12 | 40.00% |
Alex Deucher | 41 | 1.01% | 4 | 13.33% |
Michel Dänzer | 30 | 0.74% | 1 | 3.33% |
Rex Zhu | 13 | 0.32% | 1 | 3.33% |
Nirmoy Das | 9 | 0.22% | 1 | 3.33% |
Tom St Denis | 8 | 0.20% | 1 | 3.33% |
Junwei (Martin) Zhang | 7 | 0.17% | 1 | 3.33% |
Andrey Grodzovsky | 5 | 0.12% | 1 | 3.33% |
Yong Zhao | 5 | 0.12% | 1 | 3.33% |
Emily Deng | 4 | 0.10% | 1 | 3.33% |
Chris Wilson | 3 | 0.07% | 1 | 3.33% |
Jack Xiao | 2 | 0.05% | 1 | 3.33% |
Chunming Zhou | 1 | 0.02% | 1 | 3.33% |
Sam Ravnborg | 1 | 0.02% | 1 | 3.33% |
Total | 4061 | 30 |
/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Alex Deucher */ #include "amdgpu.h" #include "amdgpu_trace.h" #include "si.h" #include "sid.h" const u32 sdma_offsets[SDMA_MAX_INSTANCE] = { DMA0_REGISTER_OFFSET, DMA1_REGISTER_OFFSET }; static void si_dma_set_ring_funcs(struct amdgpu_device *adev); static void si_dma_set_buffer_funcs(struct amdgpu_device *adev); static void si_dma_set_vm_pte_funcs(struct amdgpu_device *adev); static void si_dma_set_irq_funcs(struct amdgpu_device *adev); static uint64_t si_dma_ring_get_rptr(struct amdgpu_ring *ring) { return ring->adev->wb.wb[ring->rptr_offs>>2]; } static uint64_t si_dma_ring_get_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u32 me = (ring == &adev->sdma.instance[0].ring) ? 0 : 1; return (RREG32(DMA_RB_WPTR + sdma_offsets[me]) & 0x3fffc) >> 2; } static void si_dma_ring_set_wptr(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; u32 me = (ring == &adev->sdma.instance[0].ring) ? 0 : 1; WREG32(DMA_RB_WPTR + sdma_offsets[me], (lower_32_bits(ring->wptr) << 2) & 0x3fffc); } static void si_dma_ring_emit_ib(struct amdgpu_ring *ring, struct amdgpu_job *job, struct amdgpu_ib *ib, uint32_t flags) { unsigned vmid = AMDGPU_JOB_GET_VMID(job); /* The indirect buffer packet must end on an 8 DW boundary in the DMA ring. * Pad as necessary with NOPs. */ while ((lower_32_bits(ring->wptr) & 7) != 5) amdgpu_ring_write(ring, DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0, 0)); amdgpu_ring_write(ring, DMA_IB_PACKET(DMA_PACKET_INDIRECT_BUFFER, vmid, 0)); amdgpu_ring_write(ring, (ib->gpu_addr & 0xFFFFFFE0)); amdgpu_ring_write(ring, (ib->length_dw << 12) | (upper_32_bits(ib->gpu_addr) & 0xFF)); } /** * si_dma_ring_emit_fence - emit a fence on the DMA ring * * @ring: amdgpu ring pointer * @fence: amdgpu fence object * * Add a DMA fence packet to the ring to write * the fence seq number and DMA trap packet to generate * an interrupt if needed (VI). */ static void si_dma_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq, unsigned flags) { bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT; /* write the fence */ amdgpu_ring_write(ring, DMA_PACKET(DMA_PACKET_FENCE, 0, 0, 0, 0)); amdgpu_ring_write(ring, addr & 0xfffffffc); amdgpu_ring_write(ring, (upper_32_bits(addr) & 0xff)); amdgpu_ring_write(ring, seq); /* optionally write high bits as well */ if (write64bit) { addr += 4; amdgpu_ring_write(ring, DMA_PACKET(DMA_PACKET_FENCE, 0, 0, 0, 0)); amdgpu_ring_write(ring, addr & 0xfffffffc); amdgpu_ring_write(ring, (upper_32_bits(addr) & 0xff)); amdgpu_ring_write(ring, upper_32_bits(seq)); } /* generate an interrupt */ amdgpu_ring_write(ring, DMA_PACKET(DMA_PACKET_TRAP, 0, 0, 0, 0)); } static void si_dma_stop(struct amdgpu_device *adev) { struct amdgpu_ring *ring; u32 rb_cntl; unsigned i; for (i = 0; i < adev->sdma.num_instances; i++) { ring = &adev->sdma.instance[i].ring; /* dma0 */ rb_cntl = RREG32(DMA_RB_CNTL + sdma_offsets[i]); rb_cntl &= ~DMA_RB_ENABLE; WREG32(DMA_RB_CNTL + sdma_offsets[i], rb_cntl); if (adev->mman.buffer_funcs_ring == ring) amdgpu_ttm_set_buffer_funcs_status(adev, false); ring->sched.ready = false; } } static int si_dma_start(struct amdgpu_device *adev) { struct amdgpu_ring *ring; u32 rb_cntl, dma_cntl, ib_cntl, rb_bufsz; int i, r; uint64_t rptr_addr; for (i = 0; i < adev->sdma.num_instances; i++) { ring = &adev->sdma.instance[i].ring; WREG32(DMA_SEM_INCOMPLETE_TIMER_CNTL + sdma_offsets[i], 0); WREG32(DMA_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0); /* Set ring buffer size in dwords */ rb_bufsz = order_base_2(ring->ring_size / 4); rb_cntl = rb_bufsz << 1; #ifdef __BIG_ENDIAN rb_cntl |= DMA_RB_SWAP_ENABLE | DMA_RPTR_WRITEBACK_SWAP_ENABLE; #endif WREG32(DMA_RB_CNTL + sdma_offsets[i], rb_cntl); /* Initialize the ring buffer's read and write pointers */ WREG32(DMA_RB_RPTR + sdma_offsets[i], 0); WREG32(DMA_RB_WPTR + sdma_offsets[i], 0); rptr_addr = adev->wb.gpu_addr + (ring->rptr_offs * 4); WREG32(DMA_RB_RPTR_ADDR_LO + sdma_offsets[i], lower_32_bits(rptr_addr)); WREG32(DMA_RB_RPTR_ADDR_HI + sdma_offsets[i], upper_32_bits(rptr_addr) & 0xFF); rb_cntl |= DMA_RPTR_WRITEBACK_ENABLE; WREG32(DMA_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8); /* enable DMA IBs */ ib_cntl = DMA_IB_ENABLE | CMD_VMID_FORCE; #ifdef __BIG_ENDIAN ib_cntl |= DMA_IB_SWAP_ENABLE; #endif WREG32(DMA_IB_CNTL + sdma_offsets[i], ib_cntl); dma_cntl = RREG32(DMA_CNTL + sdma_offsets[i]); dma_cntl &= ~CTXEMPTY_INT_ENABLE; WREG32(DMA_CNTL + sdma_offsets[i], dma_cntl); ring->wptr = 0; WREG32(DMA_RB_WPTR + sdma_offsets[i], lower_32_bits(ring->wptr) << 2); WREG32(DMA_RB_CNTL + sdma_offsets[i], rb_cntl | DMA_RB_ENABLE); ring->sched.ready = true; r = amdgpu_ring_test_helper(ring); if (r) return r; if (adev->mman.buffer_funcs_ring == ring) amdgpu_ttm_set_buffer_funcs_status(adev, true); } return 0; } /** * si_dma_ring_test_ring - simple async dma engine test * * @ring: amdgpu_ring structure holding ring information * * Test the DMA engine by writing using it to write an * value to memory. (VI). * Returns 0 for success, error for failure. */ static int si_dma_ring_test_ring(struct amdgpu_ring *ring) { struct amdgpu_device *adev = ring->adev; unsigned i; unsigned index; int r; u32 tmp; u64 gpu_addr; r = amdgpu_device_wb_get(adev, &index); if (r) return r; gpu_addr = adev->wb.gpu_addr + (index * 4); tmp = 0xCAFEDEAD; adev->wb.wb[index] = cpu_to_le32(tmp); r = amdgpu_ring_alloc(ring, 4); if (r) goto error_free_wb; amdgpu_ring_write(ring, DMA_PACKET(DMA_PACKET_WRITE, 0, 0, 0, 1)); amdgpu_ring_write(ring, lower_32_bits(gpu_addr)); amdgpu_ring_write(ring, upper_32_bits(gpu_addr) & 0xff); amdgpu_ring_write(ring, 0xDEADBEEF); amdgpu_ring_commit(ring); for (i = 0; i < adev->usec_timeout; i++) { tmp = le32_to_cpu(adev->wb.wb[index]); if (tmp == 0xDEADBEEF) break; udelay(1); } if (i >= adev->usec_timeout) r = -ETIMEDOUT; error_free_wb: amdgpu_device_wb_free(adev, index); return r; } /** * si_dma_ring_test_ib - test an IB on the DMA engine * * @ring: amdgpu_ring structure holding ring information * * Test a simple IB in the DMA ring (VI). * Returns 0 on success, error on failure. */ static int si_dma_ring_test_ib(struct amdgpu_ring *ring, long timeout) { struct amdgpu_device *adev = ring->adev; struct amdgpu_ib ib; struct dma_fence *f = NULL; unsigned index; u32 tmp = 0; u64 gpu_addr; long r; r = amdgpu_device_wb_get(adev, &index); if (r) return r; gpu_addr = adev->wb.gpu_addr + (index * 4); tmp = 0xCAFEDEAD; adev->wb.wb[index] = cpu_to_le32(tmp); memset(&ib, 0, sizeof(ib)); r = amdgpu_ib_get(adev, NULL, 256, &ib); if (r) goto err0; ib.ptr[0] = DMA_PACKET(DMA_PACKET_WRITE, 0, 0, 0, 1); ib.ptr[1] = lower_32_bits(gpu_addr); ib.ptr[2] = upper_32_bits(gpu_addr) & 0xff; ib.ptr[3] = 0xDEADBEEF; ib.length_dw = 4; r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f); if (r) goto err1; r = dma_fence_wait_timeout(f, false, timeout); if (r == 0) { r = -ETIMEDOUT; goto err1; } else if (r < 0) { goto err1; } tmp = le32_to_cpu(adev->wb.wb[index]); if (tmp == 0xDEADBEEF) r = 0; else r = -EINVAL; err1: amdgpu_ib_free(adev, &ib, NULL); dma_fence_put(f); err0: amdgpu_device_wb_free(adev, index); return r; } /** * cik_dma_vm_copy_pte - update PTEs by copying them from the GART * * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @src: src addr to copy from * @count: number of page entries to update * * Update PTEs by copying them from the GART using DMA (SI). */ static void si_dma_vm_copy_pte(struct amdgpu_ib *ib, uint64_t pe, uint64_t src, unsigned count) { unsigned bytes = count * 8; ib->ptr[ib->length_dw++] = DMA_PACKET(DMA_PACKET_COPY, 1, 0, 0, bytes); ib->ptr[ib->length_dw++] = lower_32_bits(pe); ib->ptr[ib->length_dw++] = lower_32_bits(src); ib->ptr[ib->length_dw++] = upper_32_bits(pe) & 0xff; ib->ptr[ib->length_dw++] = upper_32_bits(src) & 0xff; } /** * si_dma_vm_write_pte - update PTEs by writing them manually * * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @value: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * * Update PTEs by writing them manually using DMA (SI). */ static void si_dma_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe, uint64_t value, unsigned count, uint32_t incr) { unsigned ndw = count * 2; ib->ptr[ib->length_dw++] = DMA_PACKET(DMA_PACKET_WRITE, 0, 0, 0, ndw); ib->ptr[ib->length_dw++] = lower_32_bits(pe); ib->ptr[ib->length_dw++] = upper_32_bits(pe); for (; ndw > 0; ndw -= 2) { ib->ptr[ib->length_dw++] = lower_32_bits(value); ib->ptr[ib->length_dw++] = upper_32_bits(value); value += incr; } } /** * si_dma_vm_set_pte_pde - update the page tables using sDMA * * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @addr: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * @flags: access flags * * Update the page tables using sDMA (CIK). */ static void si_dma_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe, uint64_t addr, unsigned count, uint32_t incr, uint64_t flags) { uint64_t value; unsigned ndw; while (count) { ndw = count * 2; if (ndw > 0xFFFFE) ndw = 0xFFFFE; if (flags & AMDGPU_PTE_VALID) value = addr; else value = 0; /* for physically contiguous pages (vram) */ ib->ptr[ib->length_dw++] = DMA_PTE_PDE_PACKET(ndw); ib->ptr[ib->length_dw++] = pe; /* dst addr */ ib->ptr[ib->length_dw++] = upper_32_bits(pe) & 0xff; ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */ ib->ptr[ib->length_dw++] = upper_32_bits(flags); ib->ptr[ib->length_dw++] = value; /* value */ ib->ptr[ib->length_dw++] = upper_32_bits(value); ib->ptr[ib->length_dw++] = incr; /* increment size */ ib->ptr[ib->length_dw++] = 0; pe += ndw * 4; addr += (ndw / 2) * incr; count -= ndw / 2; } } /** * si_dma_pad_ib - pad the IB to the required number of dw * * @ib: indirect buffer to fill with padding * */ static void si_dma_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib) { while (ib->length_dw & 0x7) ib->ptr[ib->length_dw++] = DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0, 0); } /** * cik_sdma_ring_emit_pipeline_sync - sync the pipeline * * @ring: amdgpu_ring pointer * * Make sure all previous operations are completed (CIK). */ static void si_dma_ring_emit_pipeline_sync(struct amdgpu_ring *ring) { uint32_t seq = ring->fence_drv.sync_seq; uint64_t addr = ring->fence_drv.gpu_addr; /* wait for idle */ amdgpu_ring_write(ring, DMA_PACKET(DMA_PACKET_POLL_REG_MEM, 0, 0, 0, 0) | (1 << 27)); /* Poll memory */ amdgpu_ring_write(ring, lower_32_bits(addr)); amdgpu_ring_write(ring, (0xff << 16) | upper_32_bits(addr)); /* retry, addr_hi */ amdgpu_ring_write(ring, 0xffffffff); /* mask */ amdgpu_ring_write(ring, seq); /* value */ amdgpu_ring_write(ring, (3 << 28) | 0x20); /* func(equal) | poll interval */ } /** * si_dma_ring_emit_vm_flush - cik vm flush using sDMA * * @ring: amdgpu_ring pointer * @vm: amdgpu_vm pointer * * Update the page table base and flush the VM TLB * using sDMA (VI). */ static void si_dma_ring_emit_vm_flush(struct amdgpu_ring *ring, unsigned vmid, uint64_t pd_addr) { amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr); /* wait for invalidate to complete */ amdgpu_ring_write(ring, DMA_PACKET(DMA_PACKET_POLL_REG_MEM, 0, 0, 0, 0)); amdgpu_ring_write(ring, VM_INVALIDATE_REQUEST); amdgpu_ring_write(ring, 0xff << 16); /* retry */ amdgpu_ring_write(ring, 1 << vmid); /* mask */ amdgpu_ring_write(ring, 0); /* value */ amdgpu_ring_write(ring, (0 << 28) | 0x20); /* func(always) | poll interval */ } static void si_dma_ring_emit_wreg(struct amdgpu_ring *ring, uint32_t reg, uint32_t val) { amdgpu_ring_write(ring, DMA_PACKET(DMA_PACKET_SRBM_WRITE, 0, 0, 0, 0)); amdgpu_ring_write(ring, (0xf << 16) | reg); amdgpu_ring_write(ring, val); } static int si_dma_early_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; adev->sdma.num_instances = 2; si_dma_set_ring_funcs(adev); si_dma_set_buffer_funcs(adev); si_dma_set_vm_pte_funcs(adev); si_dma_set_irq_funcs(adev); return 0; } static int si_dma_sw_init(void *handle) { struct amdgpu_ring *ring; int r, i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; /* DMA0 trap event */ r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 224, &adev->sdma.trap_irq); if (r) return r; /* DMA1 trap event */ r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 244, &adev->sdma.trap_irq); if (r) return r; for (i = 0; i < adev->sdma.num_instances; i++) { ring = &adev->sdma.instance[i].ring; ring->ring_obj = NULL; ring->use_doorbell = false; sprintf(ring->name, "sdma%d", i); r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq, (i == 0) ? AMDGPU_SDMA_IRQ_INSTANCE0 : AMDGPU_SDMA_IRQ_INSTANCE1); if (r) return r; } return r; } static int si_dma_sw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; int i; for (i = 0; i < adev->sdma.num_instances; i++) amdgpu_ring_fini(&adev->sdma.instance[i].ring); return 0; } static int si_dma_hw_init(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return si_dma_start(adev); } static int si_dma_hw_fini(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; si_dma_stop(adev); return 0; } static int si_dma_suspend(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return si_dma_hw_fini(adev); } static int si_dma_resume(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; return si_dma_hw_init(adev); } static bool si_dma_is_idle(void *handle) { struct amdgpu_device *adev = (struct amdgpu_device *)handle; u32 tmp = RREG32(SRBM_STATUS2); if (tmp & (DMA_BUSY_MASK | DMA1_BUSY_MASK)) return false; return true; } static int si_dma_wait_for_idle(void *handle) { unsigned i; struct amdgpu_device *adev = (struct amdgpu_device *)handle; for (i = 0; i < adev->usec_timeout; i++) { if (si_dma_is_idle(handle)) return 0; udelay(1); } return -ETIMEDOUT; } static int si_dma_soft_reset(void *handle) { DRM_INFO("si_dma_soft_reset --- not implemented !!!!!!!\n"); return 0; } static int si_dma_set_trap_irq_state(struct amdgpu_device *adev, struct amdgpu_irq_src *src, unsigned type, enum amdgpu_interrupt_state state) { u32 sdma_cntl; switch (type) { case AMDGPU_SDMA_IRQ_INSTANCE0: switch (state) { case AMDGPU_IRQ_STATE_DISABLE: sdma_cntl = RREG32(DMA_CNTL + DMA0_REGISTER_OFFSET); sdma_cntl &= ~TRAP_ENABLE; WREG32(DMA_CNTL + DMA0_REGISTER_OFFSET, sdma_cntl); break; case AMDGPU_IRQ_STATE_ENABLE: sdma_cntl = RREG32(DMA_CNTL + DMA0_REGISTER_OFFSET); sdma_cntl |= TRAP_ENABLE; WREG32(DMA_CNTL + DMA0_REGISTER_OFFSET, sdma_cntl); break; default: break; } break; case AMDGPU_SDMA_IRQ_INSTANCE1: switch (state) { case AMDGPU_IRQ_STATE_DISABLE: sdma_cntl = RREG32(DMA_CNTL + DMA1_REGISTER_OFFSET); sdma_cntl &= ~TRAP_ENABLE; WREG32(DMA_CNTL + DMA1_REGISTER_OFFSET, sdma_cntl); break; case AMDGPU_IRQ_STATE_ENABLE: sdma_cntl = RREG32(DMA_CNTL + DMA1_REGISTER_OFFSET); sdma_cntl |= TRAP_ENABLE; WREG32(DMA_CNTL + DMA1_REGISTER_OFFSET, sdma_cntl); break; default: break; } break; default: break; } return 0; } static int si_dma_process_trap_irq(struct amdgpu_device *adev, struct amdgpu_irq_src *source, struct amdgpu_iv_entry *entry) { if (entry->src_id == 224) amdgpu_fence_process(&adev->sdma.instance[0].ring); else amdgpu_fence_process(&adev->sdma.instance[1].ring); return 0; } static int si_dma_set_clockgating_state(void *handle, enum amd_clockgating_state state) { u32 orig, data, offset; int i; bool enable; struct amdgpu_device *adev = (struct amdgpu_device *)handle; enable = (state == AMD_CG_STATE_GATE); if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) { for (i = 0; i < adev->sdma.num_instances; i++) { if (i == 0) offset = DMA0_REGISTER_OFFSET; else offset = DMA1_REGISTER_OFFSET; orig = data = RREG32(DMA_POWER_CNTL + offset); data &= ~MEM_POWER_OVERRIDE; if (data != orig) WREG32(DMA_POWER_CNTL + offset, data); WREG32(DMA_CLK_CTRL + offset, 0x00000100); } } else { for (i = 0; i < adev->sdma.num_instances; i++) { if (i == 0) offset = DMA0_REGISTER_OFFSET; else offset = DMA1_REGISTER_OFFSET; orig = data = RREG32(DMA_POWER_CNTL + offset); data |= MEM_POWER_OVERRIDE; if (data != orig) WREG32(DMA_POWER_CNTL + offset, data); orig = data = RREG32(DMA_CLK_CTRL + offset); data = 0xff000000; if (data != orig) WREG32(DMA_CLK_CTRL + offset, data); } } return 0; } static int si_dma_set_powergating_state(void *handle, enum amd_powergating_state state) { u32 tmp; struct amdgpu_device *adev = (struct amdgpu_device *)handle; WREG32(DMA_PGFSM_WRITE, 0x00002000); WREG32(DMA_PGFSM_CONFIG, 0x100010ff); for (tmp = 0; tmp < 5; tmp++) WREG32(DMA_PGFSM_WRITE, 0); return 0; } static const struct amd_ip_funcs si_dma_ip_funcs = { .name = "si_dma", .early_init = si_dma_early_init, .late_init = NULL, .sw_init = si_dma_sw_init, .sw_fini = si_dma_sw_fini, .hw_init = si_dma_hw_init, .hw_fini = si_dma_hw_fini, .suspend = si_dma_suspend, .resume = si_dma_resume, .is_idle = si_dma_is_idle, .wait_for_idle = si_dma_wait_for_idle, .soft_reset = si_dma_soft_reset, .set_clockgating_state = si_dma_set_clockgating_state, .set_powergating_state = si_dma_set_powergating_state, }; static const struct amdgpu_ring_funcs si_dma_ring_funcs = { .type = AMDGPU_RING_TYPE_SDMA, .align_mask = 0xf, .nop = DMA_PACKET(DMA_PACKET_NOP, 0, 0, 0, 0), .support_64bit_ptrs = false, .get_rptr = si_dma_ring_get_rptr, .get_wptr = si_dma_ring_get_wptr, .set_wptr = si_dma_ring_set_wptr, .emit_frame_size = 3 + 3 + /* hdp flush / invalidate */ 6 + /* si_dma_ring_emit_pipeline_sync */ SI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* si_dma_ring_emit_vm_flush */ 9 + 9 + 9, /* si_dma_ring_emit_fence x3 for user fence, vm fence */ .emit_ib_size = 7 + 3, /* si_dma_ring_emit_ib */ .emit_ib = si_dma_ring_emit_ib, .emit_fence = si_dma_ring_emit_fence, .emit_pipeline_sync = si_dma_ring_emit_pipeline_sync, .emit_vm_flush = si_dma_ring_emit_vm_flush, .test_ring = si_dma_ring_test_ring, .test_ib = si_dma_ring_test_ib, .insert_nop = amdgpu_ring_insert_nop, .pad_ib = si_dma_ring_pad_ib, .emit_wreg = si_dma_ring_emit_wreg, }; static void si_dma_set_ring_funcs(struct amdgpu_device *adev) { int i; for (i = 0; i < adev->sdma.num_instances; i++) adev->sdma.instance[i].ring.funcs = &si_dma_ring_funcs; } static const struct amdgpu_irq_src_funcs si_dma_trap_irq_funcs = { .set = si_dma_set_trap_irq_state, .process = si_dma_process_trap_irq, }; static void si_dma_set_irq_funcs(struct amdgpu_device *adev) { adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST; adev->sdma.trap_irq.funcs = &si_dma_trap_irq_funcs; } /** * si_dma_emit_copy_buffer - copy buffer using the sDMA engine * * @ring: amdgpu_ring structure holding ring information * @src_offset: src GPU address * @dst_offset: dst GPU address * @byte_count: number of bytes to xfer * * Copy GPU buffers using the DMA engine (VI). * Used by the amdgpu ttm implementation to move pages if * registered as the asic copy callback. */ static void si_dma_emit_copy_buffer(struct amdgpu_ib *ib, uint64_t src_offset, uint64_t dst_offset, uint32_t byte_count) { ib->ptr[ib->length_dw++] = DMA_PACKET(DMA_PACKET_COPY, 1, 0, 0, byte_count); ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); ib->ptr[ib->length_dw++] = lower_32_bits(src_offset); ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset) & 0xff; ib->ptr[ib->length_dw++] = upper_32_bits(src_offset) & 0xff; } /** * si_dma_emit_fill_buffer - fill buffer using the sDMA engine * * @ring: amdgpu_ring structure holding ring information * @src_data: value to write to buffer * @dst_offset: dst GPU address * @byte_count: number of bytes to xfer * * Fill GPU buffers using the DMA engine (VI). */ static void si_dma_emit_fill_buffer(struct amdgpu_ib *ib, uint32_t src_data, uint64_t dst_offset, uint32_t byte_count) { ib->ptr[ib->length_dw++] = DMA_PACKET(DMA_PACKET_CONSTANT_FILL, 0, 0, 0, byte_count / 4); ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset); ib->ptr[ib->length_dw++] = src_data; ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset) << 16; } static const struct amdgpu_buffer_funcs si_dma_buffer_funcs = { .copy_max_bytes = 0xffff8, .copy_num_dw = 5, .emit_copy_buffer = si_dma_emit_copy_buffer, .fill_max_bytes = 0xffff8, .fill_num_dw = 4, .emit_fill_buffer = si_dma_emit_fill_buffer, }; static void si_dma_set_buffer_funcs(struct amdgpu_device *adev) { adev->mman.buffer_funcs = &si_dma_buffer_funcs; adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring; } static const struct amdgpu_vm_pte_funcs si_dma_vm_pte_funcs = { .copy_pte_num_dw = 5, .copy_pte = si_dma_vm_copy_pte, .write_pte = si_dma_vm_write_pte, .set_pte_pde = si_dma_vm_set_pte_pde, }; static void si_dma_set_vm_pte_funcs(struct amdgpu_device *adev) { unsigned i; adev->vm_manager.vm_pte_funcs = &si_dma_vm_pte_funcs; for (i = 0; i < adev->sdma.num_instances; i++) { adev->vm_manager.vm_pte_scheds[i] = &adev->sdma.instance[i].ring.sched; } adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances; } const struct amdgpu_ip_block_version si_dma_ip_block = { .type = AMD_IP_BLOCK_TYPE_SDMA, .major = 1, .minor = 0, .rev = 0, .funcs = &si_dma_ip_funcs, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1