Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harish Kasiviswanathan | 2695 | 51.02% | 3 | 9.09% |
Felix Kuhling | 2014 | 38.13% | 9 | 27.27% |
Shaoyun Liu | 320 | 6.06% | 5 | 15.15% |
Yong Zhao | 150 | 2.84% | 3 | 9.09% |
Gang Ba | 22 | 0.42% | 1 | 3.03% |
Kent Russell | 19 | 0.36% | 1 | 3.03% |
Huang Rui | 19 | 0.36% | 1 | 3.03% |
Philip Cox | 19 | 0.36% | 1 | 3.03% |
Alex Sierra | 6 | 0.11% | 1 | 3.03% |
Amber Lin | 5 | 0.09% | 2 | 6.06% |
Arun K S | 4 | 0.08% | 1 | 3.03% |
zhong jiang | 3 | 0.06% | 1 | 3.03% |
Arnd Bergmann | 2 | 0.04% | 1 | 3.03% |
Nathan Chancellor | 2 | 0.04% | 1 | 3.03% |
Gustavo A. R. Silva | 1 | 0.02% | 1 | 3.03% |
Oak Zeng | 1 | 0.02% | 1 | 3.03% |
Total | 5282 | 33 |
/* * Copyright 2015-2017 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <linux/pci.h> #include <linux/acpi.h> #include "kfd_crat.h" #include "kfd_priv.h" #include "kfd_topology.h" #include "kfd_iommu.h" #include "amdgpu_amdkfd.h" /* GPU Processor ID base for dGPUs for which VCRAT needs to be created. * GPU processor ID are expressed with Bit[31]=1. * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs * used in the CRAT. */ static uint32_t gpu_processor_id_low = 0x80001000; /* Return the next available gpu_processor_id and increment it for next GPU * @total_cu_count - Total CUs present in the GPU including ones * masked off */ static inline unsigned int get_and_inc_gpu_processor_id( unsigned int total_cu_count) { int current_id = gpu_processor_id_low; gpu_processor_id_low += total_cu_count; return current_id; } /* Static table to describe GPU Cache information */ struct kfd_gpu_cache_info { uint32_t cache_size; uint32_t cache_level; uint32_t flags; /* Indicates how many Compute Units share this cache * Value = 1 indicates the cache is not shared */ uint32_t num_cu_shared; }; static struct kfd_gpu_cache_info kaveri_cache_info[] = { { /* TCP L1 Cache per CU */ .cache_size = 16, .cache_level = 1, .flags = (CRAT_CACHE_FLAGS_ENABLED | CRAT_CACHE_FLAGS_DATA_CACHE | CRAT_CACHE_FLAGS_SIMD_CACHE), .num_cu_shared = 1, }, { /* Scalar L1 Instruction Cache (in SQC module) per bank */ .cache_size = 16, .cache_level = 1, .flags = (CRAT_CACHE_FLAGS_ENABLED | CRAT_CACHE_FLAGS_INST_CACHE | CRAT_CACHE_FLAGS_SIMD_CACHE), .num_cu_shared = 2, }, { /* Scalar L1 Data Cache (in SQC module) per bank */ .cache_size = 8, .cache_level = 1, .flags = (CRAT_CACHE_FLAGS_ENABLED | CRAT_CACHE_FLAGS_DATA_CACHE | CRAT_CACHE_FLAGS_SIMD_CACHE), .num_cu_shared = 2, }, /* TODO: Add L2 Cache information */ }; static struct kfd_gpu_cache_info carrizo_cache_info[] = { { /* TCP L1 Cache per CU */ .cache_size = 16, .cache_level = 1, .flags = (CRAT_CACHE_FLAGS_ENABLED | CRAT_CACHE_FLAGS_DATA_CACHE | CRAT_CACHE_FLAGS_SIMD_CACHE), .num_cu_shared = 1, }, { /* Scalar L1 Instruction Cache (in SQC module) per bank */ .cache_size = 8, .cache_level = 1, .flags = (CRAT_CACHE_FLAGS_ENABLED | CRAT_CACHE_FLAGS_INST_CACHE | CRAT_CACHE_FLAGS_SIMD_CACHE), .num_cu_shared = 4, }, { /* Scalar L1 Data Cache (in SQC module) per bank. */ .cache_size = 4, .cache_level = 1, .flags = (CRAT_CACHE_FLAGS_ENABLED | CRAT_CACHE_FLAGS_DATA_CACHE | CRAT_CACHE_FLAGS_SIMD_CACHE), .num_cu_shared = 4, }, /* TODO: Add L2 Cache information */ }; /* NOTE: In future if more information is added to struct kfd_gpu_cache_info * the following ASICs may need a separate table. */ #define hawaii_cache_info kaveri_cache_info #define tonga_cache_info carrizo_cache_info #define fiji_cache_info carrizo_cache_info #define polaris10_cache_info carrizo_cache_info #define polaris11_cache_info carrizo_cache_info #define polaris12_cache_info carrizo_cache_info #define vegam_cache_info carrizo_cache_info /* TODO - check & update Vega10 cache details */ #define vega10_cache_info carrizo_cache_info #define raven_cache_info carrizo_cache_info #define renoir_cache_info carrizo_cache_info /* TODO - check & update Navi10 cache details */ #define navi10_cache_info carrizo_cache_info static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev, struct crat_subtype_computeunit *cu) { dev->node_props.cpu_cores_count = cu->num_cpu_cores; dev->node_props.cpu_core_id_base = cu->processor_id_low; if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT) dev->node_props.capability |= HSA_CAP_ATS_PRESENT; pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores, cu->processor_id_low); } static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev, struct crat_subtype_computeunit *cu) { dev->node_props.simd_id_base = cu->processor_id_low; dev->node_props.simd_count = cu->num_simd_cores; dev->node_props.lds_size_in_kb = cu->lds_size_in_kb; dev->node_props.max_waves_per_simd = cu->max_waves_simd; dev->node_props.wave_front_size = cu->wave_front_size; dev->node_props.array_count = cu->array_count; dev->node_props.cu_per_simd_array = cu->num_cu_per_array; dev->node_props.simd_per_cu = cu->num_simd_per_cu; dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu; if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE) dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE; pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low); } /* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct * topology device present in the device_list */ static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu, struct list_head *device_list) { struct kfd_topology_device *dev; pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n", cu->proximity_domain, cu->hsa_capability); list_for_each_entry(dev, device_list, list) { if (cu->proximity_domain == dev->proximity_domain) { if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT) kfd_populated_cu_info_cpu(dev, cu); if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT) kfd_populated_cu_info_gpu(dev, cu); break; } } return 0; } static struct kfd_mem_properties * find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width, struct kfd_topology_device *dev) { struct kfd_mem_properties *props; list_for_each_entry(props, &dev->mem_props, list) { if (props->heap_type == heap_type && props->flags == flags && props->width == width) return props; } return NULL; } /* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct * topology device present in the device_list */ static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem, struct list_head *device_list) { struct kfd_mem_properties *props; struct kfd_topology_device *dev; uint32_t heap_type; uint64_t size_in_bytes; uint32_t flags = 0; uint32_t width; pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n", mem->proximity_domain); list_for_each_entry(dev, device_list, list) { if (mem->proximity_domain == dev->proximity_domain) { /* We're on GPU node */ if (dev->node_props.cpu_cores_count == 0) { /* APU */ if (mem->visibility_type == 0) heap_type = HSA_MEM_HEAP_TYPE_FB_PRIVATE; /* dGPU */ else heap_type = mem->visibility_type; } else heap_type = HSA_MEM_HEAP_TYPE_SYSTEM; if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE) flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE; if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE) flags |= HSA_MEM_FLAGS_NON_VOLATILE; size_in_bytes = ((uint64_t)mem->length_high << 32) + mem->length_low; width = mem->width; /* Multiple banks of the same type are aggregated into * one. User mode doesn't care about multiple physical * memory segments. It's managed as a single virtual * heap for user mode. */ props = find_subtype_mem(heap_type, flags, width, dev); if (props) { props->size_in_bytes += size_in_bytes; break; } props = kfd_alloc_struct(props); if (!props) return -ENOMEM; props->heap_type = heap_type; props->flags = flags; props->size_in_bytes = size_in_bytes; props->width = width; dev->node_props.mem_banks_count++; list_add_tail(&props->list, &dev->mem_props); break; } } return 0; } /* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct * topology device present in the device_list */ static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache, struct list_head *device_list) { struct kfd_cache_properties *props; struct kfd_topology_device *dev; uint32_t id; uint32_t total_num_of_cu; id = cache->processor_id_low; pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id); list_for_each_entry(dev, device_list, list) { total_num_of_cu = (dev->node_props.array_count * dev->node_props.cu_per_simd_array); /* Cache infomration in CRAT doesn't have proximity_domain * information as it is associated with a CPU core or GPU * Compute Unit. So map the cache using CPU core Id or SIMD * (GPU) ID. * TODO: This works because currently we can safely assume that * Compute Units are parsed before caches are parsed. In * future, remove this dependency */ if ((id >= dev->node_props.cpu_core_id_base && id <= dev->node_props.cpu_core_id_base + dev->node_props.cpu_cores_count) || (id >= dev->node_props.simd_id_base && id < dev->node_props.simd_id_base + total_num_of_cu)) { props = kfd_alloc_struct(props); if (!props) return -ENOMEM; props->processor_id_low = id; props->cache_level = cache->cache_level; props->cache_size = cache->cache_size; props->cacheline_size = cache->cache_line_size; props->cachelines_per_tag = cache->lines_per_tag; props->cache_assoc = cache->associativity; props->cache_latency = cache->cache_latency; memcpy(props->sibling_map, cache->sibling_map, sizeof(props->sibling_map)); if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE) props->cache_type |= HSA_CACHE_TYPE_DATA; if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE) props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION; if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE) props->cache_type |= HSA_CACHE_TYPE_CPU; if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE) props->cache_type |= HSA_CACHE_TYPE_HSACU; dev->cache_count++; dev->node_props.caches_count++; list_add_tail(&props->list, &dev->cache_props); break; } } return 0; } /* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct * topology device present in the device_list */ static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink, struct list_head *device_list) { struct kfd_iolink_properties *props = NULL, *props2; struct kfd_topology_device *dev, *to_dev; uint32_t id_from; uint32_t id_to; id_from = iolink->proximity_domain_from; id_to = iolink->proximity_domain_to; pr_debug("Found IO link entry in CRAT table with id_from=%d, id_to %d\n", id_from, id_to); list_for_each_entry(dev, device_list, list) { if (id_from == dev->proximity_domain) { props = kfd_alloc_struct(props); if (!props) return -ENOMEM; props->node_from = id_from; props->node_to = id_to; props->ver_maj = iolink->version_major; props->ver_min = iolink->version_minor; props->iolink_type = iolink->io_interface_type; if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) props->weight = 20; else if (props->iolink_type == CRAT_IOLINK_TYPE_XGMI) props->weight = 15 * iolink->num_hops_xgmi; else props->weight = node_distance(id_from, id_to); props->min_latency = iolink->minimum_latency; props->max_latency = iolink->maximum_latency; props->min_bandwidth = iolink->minimum_bandwidth_mbs; props->max_bandwidth = iolink->maximum_bandwidth_mbs; props->rec_transfer_size = iolink->recommended_transfer_size; dev->io_link_count++; dev->node_props.io_links_count++; list_add_tail(&props->list, &dev->io_link_props); break; } } /* CPU topology is created before GPUs are detected, so CPU->GPU * links are not built at that time. If a PCIe type is discovered, it * means a GPU is detected and we are adding GPU->CPU to the topology. * At this time, also add the corresponded CPU->GPU link if GPU * is large bar. * For xGMI, we only added the link with one direction in the crat * table, add corresponded reversed direction link now. */ if (props && (iolink->flags & CRAT_IOLINK_FLAGS_BI_DIRECTIONAL)) { to_dev = kfd_topology_device_by_proximity_domain(id_to); if (!to_dev) return -ENODEV; /* same everything but the other direction */ props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL); props2->node_from = id_to; props2->node_to = id_from; props2->kobj = NULL; to_dev->io_link_count++; to_dev->node_props.io_links_count++; list_add_tail(&props2->list, &to_dev->io_link_props); } return 0; } /* kfd_parse_subtype - parse subtypes and attach it to correct topology device * present in the device_list * @sub_type_hdr - subtype section of crat_image * @device_list - list of topology devices present in this crat_image */ static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr, struct list_head *device_list) { struct crat_subtype_computeunit *cu; struct crat_subtype_memory *mem; struct crat_subtype_cache *cache; struct crat_subtype_iolink *iolink; int ret = 0; switch (sub_type_hdr->type) { case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY: cu = (struct crat_subtype_computeunit *)sub_type_hdr; ret = kfd_parse_subtype_cu(cu, device_list); break; case CRAT_SUBTYPE_MEMORY_AFFINITY: mem = (struct crat_subtype_memory *)sub_type_hdr; ret = kfd_parse_subtype_mem(mem, device_list); break; case CRAT_SUBTYPE_CACHE_AFFINITY: cache = (struct crat_subtype_cache *)sub_type_hdr; ret = kfd_parse_subtype_cache(cache, device_list); break; case CRAT_SUBTYPE_TLB_AFFINITY: /* * For now, nothing to do here */ pr_debug("Found TLB entry in CRAT table (not processing)\n"); break; case CRAT_SUBTYPE_CCOMPUTE_AFFINITY: /* * For now, nothing to do here */ pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n"); break; case CRAT_SUBTYPE_IOLINK_AFFINITY: iolink = (struct crat_subtype_iolink *)sub_type_hdr; ret = kfd_parse_subtype_iolink(iolink, device_list); break; default: pr_warn("Unknown subtype %d in CRAT\n", sub_type_hdr->type); } return ret; } /* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT * create a kfd_topology_device and add in to device_list. Also parse * CRAT subtypes and attach it to appropriate kfd_topology_device * @crat_image - input image containing CRAT * @device_list - [OUT] list of kfd_topology_device generated after * parsing crat_image * @proximity_domain - Proximity domain of the first device in the table * * Return - 0 if successful else -ve value */ int kfd_parse_crat_table(void *crat_image, struct list_head *device_list, uint32_t proximity_domain) { struct kfd_topology_device *top_dev = NULL; struct crat_subtype_generic *sub_type_hdr; uint16_t node_id; int ret = 0; struct crat_header *crat_table = (struct crat_header *)crat_image; uint16_t num_nodes; uint32_t image_len; if (!crat_image) return -EINVAL; if (!list_empty(device_list)) { pr_warn("Error device list should be empty\n"); return -EINVAL; } num_nodes = crat_table->num_domains; image_len = crat_table->length; pr_info("Parsing CRAT table with %d nodes\n", num_nodes); for (node_id = 0; node_id < num_nodes; node_id++) { top_dev = kfd_create_topology_device(device_list); if (!top_dev) break; top_dev->proximity_domain = proximity_domain++; } if (!top_dev) { ret = -ENOMEM; goto err; } memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH); memcpy(top_dev->oem_table_id, crat_table->oem_table_id, CRAT_OEMTABLEID_LENGTH); top_dev->oem_revision = crat_table->oem_revision; sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1); while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) < ((char *)crat_image) + image_len) { if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) { ret = kfd_parse_subtype(sub_type_hdr, device_list); if (ret) break; } sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + sub_type_hdr->length); } err: if (ret) kfd_release_topology_device_list(device_list); return ret; } /* Helper function. See kfd_fill_gpu_cache_info for parameter description */ static int fill_in_pcache(struct crat_subtype_cache *pcache, struct kfd_gpu_cache_info *pcache_info, struct kfd_cu_info *cu_info, int mem_available, int cu_bitmask, int cache_type, unsigned int cu_processor_id, int cu_block) { unsigned int cu_sibling_map_mask; int first_active_cu; /* First check if enough memory is available */ if (sizeof(struct crat_subtype_cache) > mem_available) return -ENOMEM; cu_sibling_map_mask = cu_bitmask; cu_sibling_map_mask >>= cu_block; cu_sibling_map_mask &= ((1 << pcache_info[cache_type].num_cu_shared) - 1); first_active_cu = ffs(cu_sibling_map_mask); /* CU could be inactive. In case of shared cache find the first active * CU. and incase of non-shared cache check if the CU is inactive. If * inactive active skip it */ if (first_active_cu) { memset(pcache, 0, sizeof(struct crat_subtype_cache)); pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY; pcache->length = sizeof(struct crat_subtype_cache); pcache->flags = pcache_info[cache_type].flags; pcache->processor_id_low = cu_processor_id + (first_active_cu - 1); pcache->cache_level = pcache_info[cache_type].cache_level; pcache->cache_size = pcache_info[cache_type].cache_size; /* Sibling map is w.r.t processor_id_low, so shift out * inactive CU */ cu_sibling_map_mask = cu_sibling_map_mask >> (first_active_cu - 1); pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF); pcache->sibling_map[1] = (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF); pcache->sibling_map[2] = (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF); pcache->sibling_map[3] = (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF); return 0; } return 1; } /* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info * tables * * @kdev - [IN] GPU device * @gpu_processor_id - [IN] GPU processor ID to which these caches * associate * @available_size - [IN] Amount of memory available in pcache * @cu_info - [IN] Compute Unit info obtained from KGD * @pcache - [OUT] memory into which cache data is to be filled in. * @size_filled - [OUT] amount of data used up in pcache. * @num_of_entries - [OUT] number of caches added */ static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev, int gpu_processor_id, int available_size, struct kfd_cu_info *cu_info, struct crat_subtype_cache *pcache, int *size_filled, int *num_of_entries) { struct kfd_gpu_cache_info *pcache_info; int num_of_cache_types = 0; int i, j, k; int ct = 0; int mem_available = available_size; unsigned int cu_processor_id; int ret; switch (kdev->device_info->asic_family) { case CHIP_KAVERI: pcache_info = kaveri_cache_info; num_of_cache_types = ARRAY_SIZE(kaveri_cache_info); break; case CHIP_HAWAII: pcache_info = hawaii_cache_info; num_of_cache_types = ARRAY_SIZE(hawaii_cache_info); break; case CHIP_CARRIZO: pcache_info = carrizo_cache_info; num_of_cache_types = ARRAY_SIZE(carrizo_cache_info); break; case CHIP_TONGA: pcache_info = tonga_cache_info; num_of_cache_types = ARRAY_SIZE(tonga_cache_info); break; case CHIP_FIJI: pcache_info = fiji_cache_info; num_of_cache_types = ARRAY_SIZE(fiji_cache_info); break; case CHIP_POLARIS10: pcache_info = polaris10_cache_info; num_of_cache_types = ARRAY_SIZE(polaris10_cache_info); break; case CHIP_POLARIS11: pcache_info = polaris11_cache_info; num_of_cache_types = ARRAY_SIZE(polaris11_cache_info); break; case CHIP_POLARIS12: pcache_info = polaris12_cache_info; num_of_cache_types = ARRAY_SIZE(polaris12_cache_info); break; case CHIP_VEGAM: pcache_info = vegam_cache_info; num_of_cache_types = ARRAY_SIZE(vegam_cache_info); break; case CHIP_VEGA10: case CHIP_VEGA12: case CHIP_VEGA20: case CHIP_ARCTURUS: pcache_info = vega10_cache_info; num_of_cache_types = ARRAY_SIZE(vega10_cache_info); break; case CHIP_RAVEN: pcache_info = raven_cache_info; num_of_cache_types = ARRAY_SIZE(raven_cache_info); break; case CHIP_RENOIR: pcache_info = renoir_cache_info; num_of_cache_types = ARRAY_SIZE(renoir_cache_info); break; case CHIP_NAVI10: case CHIP_NAVI12: case CHIP_NAVI14: pcache_info = navi10_cache_info; num_of_cache_types = ARRAY_SIZE(navi10_cache_info); break; default: return -EINVAL; } *size_filled = 0; *num_of_entries = 0; /* For each type of cache listed in the kfd_gpu_cache_info table, * go through all available Compute Units. * The [i,j,k] loop will * if kfd_gpu_cache_info.num_cu_shared = 1 * will parse through all available CU * If (kfd_gpu_cache_info.num_cu_shared != 1) * then it will consider only one CU from * the shared unit */ for (ct = 0; ct < num_of_cache_types; ct++) { cu_processor_id = gpu_processor_id; for (i = 0; i < cu_info->num_shader_engines; i++) { for (j = 0; j < cu_info->num_shader_arrays_per_engine; j++) { for (k = 0; k < cu_info->num_cu_per_sh; k += pcache_info[ct].num_cu_shared) { ret = fill_in_pcache(pcache, pcache_info, cu_info, mem_available, cu_info->cu_bitmap[i % 4][j + i / 4], ct, cu_processor_id, k); if (ret < 0) break; if (!ret) { pcache++; (*num_of_entries)++; mem_available -= sizeof(*pcache); (*size_filled) += sizeof(*pcache); } /* Move to next CU block */ cu_processor_id += pcache_info[ct].num_cu_shared; } } } } pr_debug("Added [%d] GPU cache entries\n", *num_of_entries); return 0; } /* * kfd_create_crat_image_acpi - Allocates memory for CRAT image and * copies CRAT from ACPI (if available). * NOTE: Call kfd_destroy_crat_image to free CRAT image memory * * @crat_image: CRAT read from ACPI. If no CRAT in ACPI then * crat_image will be NULL * @size: [OUT] size of crat_image * * Return 0 if successful else return error code */ int kfd_create_crat_image_acpi(void **crat_image, size_t *size) { struct acpi_table_header *crat_table; acpi_status status; void *pcrat_image; if (!crat_image) return -EINVAL; *crat_image = NULL; /* Fetch the CRAT table from ACPI */ status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table); if (status == AE_NOT_FOUND) { pr_warn("CRAT table not found\n"); return -ENODATA; } else if (ACPI_FAILURE(status)) { const char *err = acpi_format_exception(status); pr_err("CRAT table error: %s\n", err); return -EINVAL; } if (ignore_crat) { pr_info("CRAT table disabled by module option\n"); return -ENODATA; } pcrat_image = kmemdup(crat_table, crat_table->length, GFP_KERNEL); if (!pcrat_image) return -ENOMEM; *crat_image = pcrat_image; *size = crat_table->length; return 0; } /* Memory required to create Virtual CRAT. * Since there is no easy way to predict the amount of memory required, the * following amount are allocated for CPU and GPU Virtual CRAT. This is * expected to cover all known conditions. But to be safe additional check * is put in the code to ensure we don't overwrite. */ #define VCRAT_SIZE_FOR_CPU (2 * PAGE_SIZE) #define VCRAT_SIZE_FOR_GPU (4 * PAGE_SIZE) /* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node * * @numa_node_id: CPU NUMA node id * @avail_size: Available size in the memory * @sub_type_hdr: Memory into which compute info will be filled in * * Return 0 if successful else return -ve value */ static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size, int proximity_domain, struct crat_subtype_computeunit *sub_type_hdr) { const struct cpumask *cpumask; *avail_size -= sizeof(struct crat_subtype_computeunit); if (*avail_size < 0) return -ENOMEM; memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit)); /* Fill in subtype header data */ sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY; sub_type_hdr->length = sizeof(struct crat_subtype_computeunit); sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; cpumask = cpumask_of_node(numa_node_id); /* Fill in CU data */ sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT; sub_type_hdr->proximity_domain = proximity_domain; sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id); if (sub_type_hdr->processor_id_low == -1) return -EINVAL; sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask); return 0; } /* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node * * @numa_node_id: CPU NUMA node id * @avail_size: Available size in the memory * @sub_type_hdr: Memory into which compute info will be filled in * * Return 0 if successful else return -ve value */ static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size, int proximity_domain, struct crat_subtype_memory *sub_type_hdr) { uint64_t mem_in_bytes = 0; pg_data_t *pgdat; int zone_type; *avail_size -= sizeof(struct crat_subtype_memory); if (*avail_size < 0) return -ENOMEM; memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory)); /* Fill in subtype header data */ sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY; sub_type_hdr->length = sizeof(struct crat_subtype_memory); sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; /* Fill in Memory Subunit data */ /* Unlike si_meminfo, si_meminfo_node is not exported. So * the following lines are duplicated from si_meminfo_node * function */ pgdat = NODE_DATA(numa_node_id); for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) mem_in_bytes += zone_managed_pages(&pgdat->node_zones[zone_type]); mem_in_bytes <<= PAGE_SHIFT; sub_type_hdr->length_low = lower_32_bits(mem_in_bytes); sub_type_hdr->length_high = upper_32_bits(mem_in_bytes); sub_type_hdr->proximity_domain = proximity_domain; return 0; } #ifdef CONFIG_X86_64 static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size, uint32_t *num_entries, struct crat_subtype_iolink *sub_type_hdr) { int nid; struct cpuinfo_x86 *c = &cpu_data(0); uint8_t link_type; if (c->x86_vendor == X86_VENDOR_AMD) link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT; else link_type = CRAT_IOLINK_TYPE_QPI_1_1; *num_entries = 0; /* Create IO links from this node to other CPU nodes */ for_each_online_node(nid) { if (nid == numa_node_id) /* node itself */ continue; *avail_size -= sizeof(struct crat_subtype_iolink); if (*avail_size < 0) return -ENOMEM; memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink)); /* Fill in subtype header data */ sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY; sub_type_hdr->length = sizeof(struct crat_subtype_iolink); sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; /* Fill in IO link data */ sub_type_hdr->proximity_domain_from = numa_node_id; sub_type_hdr->proximity_domain_to = nid; sub_type_hdr->io_interface_type = link_type; (*num_entries)++; sub_type_hdr++; } return 0; } #endif /* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU * * @pcrat_image: Fill in VCRAT for CPU * @size: [IN] allocated size of crat_image. * [OUT] actual size of data filled in crat_image */ static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size) { struct crat_header *crat_table = (struct crat_header *)pcrat_image; struct acpi_table_header *acpi_table; acpi_status status; struct crat_subtype_generic *sub_type_hdr; int avail_size = *size; int numa_node_id; #ifdef CONFIG_X86_64 uint32_t entries = 0; #endif int ret = 0; if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU) return -EINVAL; /* Fill in CRAT Header. * Modify length and total_entries as subunits are added. */ avail_size -= sizeof(struct crat_header); if (avail_size < 0) return -ENOMEM; memset(crat_table, 0, sizeof(struct crat_header)); memcpy(&crat_table->signature, CRAT_SIGNATURE, sizeof(crat_table->signature)); crat_table->length = sizeof(struct crat_header); status = acpi_get_table("DSDT", 0, &acpi_table); if (status != AE_OK) pr_warn("DSDT table not found for OEM information\n"); else { crat_table->oem_revision = acpi_table->revision; memcpy(crat_table->oem_id, acpi_table->oem_id, CRAT_OEMID_LENGTH); memcpy(crat_table->oem_table_id, acpi_table->oem_table_id, CRAT_OEMTABLEID_LENGTH); } crat_table->total_entries = 0; crat_table->num_domains = 0; sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1); for_each_online_node(numa_node_id) { if (kfd_numa_node_to_apic_id(numa_node_id) == -1) continue; /* Fill in Subtype: Compute Unit */ ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size, crat_table->num_domains, (struct crat_subtype_computeunit *)sub_type_hdr); if (ret < 0) return ret; crat_table->length += sub_type_hdr->length; crat_table->total_entries++; sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + sub_type_hdr->length); /* Fill in Subtype: Memory */ ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size, crat_table->num_domains, (struct crat_subtype_memory *)sub_type_hdr); if (ret < 0) return ret; crat_table->length += sub_type_hdr->length; crat_table->total_entries++; sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + sub_type_hdr->length); /* Fill in Subtype: IO Link */ #ifdef CONFIG_X86_64 ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size, &entries, (struct crat_subtype_iolink *)sub_type_hdr); if (ret < 0) return ret; crat_table->length += (sub_type_hdr->length * entries); crat_table->total_entries += entries; sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + sub_type_hdr->length * entries); #else pr_info("IO link not available for non x86 platforms\n"); #endif crat_table->num_domains++; } /* TODO: Add cache Subtype for CPU. * Currently, CPU cache information is available in function * detect_cache_attributes(cpu) defined in the file * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not * exported and to get the same information the code needs to be * duplicated. */ *size = crat_table->length; pr_info("Virtual CRAT table created for CPU\n"); return 0; } static int kfd_fill_gpu_memory_affinity(int *avail_size, struct kfd_dev *kdev, uint8_t type, uint64_t size, struct crat_subtype_memory *sub_type_hdr, uint32_t proximity_domain, const struct kfd_local_mem_info *local_mem_info) { *avail_size -= sizeof(struct crat_subtype_memory); if (*avail_size < 0) return -ENOMEM; memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory)); sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY; sub_type_hdr->length = sizeof(struct crat_subtype_memory); sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED; sub_type_hdr->proximity_domain = proximity_domain; pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n", type, size); sub_type_hdr->length_low = lower_32_bits(size); sub_type_hdr->length_high = upper_32_bits(size); sub_type_hdr->width = local_mem_info->vram_width; sub_type_hdr->visibility_type = type; return 0; } /* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU * to its NUMA node * @avail_size: Available size in the memory * @kdev - [IN] GPU device * @sub_type_hdr: Memory into which io link info will be filled in * @proximity_domain - proximity domain of the GPU node * * Return 0 if successful else return -ve value */ static int kfd_fill_gpu_direct_io_link_to_cpu(int *avail_size, struct kfd_dev *kdev, struct crat_subtype_iolink *sub_type_hdr, uint32_t proximity_domain) { *avail_size -= sizeof(struct crat_subtype_iolink); if (*avail_size < 0) return -ENOMEM; memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink)); /* Fill in subtype header data */ sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY; sub_type_hdr->length = sizeof(struct crat_subtype_iolink); sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED; if (kfd_dev_is_large_bar(kdev)) sub_type_hdr->flags |= CRAT_IOLINK_FLAGS_BI_DIRECTIONAL; /* Fill in IOLINK subtype. * TODO: Fill-in other fields of iolink subtype */ sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS; sub_type_hdr->proximity_domain_from = proximity_domain; #ifdef CONFIG_NUMA if (kdev->pdev->dev.numa_node == NUMA_NO_NODE) sub_type_hdr->proximity_domain_to = 0; else sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node; #else sub_type_hdr->proximity_domain_to = 0; #endif return 0; } static int kfd_fill_gpu_xgmi_link_to_gpu(int *avail_size, struct kfd_dev *kdev, struct kfd_dev *peer_kdev, struct crat_subtype_iolink *sub_type_hdr, uint32_t proximity_domain_from, uint32_t proximity_domain_to) { *avail_size -= sizeof(struct crat_subtype_iolink); if (*avail_size < 0) return -ENOMEM; memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink)); sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY; sub_type_hdr->length = sizeof(struct crat_subtype_iolink); sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED | CRAT_IOLINK_FLAGS_BI_DIRECTIONAL; sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_XGMI; sub_type_hdr->proximity_domain_from = proximity_domain_from; sub_type_hdr->proximity_domain_to = proximity_domain_to; sub_type_hdr->num_hops_xgmi = amdgpu_amdkfd_get_xgmi_hops_count(kdev->kgd, peer_kdev->kgd); return 0; } /* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU * * @pcrat_image: Fill in VCRAT for GPU * @size: [IN] allocated size of crat_image. * [OUT] actual size of data filled in crat_image */ static int kfd_create_vcrat_image_gpu(void *pcrat_image, size_t *size, struct kfd_dev *kdev, uint32_t proximity_domain) { struct crat_header *crat_table = (struct crat_header *)pcrat_image; struct crat_subtype_generic *sub_type_hdr; struct kfd_local_mem_info local_mem_info; struct kfd_topology_device *peer_dev; struct crat_subtype_computeunit *cu; struct kfd_cu_info cu_info; int avail_size = *size; uint32_t total_num_of_cu; int num_of_cache_entries = 0; int cache_mem_filled = 0; uint32_t nid = 0; int ret = 0; if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU) return -EINVAL; /* Fill the CRAT Header. * Modify length and total_entries as subunits are added. */ avail_size -= sizeof(struct crat_header); if (avail_size < 0) return -ENOMEM; memset(crat_table, 0, sizeof(struct crat_header)); memcpy(&crat_table->signature, CRAT_SIGNATURE, sizeof(crat_table->signature)); /* Change length as we add more subtypes*/ crat_table->length = sizeof(struct crat_header); crat_table->num_domains = 1; crat_table->total_entries = 0; /* Fill in Subtype: Compute Unit * First fill in the sub type header and then sub type data */ avail_size -= sizeof(struct crat_subtype_computeunit); if (avail_size < 0) return -ENOMEM; sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1); memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit)); sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY; sub_type_hdr->length = sizeof(struct crat_subtype_computeunit); sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; /* Fill CU subtype data */ cu = (struct crat_subtype_computeunit *)sub_type_hdr; cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT; cu->proximity_domain = proximity_domain; amdgpu_amdkfd_get_cu_info(kdev->kgd, &cu_info); cu->num_simd_per_cu = cu_info.simd_per_cu; cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number; cu->max_waves_simd = cu_info.max_waves_per_simd; cu->wave_front_size = cu_info.wave_front_size; cu->array_count = cu_info.num_shader_arrays_per_engine * cu_info.num_shader_engines; total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh); cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu); cu->num_cu_per_array = cu_info.num_cu_per_sh; cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu; cu->num_banks = cu_info.num_shader_engines; cu->lds_size_in_kb = cu_info.lds_size; cu->hsa_capability = 0; /* Check if this node supports IOMMU. During parsing this flag will * translate to HSA_CAP_ATS_PRESENT */ if (!kfd_iommu_check_device(kdev)) cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT; crat_table->length += sub_type_hdr->length; crat_table->total_entries++; /* Fill in Subtype: Memory. Only on systems with large BAR (no * private FB), report memory as public. On other systems * report the total FB size (public+private) as a single * private heap. */ amdgpu_amdkfd_get_local_mem_info(kdev->kgd, &local_mem_info); sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + sub_type_hdr->length); if (debug_largebar) local_mem_info.local_mem_size_private = 0; if (local_mem_info.local_mem_size_private == 0) ret = kfd_fill_gpu_memory_affinity(&avail_size, kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC, local_mem_info.local_mem_size_public, (struct crat_subtype_memory *)sub_type_hdr, proximity_domain, &local_mem_info); else ret = kfd_fill_gpu_memory_affinity(&avail_size, kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE, local_mem_info.local_mem_size_public + local_mem_info.local_mem_size_private, (struct crat_subtype_memory *)sub_type_hdr, proximity_domain, &local_mem_info); if (ret < 0) return ret; crat_table->length += sizeof(struct crat_subtype_memory); crat_table->total_entries++; /* TODO: Fill in cache information. This information is NOT readily * available in KGD */ sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + sub_type_hdr->length); ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low, avail_size, &cu_info, (struct crat_subtype_cache *)sub_type_hdr, &cache_mem_filled, &num_of_cache_entries); if (ret < 0) return ret; crat_table->length += cache_mem_filled; crat_table->total_entries += num_of_cache_entries; avail_size -= cache_mem_filled; /* Fill in Subtype: IO_LINKS * Only direct links are added here which is Link from GPU to * to its NUMA node. Indirect links are added by userspace. */ sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + cache_mem_filled); ret = kfd_fill_gpu_direct_io_link_to_cpu(&avail_size, kdev, (struct crat_subtype_iolink *)sub_type_hdr, proximity_domain); if (ret < 0) return ret; crat_table->length += sub_type_hdr->length; crat_table->total_entries++; /* Fill in Subtype: IO_LINKS * Direct links from GPU to other GPUs through xGMI. * We will loop GPUs that already be processed (with lower value * of proximity_domain), add the link for the GPUs with same * hive id (from this GPU to other GPU) . The reversed iolink * (from other GPU to this GPU) will be added * in kfd_parse_subtype_iolink. */ if (kdev->hive_id) { for (nid = 0; nid < proximity_domain; ++nid) { peer_dev = kfd_topology_device_by_proximity_domain(nid); if (!peer_dev->gpu) continue; if (peer_dev->gpu->hive_id != kdev->hive_id) continue; sub_type_hdr = (typeof(sub_type_hdr))( (char *)sub_type_hdr + sizeof(struct crat_subtype_iolink)); ret = kfd_fill_gpu_xgmi_link_to_gpu( &avail_size, kdev, peer_dev->gpu, (struct crat_subtype_iolink *)sub_type_hdr, proximity_domain, nid); if (ret < 0) return ret; crat_table->length += sub_type_hdr->length; crat_table->total_entries++; } } *size = crat_table->length; pr_info("Virtual CRAT table created for GPU\n"); return ret; } /* kfd_create_crat_image_virtual - Allocates memory for CRAT image and * creates a Virtual CRAT (VCRAT) image * * NOTE: Call kfd_destroy_crat_image to free CRAT image memory * * @crat_image: VCRAT image created because ACPI does not have a * CRAT for this device * @size: [OUT] size of virtual crat_image * @flags: COMPUTE_UNIT_CPU - Create VCRAT for CPU device * COMPUTE_UNIT_GPU - Create VCRAT for GPU * (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU * -- this option is not currently implemented. * The assumption is that all AMD APUs will have CRAT * @kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU * * Return 0 if successful else return -ve value */ int kfd_create_crat_image_virtual(void **crat_image, size_t *size, int flags, struct kfd_dev *kdev, uint32_t proximity_domain) { void *pcrat_image = NULL; int ret = 0; if (!crat_image) return -EINVAL; *crat_image = NULL; /* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and * VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover * all the current conditions. A check is put not to overwrite beyond * allocated size */ switch (flags) { case COMPUTE_UNIT_CPU: pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL); if (!pcrat_image) return -ENOMEM; *size = VCRAT_SIZE_FOR_CPU; ret = kfd_create_vcrat_image_cpu(pcrat_image, size); break; case COMPUTE_UNIT_GPU: if (!kdev) return -EINVAL; pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL); if (!pcrat_image) return -ENOMEM; *size = VCRAT_SIZE_FOR_GPU; ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev, proximity_domain); break; case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU): /* TODO: */ ret = -EINVAL; pr_err("VCRAT not implemented for APU\n"); break; default: ret = -EINVAL; } if (!ret) *crat_image = pcrat_image; else kfree(pcrat_image); return ret; } /* kfd_destroy_crat_image * * @crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..) * */ void kfd_destroy_crat_image(void *crat_image) { kfree(crat_image); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1