Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Felix Kuhling | 1285 | 24.36% | 19 | 19.39% |
Oded Gabbay | 1191 | 22.57% | 10 | 10.20% |
Yong Zhao | 923 | 17.49% | 14 | 14.29% |
Shaoyun Liu | 451 | 8.55% | 9 | 9.18% |
Oak Zeng | 224 | 4.25% | 6 | 6.12% |
Gang Ba | 177 | 3.35% | 1 | 1.02% |
Philip Cox | 140 | 2.65% | 1 | 1.02% |
Ben Goz | 125 | 2.37% | 2 | 2.04% |
Huang Rui | 100 | 1.90% | 2 | 2.04% |
Andrew Lewycky | 97 | 1.84% | 3 | 3.06% |
Harish Kasiviswanathan | 97 | 1.84% | 2 | 2.04% |
Kent Russell | 94 | 1.78% | 2 | 2.04% |
Philip Yang | 71 | 1.35% | 1 | 1.02% |
Eric Huang | 68 | 1.29% | 2 | 2.04% |
Lan Xiao | 43 | 0.82% | 1 | 1.02% |
Xihan Zhang | 32 | 0.61% | 1 | 1.02% |
Rajneesh Bhardwaj | 26 | 0.49% | 1 | 1.02% |
Alex Deucher | 25 | 0.47% | 3 | 3.06% |
Divya Shikre | 23 | 0.44% | 1 | 1.02% |
Yair Shachar | 17 | 0.32% | 2 | 2.04% |
welu | 10 | 0.19% | 1 | 1.02% |
Christian König | 10 | 0.19% | 1 | 1.02% |
Jack Xiao | 9 | 0.17% | 1 | 1.02% |
Alexey Skidanov | 8 | 0.15% | 2 | 2.04% |
Amber Lin | 8 | 0.15% | 3 | 3.06% |
Evgeny Pinchuk | 7 | 0.13% | 1 | 1.02% |
Frank Min | 5 | 0.09% | 1 | 1.02% |
Andres Rodriguez | 4 | 0.08% | 1 | 1.02% |
Dave Airlie | 2 | 0.04% | 1 | 1.02% |
Jack Zhang | 2 | 0.04% | 1 | 1.02% |
Dan Carpenter | 1 | 0.02% | 1 | 1.02% |
yu kuai | 1 | 0.02% | 1 | 1.02% |
Total | 5276 | 98 |
/* * Copyright 2014 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include <linux/bsearch.h> #include <linux/pci.h> #include <linux/slab.h> #include "kfd_priv.h" #include "kfd_device_queue_manager.h" #include "kfd_pm4_headers_vi.h" #include "cwsr_trap_handler.h" #include "kfd_iommu.h" #include "amdgpu_amdkfd.h" #define MQD_SIZE_ALIGNED 768 /* * kfd_locked is used to lock the kfd driver during suspend or reset * once locked, kfd driver will stop any further GPU execution. * create process (open) will return -EAGAIN. */ static atomic_t kfd_locked = ATOMIC_INIT(0); #ifdef CONFIG_DRM_AMDGPU_CIK extern const struct kfd2kgd_calls gfx_v7_kfd2kgd; #endif extern const struct kfd2kgd_calls gfx_v8_kfd2kgd; extern const struct kfd2kgd_calls gfx_v9_kfd2kgd; extern const struct kfd2kgd_calls arcturus_kfd2kgd; extern const struct kfd2kgd_calls gfx_v10_kfd2kgd; static const struct kfd2kgd_calls *kfd2kgd_funcs[] = { #ifdef KFD_SUPPORT_IOMMU_V2 #ifdef CONFIG_DRM_AMDGPU_CIK [CHIP_KAVERI] = &gfx_v7_kfd2kgd, #endif [CHIP_CARRIZO] = &gfx_v8_kfd2kgd, [CHIP_RAVEN] = &gfx_v9_kfd2kgd, #endif #ifdef CONFIG_DRM_AMDGPU_CIK [CHIP_HAWAII] = &gfx_v7_kfd2kgd, #endif [CHIP_TONGA] = &gfx_v8_kfd2kgd, [CHIP_FIJI] = &gfx_v8_kfd2kgd, [CHIP_POLARIS10] = &gfx_v8_kfd2kgd, [CHIP_POLARIS11] = &gfx_v8_kfd2kgd, [CHIP_POLARIS12] = &gfx_v8_kfd2kgd, [CHIP_VEGAM] = &gfx_v8_kfd2kgd, [CHIP_VEGA10] = &gfx_v9_kfd2kgd, [CHIP_VEGA12] = &gfx_v9_kfd2kgd, [CHIP_VEGA20] = &gfx_v9_kfd2kgd, [CHIP_RENOIR] = &gfx_v9_kfd2kgd, [CHIP_ARCTURUS] = &arcturus_kfd2kgd, [CHIP_NAVI10] = &gfx_v10_kfd2kgd, [CHIP_NAVI12] = &gfx_v10_kfd2kgd, [CHIP_NAVI14] = &gfx_v10_kfd2kgd, }; #ifdef KFD_SUPPORT_IOMMU_V2 static const struct kfd_device_info kaveri_device_info = { .asic_family = CHIP_KAVERI, .asic_name = "kaveri", .max_pasid_bits = 16, /* max num of queues for KV.TODO should be a dynamic value */ .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = false, .needs_iommu_device = true, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info carrizo_device_info = { .asic_family = CHIP_CARRIZO, .asic_name = "carrizo", .max_pasid_bits = 16, /* max num of queues for CZ.TODO should be a dynamic value */ .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = true, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info raven_device_info = { .asic_family = CHIP_RAVEN, .asic_name = "raven", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 8, .ih_ring_entry_size = 8 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_v9, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = true, .needs_pci_atomics = true, .num_sdma_engines = 1, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; #endif static const struct kfd_device_info hawaii_device_info = { .asic_family = CHIP_HAWAII, .asic_name = "hawaii", .max_pasid_bits = 16, /* max num of queues for KV.TODO should be a dynamic value */ .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = false, .needs_iommu_device = false, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info tonga_device_info = { .asic_family = CHIP_TONGA, .asic_name = "tonga", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = false, .needs_iommu_device = false, .needs_pci_atomics = true, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info fiji_device_info = { .asic_family = CHIP_FIJI, .asic_name = "fiji", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = true, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info fiji_vf_device_info = { .asic_family = CHIP_FIJI, .asic_name = "fiji", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info polaris10_device_info = { .asic_family = CHIP_POLARIS10, .asic_name = "polaris10", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = true, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info polaris10_vf_device_info = { .asic_family = CHIP_POLARIS10, .asic_name = "polaris10", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info polaris11_device_info = { .asic_family = CHIP_POLARIS11, .asic_name = "polaris11", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = true, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info polaris12_device_info = { .asic_family = CHIP_POLARIS12, .asic_name = "polaris12", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = true, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info vegam_device_info = { .asic_family = CHIP_VEGAM, .asic_name = "vegam", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 4, .ih_ring_entry_size = 4 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_cik, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = true, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info vega10_device_info = { .asic_family = CHIP_VEGA10, .asic_name = "vega10", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 8, .ih_ring_entry_size = 8 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_v9, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info vega10_vf_device_info = { .asic_family = CHIP_VEGA10, .asic_name = "vega10", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 8, .ih_ring_entry_size = 8 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_v9, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info vega12_device_info = { .asic_family = CHIP_VEGA12, .asic_name = "vega12", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 8, .ih_ring_entry_size = 8 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_v9, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info vega20_device_info = { .asic_family = CHIP_VEGA20, .asic_name = "vega20", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 8, .ih_ring_entry_size = 8 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_v9, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 8, }; static const struct kfd_device_info arcturus_device_info = { .asic_family = CHIP_ARCTURUS, .asic_name = "arcturus", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 8, .ih_ring_entry_size = 8 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_v9, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 6, .num_sdma_queues_per_engine = 8, }; static const struct kfd_device_info renoir_device_info = { .asic_family = CHIP_RENOIR, .asic_name = "renoir", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 8, .ih_ring_entry_size = 8 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_v9, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .supports_cwsr = true, .needs_iommu_device = false, .needs_pci_atomics = false, .num_sdma_engines = 1, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 2, }; static const struct kfd_device_info navi10_device_info = { .asic_family = CHIP_NAVI10, .asic_name = "navi10", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 8, .ih_ring_entry_size = 8 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_v9, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .needs_iommu_device = false, .supports_cwsr = true, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 8, }; static const struct kfd_device_info navi12_device_info = { .asic_family = CHIP_NAVI12, .asic_name = "navi12", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 8, .ih_ring_entry_size = 8 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_v9, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .needs_iommu_device = false, .supports_cwsr = true, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 8, }; static const struct kfd_device_info navi14_device_info = { .asic_family = CHIP_NAVI14, .asic_name = "navi14", .max_pasid_bits = 16, .max_no_of_hqd = 24, .doorbell_size = 8, .ih_ring_entry_size = 8 * sizeof(uint32_t), .event_interrupt_class = &event_interrupt_class_v9, .num_of_watch_points = 4, .mqd_size_aligned = MQD_SIZE_ALIGNED, .needs_iommu_device = false, .supports_cwsr = true, .needs_pci_atomics = false, .num_sdma_engines = 2, .num_xgmi_sdma_engines = 0, .num_sdma_queues_per_engine = 8, }; /* For each entry, [0] is regular and [1] is virtualisation device. */ static const struct kfd_device_info *kfd_supported_devices[][2] = { #ifdef KFD_SUPPORT_IOMMU_V2 [CHIP_KAVERI] = {&kaveri_device_info, NULL}, [CHIP_CARRIZO] = {&carrizo_device_info, NULL}, [CHIP_RAVEN] = {&raven_device_info, NULL}, #endif [CHIP_HAWAII] = {&hawaii_device_info, NULL}, [CHIP_TONGA] = {&tonga_device_info, NULL}, [CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info}, [CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info}, [CHIP_POLARIS11] = {&polaris11_device_info, NULL}, [CHIP_POLARIS12] = {&polaris12_device_info, NULL}, [CHIP_VEGAM] = {&vegam_device_info, NULL}, [CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info}, [CHIP_VEGA12] = {&vega12_device_info, NULL}, [CHIP_VEGA20] = {&vega20_device_info, NULL}, [CHIP_RENOIR] = {&renoir_device_info, NULL}, [CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info}, [CHIP_NAVI10] = {&navi10_device_info, NULL}, [CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info}, [CHIP_NAVI14] = {&navi14_device_info, NULL}, }; static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, unsigned int chunk_size); static void kfd_gtt_sa_fini(struct kfd_dev *kfd); static int kfd_resume(struct kfd_dev *kfd); struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd, struct pci_dev *pdev, unsigned int asic_type, bool vf) { struct kfd_dev *kfd; const struct kfd_device_info *device_info; const struct kfd2kgd_calls *f2g; if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2) || asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) { dev_err(kfd_device, "asic_type %d out of range\n", asic_type); return NULL; /* asic_type out of range */ } device_info = kfd_supported_devices[asic_type][vf]; f2g = kfd2kgd_funcs[asic_type]; if (!device_info || !f2g) { dev_err(kfd_device, "%s %s not supported in kfd\n", amdgpu_asic_name[asic_type], vf ? "VF" : ""); return NULL; } kfd = kzalloc(sizeof(*kfd), GFP_KERNEL); if (!kfd) return NULL; /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps. * 32 and 64-bit requests are possible and must be * supported. */ kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kgd); if (device_info->needs_pci_atomics && !kfd->pci_atomic_requested) { dev_info(kfd_device, "skipped device %x:%x, PCI rejects atomics\n", pdev->vendor, pdev->device); kfree(kfd); return NULL; } kfd->kgd = kgd; kfd->device_info = device_info; kfd->pdev = pdev; kfd->init_complete = false; kfd->kfd2kgd = f2g; atomic_set(&kfd->compute_profile, 0); mutex_init(&kfd->doorbell_mutex); memset(&kfd->doorbell_available_index, 0, sizeof(kfd->doorbell_available_index)); atomic_set(&kfd->sram_ecc_flag, 0); return kfd; } static void kfd_cwsr_init(struct kfd_dev *kfd) { if (cwsr_enable && kfd->device_info->supports_cwsr) { if (kfd->device_info->asic_family < CHIP_VEGA10) { BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE); kfd->cwsr_isa = cwsr_trap_gfx8_hex; kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex); } else if (kfd->device_info->asic_family == CHIP_ARCTURUS) { BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE); kfd->cwsr_isa = cwsr_trap_arcturus_hex; kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex); } else if (kfd->device_info->asic_family < CHIP_NAVI10) { BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE); kfd->cwsr_isa = cwsr_trap_gfx9_hex; kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex); } else { BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE); kfd->cwsr_isa = cwsr_trap_gfx10_hex; kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex); } kfd->cwsr_enabled = true; } } bool kgd2kfd_device_init(struct kfd_dev *kfd, struct drm_device *ddev, const struct kgd2kfd_shared_resources *gpu_resources) { unsigned int size; kfd->ddev = ddev; kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd, KGD_ENGINE_MEC1); kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd, KGD_ENGINE_SDMA1); kfd->shared_resources = *gpu_resources; kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1; kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1; kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd - kfd->vm_info.first_vmid_kfd + 1; /* Verify module parameters regarding mapped process number*/ if ((hws_max_conc_proc < 0) || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) { dev_err(kfd_device, "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n", hws_max_conc_proc, kfd->vm_info.vmid_num_kfd, kfd->vm_info.vmid_num_kfd); kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd; } else kfd->max_proc_per_quantum = hws_max_conc_proc; /* Allocate global GWS that is shared by all KFD processes */ if (hws_gws_support && amdgpu_amdkfd_alloc_gws(kfd->kgd, amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws)) { dev_err(kfd_device, "Could not allocate %d gws\n", amdgpu_amdkfd_get_num_gws(kfd->kgd)); goto out; } /* calculate max size of mqds needed for queues */ size = max_num_of_queues_per_device * kfd->device_info->mqd_size_aligned; /* * calculate max size of runlist packet. * There can be only 2 packets at once */ size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) + max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues) + sizeof(struct pm4_mes_runlist)) * 2; /* Add size of HIQ & DIQ */ size += KFD_KERNEL_QUEUE_SIZE * 2; /* add another 512KB for all other allocations on gart (HPD, fences) */ size += 512 * 1024; if (amdgpu_amdkfd_alloc_gtt_mem( kfd->kgd, size, &kfd->gtt_mem, &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr, false)) { dev_err(kfd_device, "Could not allocate %d bytes\n", size); goto alloc_gtt_mem_failure; } dev_info(kfd_device, "Allocated %d bytes on gart\n", size); /* Initialize GTT sa with 512 byte chunk size */ if (kfd_gtt_sa_init(kfd, size, 512) != 0) { dev_err(kfd_device, "Error initializing gtt sub-allocator\n"); goto kfd_gtt_sa_init_error; } if (kfd_doorbell_init(kfd)) { dev_err(kfd_device, "Error initializing doorbell aperture\n"); goto kfd_doorbell_error; } if (kfd->kfd2kgd->get_hive_id) kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd); if (kfd->kfd2kgd->get_unique_id) kfd->unique_id = kfd->kfd2kgd->get_unique_id(kfd->kgd); if (kfd_interrupt_init(kfd)) { dev_err(kfd_device, "Error initializing interrupts\n"); goto kfd_interrupt_error; } kfd->dqm = device_queue_manager_init(kfd); if (!kfd->dqm) { dev_err(kfd_device, "Error initializing queue manager\n"); goto device_queue_manager_error; } if (kfd_iommu_device_init(kfd)) { dev_err(kfd_device, "Error initializing iommuv2\n"); goto device_iommu_error; } kfd_cwsr_init(kfd); if (kfd_resume(kfd)) goto kfd_resume_error; kfd->dbgmgr = NULL; if (kfd_topology_add_device(kfd)) { dev_err(kfd_device, "Error adding device to topology\n"); goto kfd_topology_add_device_error; } kfd->init_complete = true; dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor, kfd->pdev->device); pr_debug("Starting kfd with the following scheduling policy %d\n", kfd->dqm->sched_policy); goto out; kfd_topology_add_device_error: kfd_resume_error: device_iommu_error: device_queue_manager_uninit(kfd->dqm); device_queue_manager_error: kfd_interrupt_exit(kfd); kfd_interrupt_error: kfd_doorbell_fini(kfd); kfd_doorbell_error: kfd_gtt_sa_fini(kfd); kfd_gtt_sa_init_error: amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem); alloc_gtt_mem_failure: if (hws_gws_support) amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws); dev_err(kfd_device, "device %x:%x NOT added due to errors\n", kfd->pdev->vendor, kfd->pdev->device); out: return kfd->init_complete; } void kgd2kfd_device_exit(struct kfd_dev *kfd) { if (kfd->init_complete) { kgd2kfd_suspend(kfd, false); device_queue_manager_uninit(kfd->dqm); kfd_interrupt_exit(kfd); kfd_topology_remove_device(kfd); kfd_doorbell_fini(kfd); kfd_gtt_sa_fini(kfd); amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem); if (hws_gws_support) amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws); } kfree(kfd); } int kgd2kfd_pre_reset(struct kfd_dev *kfd) { if (!kfd->init_complete) return 0; kfd->dqm->ops.pre_reset(kfd->dqm); kgd2kfd_suspend(kfd, false); kfd_signal_reset_event(kfd); return 0; } /* * Fix me. KFD won't be able to resume existing process for now. * We will keep all existing process in a evicted state and * wait the process to be terminated. */ int kgd2kfd_post_reset(struct kfd_dev *kfd) { int ret; if (!kfd->init_complete) return 0; ret = kfd_resume(kfd); if (ret) return ret; atomic_dec(&kfd_locked); atomic_set(&kfd->sram_ecc_flag, 0); return 0; } bool kfd_is_locked(void) { return (atomic_read(&kfd_locked) > 0); } void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm) { if (!kfd->init_complete) return; /* for runtime suspend, skip locking kfd */ if (!run_pm) { /* For first KFD device suspend all the KFD processes */ if (atomic_inc_return(&kfd_locked) == 1) kfd_suspend_all_processes(); } kfd->dqm->ops.stop(kfd->dqm); kfd_iommu_suspend(kfd); } int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm) { int ret, count; if (!kfd->init_complete) return 0; ret = kfd_resume(kfd); if (ret) return ret; /* for runtime resume, skip unlocking kfd */ if (!run_pm) { count = atomic_dec_return(&kfd_locked); WARN_ONCE(count < 0, "KFD suspend / resume ref. error"); if (count == 0) ret = kfd_resume_all_processes(); } return ret; } static int kfd_resume(struct kfd_dev *kfd) { int err = 0; err = kfd_iommu_resume(kfd); if (err) { dev_err(kfd_device, "Failed to resume IOMMU for device %x:%x\n", kfd->pdev->vendor, kfd->pdev->device); return err; } err = kfd->dqm->ops.start(kfd->dqm); if (err) { dev_err(kfd_device, "Error starting queue manager for device %x:%x\n", kfd->pdev->vendor, kfd->pdev->device); goto dqm_start_error; } return err; dqm_start_error: kfd_iommu_suspend(kfd); return err; } static inline void kfd_queue_work(struct workqueue_struct *wq, struct work_struct *work) { int cpu, new_cpu; cpu = new_cpu = smp_processor_id(); do { new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids; if (cpu_to_node(new_cpu) == numa_node_id()) break; } while (cpu != new_cpu); queue_work_on(new_cpu, wq, work); } /* This is called directly from KGD at ISR. */ void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry) { uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE]; bool is_patched = false; unsigned long flags; if (!kfd->init_complete) return; if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) { dev_err_once(kfd_device, "Ring entry too small\n"); return; } spin_lock_irqsave(&kfd->interrupt_lock, flags); if (kfd->interrupts_active && interrupt_is_wanted(kfd, ih_ring_entry, patched_ihre, &is_patched) && enqueue_ih_ring_entry(kfd, is_patched ? patched_ihre : ih_ring_entry)) kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work); spin_unlock_irqrestore(&kfd->interrupt_lock, flags); } int kgd2kfd_quiesce_mm(struct mm_struct *mm) { struct kfd_process *p; int r; /* Because we are called from arbitrary context (workqueue) as opposed * to process context, kfd_process could attempt to exit while we are * running so the lookup function increments the process ref count. */ p = kfd_lookup_process_by_mm(mm); if (!p) return -ESRCH; r = kfd_process_evict_queues(p); kfd_unref_process(p); return r; } int kgd2kfd_resume_mm(struct mm_struct *mm) { struct kfd_process *p; int r; /* Because we are called from arbitrary context (workqueue) as opposed * to process context, kfd_process could attempt to exit while we are * running so the lookup function increments the process ref count. */ p = kfd_lookup_process_by_mm(mm); if (!p) return -ESRCH; r = kfd_process_restore_queues(p); kfd_unref_process(p); return r; } /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will * prepare for safe eviction of KFD BOs that belong to the specified * process. * * @mm: mm_struct that identifies the specified KFD process * @fence: eviction fence attached to KFD process BOs * */ int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm, struct dma_fence *fence) { struct kfd_process *p; unsigned long active_time; unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS); if (!fence) return -EINVAL; if (dma_fence_is_signaled(fence)) return 0; p = kfd_lookup_process_by_mm(mm); if (!p) return -ENODEV; if (fence->seqno == p->last_eviction_seqno) goto out; p->last_eviction_seqno = fence->seqno; /* Avoid KFD process starvation. Wait for at least * PROCESS_ACTIVE_TIME_MS before evicting the process again */ active_time = get_jiffies_64() - p->last_restore_timestamp; if (delay_jiffies > active_time) delay_jiffies -= active_time; else delay_jiffies = 0; /* During process initialization eviction_work.dwork is initialized * to kfd_evict_bo_worker */ schedule_delayed_work(&p->eviction_work, delay_jiffies); out: kfd_unref_process(p); return 0; } static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size, unsigned int chunk_size) { unsigned int num_of_longs; if (WARN_ON(buf_size < chunk_size)) return -EINVAL; if (WARN_ON(buf_size == 0)) return -EINVAL; if (WARN_ON(chunk_size == 0)) return -EINVAL; kfd->gtt_sa_chunk_size = chunk_size; kfd->gtt_sa_num_of_chunks = buf_size / chunk_size; num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) / BITS_PER_LONG; kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL); if (!kfd->gtt_sa_bitmap) return -ENOMEM; pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n", kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap); mutex_init(&kfd->gtt_sa_lock); return 0; } static void kfd_gtt_sa_fini(struct kfd_dev *kfd) { mutex_destroy(&kfd->gtt_sa_lock); kfree(kfd->gtt_sa_bitmap); } static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr, unsigned int bit_num, unsigned int chunk_size) { return start_addr + bit_num * chunk_size; } static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr, unsigned int bit_num, unsigned int chunk_size) { return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size); } int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size, struct kfd_mem_obj **mem_obj) { unsigned int found, start_search, cur_size; if (size == 0) return -EINVAL; if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size) return -ENOMEM; *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL); if (!(*mem_obj)) return -ENOMEM; pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size); start_search = 0; mutex_lock(&kfd->gtt_sa_lock); kfd_gtt_restart_search: /* Find the first chunk that is free */ found = find_next_zero_bit(kfd->gtt_sa_bitmap, kfd->gtt_sa_num_of_chunks, start_search); pr_debug("Found = %d\n", found); /* If there wasn't any free chunk, bail out */ if (found == kfd->gtt_sa_num_of_chunks) goto kfd_gtt_no_free_chunk; /* Update fields of mem_obj */ (*mem_obj)->range_start = found; (*mem_obj)->range_end = found; (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr( kfd->gtt_start_gpu_addr, found, kfd->gtt_sa_chunk_size); (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr( kfd->gtt_start_cpu_ptr, found, kfd->gtt_sa_chunk_size); pr_debug("gpu_addr = %p, cpu_addr = %p\n", (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr); /* If we need only one chunk, mark it as allocated and get out */ if (size <= kfd->gtt_sa_chunk_size) { pr_debug("Single bit\n"); set_bit(found, kfd->gtt_sa_bitmap); goto kfd_gtt_out; } /* Otherwise, try to see if we have enough contiguous chunks */ cur_size = size - kfd->gtt_sa_chunk_size; do { (*mem_obj)->range_end = find_next_zero_bit(kfd->gtt_sa_bitmap, kfd->gtt_sa_num_of_chunks, ++found); /* * If next free chunk is not contiguous than we need to * restart our search from the last free chunk we found (which * wasn't contiguous to the previous ones */ if ((*mem_obj)->range_end != found) { start_search = found; goto kfd_gtt_restart_search; } /* * If we reached end of buffer, bail out with error */ if (found == kfd->gtt_sa_num_of_chunks) goto kfd_gtt_no_free_chunk; /* Check if we don't need another chunk */ if (cur_size <= kfd->gtt_sa_chunk_size) cur_size = 0; else cur_size -= kfd->gtt_sa_chunk_size; } while (cur_size > 0); pr_debug("range_start = %d, range_end = %d\n", (*mem_obj)->range_start, (*mem_obj)->range_end); /* Mark the chunks as allocated */ for (found = (*mem_obj)->range_start; found <= (*mem_obj)->range_end; found++) set_bit(found, kfd->gtt_sa_bitmap); kfd_gtt_out: mutex_unlock(&kfd->gtt_sa_lock); return 0; kfd_gtt_no_free_chunk: pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj); mutex_unlock(&kfd->gtt_sa_lock); kfree(*mem_obj); return -ENOMEM; } int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj) { unsigned int bit; /* Act like kfree when trying to free a NULL object */ if (!mem_obj) return 0; pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n", mem_obj, mem_obj->range_start, mem_obj->range_end); mutex_lock(&kfd->gtt_sa_lock); /* Mark the chunks as free */ for (bit = mem_obj->range_start; bit <= mem_obj->range_end; bit++) clear_bit(bit, kfd->gtt_sa_bitmap); mutex_unlock(&kfd->gtt_sa_lock); kfree(mem_obj); return 0; } void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd) { if (kfd) atomic_inc(&kfd->sram_ecc_flag); } void kfd_inc_compute_active(struct kfd_dev *kfd) { if (atomic_inc_return(&kfd->compute_profile) == 1) amdgpu_amdkfd_set_compute_idle(kfd->kgd, false); } void kfd_dec_compute_active(struct kfd_dev *kfd) { int count = atomic_dec_return(&kfd->compute_profile); if (count == 0) amdgpu_amdkfd_set_compute_idle(kfd->kgd, true); WARN_ONCE(count < 0, "Compute profile ref. count error"); } #if defined(CONFIG_DEBUG_FS) /* This function will send a package to HIQ to hang the HWS * which will trigger a GPU reset and bring the HWS back to normal state */ int kfd_debugfs_hang_hws(struct kfd_dev *dev) { int r = 0; if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) { pr_err("HWS is not enabled"); return -EINVAL; } r = pm_debugfs_hang_hws(&dev->dqm->packets); if (!r) r = dqm_debugfs_execute_queues(dev->dqm); return r; } #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1