Contributors: 17
Author Tokens Token Proportion Commits Commit Proportion
Harry Wentland 5900 73.37% 6 21.43%
Samson Tam 870 10.82% 2 7.14%
Zeyu Fan 607 7.55% 1 3.57%
Charlene Liu 242 3.01% 1 3.57%
Dmytro Laktyushkin 165 2.05% 2 7.14%
Jun Lei 92 1.14% 1 3.57%
Leo (Sunpeng) Li 66 0.82% 1 3.57%
Hersen Wu 52 0.65% 3 10.71%
Jerry (Fangzhi) Zuo 22 0.27% 3 10.71%
Joe Perches 4 0.05% 1 3.57%
Anthony Koo 4 0.05% 1 3.57%
Ville Syrjälä 4 0.05% 1 3.57%
Joseph Gravenor 3 0.04% 1 3.57%
Sam Ravnborg 3 0.04% 1 3.57%
Dave Airlie 3 0.04% 1 3.57%
Eric Yang 3 0.04% 1 3.57%
Tony Cheng 1 0.01% 1 3.57%
Total 8041 28


/*
 * Copyright 2012-15 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Authors: AMD
 *
 */

#include <linux/slab.h>

#include "dm_services.h"

#include "ObjectID.h"
#include "atomfirmware.h"

#include "dc_bios_types.h"
#include "include/grph_object_ctrl_defs.h"
#include "include/bios_parser_interface.h"
#include "include/i2caux_interface.h"
#include "include/logger_interface.h"

#include "command_table2.h"

#include "bios_parser_helper.h"
#include "command_table_helper2.h"
#include "bios_parser2.h"
#include "bios_parser_types_internal2.h"
#include "bios_parser_interface.h"

#include "bios_parser_common.h"

/* Temporarily add in defines until ObjectID.h patch is updated in a few days */
#ifndef GENERIC_OBJECT_ID_BRACKET_LAYOUT
#define GENERIC_OBJECT_ID_BRACKET_LAYOUT          0x05
#endif /* GENERIC_OBJECT_ID_BRACKET_LAYOUT */

#ifndef GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1
#define GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1	\
	(GRAPH_OBJECT_TYPE_GENERIC << OBJECT_TYPE_SHIFT |\
	GRAPH_OBJECT_ENUM_ID1 << ENUM_ID_SHIFT |\
	GENERIC_OBJECT_ID_BRACKET_LAYOUT << OBJECT_ID_SHIFT)
#endif /* GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1 */

#ifndef GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2
#define GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2	\
	(GRAPH_OBJECT_TYPE_GENERIC << OBJECT_TYPE_SHIFT |\
	GRAPH_OBJECT_ENUM_ID2 << ENUM_ID_SHIFT |\
	GENERIC_OBJECT_ID_BRACKET_LAYOUT << OBJECT_ID_SHIFT)
#endif /* GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2 */

#define DC_LOGGER \
	bp->base.ctx->logger

#define LAST_RECORD_TYPE 0xff
#define SMU9_SYSPLL0_ID  0

struct i2c_id_config_access {
	uint8_t bfI2C_LineMux:4;
	uint8_t bfHW_EngineID:3;
	uint8_t bfHW_Capable:1;
	uint8_t ucAccess;
};

static enum bp_result get_gpio_i2c_info(struct bios_parser *bp,
	struct atom_i2c_record *record,
	struct graphics_object_i2c_info *info);

static enum bp_result bios_parser_get_firmware_info(
	struct dc_bios *dcb,
	struct dc_firmware_info *info);

static enum bp_result bios_parser_get_encoder_cap_info(
	struct dc_bios *dcb,
	struct graphics_object_id object_id,
	struct bp_encoder_cap_info *info);

static enum bp_result get_firmware_info_v3_1(
	struct bios_parser *bp,
	struct dc_firmware_info *info);

static enum bp_result get_firmware_info_v3_2(
	struct bios_parser *bp,
	struct dc_firmware_info *info);

static struct atom_hpd_int_record *get_hpd_record(struct bios_parser *bp,
		struct atom_display_object_path_v2 *object);

static struct atom_encoder_caps_record *get_encoder_cap_record(
	struct bios_parser *bp,
	struct atom_display_object_path_v2 *object);

#define BIOS_IMAGE_SIZE_OFFSET 2
#define BIOS_IMAGE_SIZE_UNIT 512

#define DATA_TABLES(table) (bp->master_data_tbl->listOfdatatables.table)

static void bios_parser2_destruct(struct bios_parser *bp)
{
	kfree(bp->base.bios_local_image);
	kfree(bp->base.integrated_info);
}

static void firmware_parser_destroy(struct dc_bios **dcb)
{
	struct bios_parser *bp = BP_FROM_DCB(*dcb);

	if (!bp) {
		BREAK_TO_DEBUGGER();
		return;
	}

	bios_parser2_destruct(bp);

	kfree(bp);
	*dcb = NULL;
}

static void get_atom_data_table_revision(
	struct atom_common_table_header *atom_data_tbl,
	struct atom_data_revision *tbl_revision)
{
	if (!tbl_revision)
		return;

	/* initialize the revision to 0 which is invalid revision */
	tbl_revision->major = 0;
	tbl_revision->minor = 0;

	if (!atom_data_tbl)
		return;

	tbl_revision->major =
			(uint32_t) atom_data_tbl->format_revision & 0x3f;
	tbl_revision->minor =
			(uint32_t) atom_data_tbl->content_revision & 0x3f;
}

/* BIOS oject table displaypath is per connector.
 * There is extra path not for connector. BIOS fill its encoderid as 0
 */
static uint8_t bios_parser_get_connectors_number(struct dc_bios *dcb)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	unsigned int count = 0;
	unsigned int i;

	for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++) {
		if (bp->object_info_tbl.v1_4->display_path[i].encoderobjid != 0)
			count++;
	}
	return count;
}

static struct graphics_object_id bios_parser_get_connector_id(
	struct dc_bios *dcb,
	uint8_t i)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	struct graphics_object_id object_id = dal_graphics_object_id_init(
		0, ENUM_ID_UNKNOWN, OBJECT_TYPE_UNKNOWN);
	struct object_info_table *tbl = &bp->object_info_tbl;
	struct display_object_info_table_v1_4 *v1_4 = tbl->v1_4;

	if (v1_4->number_of_path > i) {
		/* If display_objid is generic object id,  the encoderObj
		 * /extencoderobjId should be 0
		 */
		if (v1_4->display_path[i].encoderobjid != 0 &&
				v1_4->display_path[i].display_objid != 0)
			object_id = object_id_from_bios_object_id(
					v1_4->display_path[i].display_objid);
	}

	return object_id;
}

static enum bp_result bios_parser_get_src_obj(struct dc_bios *dcb,
	struct graphics_object_id object_id, uint32_t index,
	struct graphics_object_id *src_object_id)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	unsigned int i;
	enum bp_result  bp_result = BP_RESULT_BADINPUT;
	struct graphics_object_id obj_id = {0};
	struct object_info_table *tbl = &bp->object_info_tbl;

	if (!src_object_id)
		return bp_result;

	switch (object_id.type) {
	/* Encoder's Source is GPU.  BIOS does not provide GPU, since all
	 * displaypaths point to same GPU (0x1100).  Hardcode GPU object type
	 */
	case OBJECT_TYPE_ENCODER:
		/* TODO: since num of src must be less than 2.
		 * If found in for loop, should break.
		 * DAL2 implementation may be changed too
		 */
		for (i = 0; i < tbl->v1_4->number_of_path; i++) {
			obj_id = object_id_from_bios_object_id(
			tbl->v1_4->display_path[i].encoderobjid);
			if (object_id.type == obj_id.type &&
					object_id.id == obj_id.id &&
						object_id.enum_id ==
							obj_id.enum_id) {
				*src_object_id =
				object_id_from_bios_object_id(0x1100);
				/* break; */
			}
		}
		bp_result = BP_RESULT_OK;
		break;
	case OBJECT_TYPE_CONNECTOR:
		for (i = 0; i < tbl->v1_4->number_of_path; i++) {
			obj_id = object_id_from_bios_object_id(
				tbl->v1_4->display_path[i].display_objid);

			if (object_id.type == obj_id.type &&
				object_id.id == obj_id.id &&
					object_id.enum_id == obj_id.enum_id) {
				*src_object_id =
				object_id_from_bios_object_id(
				tbl->v1_4->display_path[i].encoderobjid);
				/* break; */
			}
		}
		bp_result = BP_RESULT_OK;
		break;
	default:
		break;
	}

	return bp_result;
}

/* from graphics_object_id, find display path which includes the object_id */
static struct atom_display_object_path_v2 *get_bios_object(
		struct bios_parser *bp,
		struct graphics_object_id id)
{
	unsigned int i;
	struct graphics_object_id obj_id = {0};

	switch (id.type) {
	case OBJECT_TYPE_ENCODER:
		for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++) {
			obj_id = object_id_from_bios_object_id(
					bp->object_info_tbl.v1_4->display_path[i].encoderobjid);
			if (id.type == obj_id.type && id.id == obj_id.id
					&& id.enum_id == obj_id.enum_id)
				return &bp->object_info_tbl.v1_4->display_path[i];
		}
		fallthrough;
	case OBJECT_TYPE_CONNECTOR:
	case OBJECT_TYPE_GENERIC:
		/* Both Generic and Connector Object ID
		 * will be stored on display_objid
		 */
		for (i = 0; i < bp->object_info_tbl.v1_4->number_of_path; i++) {
			obj_id = object_id_from_bios_object_id(
					bp->object_info_tbl.v1_4->display_path[i].display_objid);
			if (id.type == obj_id.type && id.id == obj_id.id
					&& id.enum_id == obj_id.enum_id)
				return &bp->object_info_tbl.v1_4->display_path[i];
		}
		fallthrough;
	default:
		return NULL;
	}
}

static enum bp_result bios_parser_get_i2c_info(struct dc_bios *dcb,
	struct graphics_object_id id,
	struct graphics_object_i2c_info *info)
{
	uint32_t offset;
	struct atom_display_object_path_v2 *object;
	struct atom_common_record_header *header;
	struct atom_i2c_record *record;
	struct atom_i2c_record dummy_record = {0};
	struct bios_parser *bp = BP_FROM_DCB(dcb);

	if (!info)
		return BP_RESULT_BADINPUT;

	if (id.type == OBJECT_TYPE_GENERIC) {
		dummy_record.i2c_id = id.id;

		if (get_gpio_i2c_info(bp, &dummy_record, info) == BP_RESULT_OK)
			return BP_RESULT_OK;
		else
			return BP_RESULT_NORECORD;
	}

	object = get_bios_object(bp, id);

	if (!object)
		return BP_RESULT_BADINPUT;

	offset = object->disp_recordoffset + bp->object_info_tbl_offset;

	for (;;) {
		header = GET_IMAGE(struct atom_common_record_header, offset);

		if (!header)
			return BP_RESULT_BADBIOSTABLE;

		if (header->record_type == LAST_RECORD_TYPE ||
			!header->record_size)
			break;

		if (header->record_type == ATOM_I2C_RECORD_TYPE
			&& sizeof(struct atom_i2c_record) <=
							header->record_size) {
			/* get the I2C info */
			record = (struct atom_i2c_record *) header;

			if (get_gpio_i2c_info(bp, record, info) ==
								BP_RESULT_OK)
				return BP_RESULT_OK;
		}

		offset += header->record_size;
	}

	return BP_RESULT_NORECORD;
}

static enum bp_result get_gpio_i2c_info(
	struct bios_parser *bp,
	struct atom_i2c_record *record,
	struct graphics_object_i2c_info *info)
{
	struct atom_gpio_pin_lut_v2_1 *header;
	uint32_t count = 0;
	unsigned int table_index = 0;
	bool find_valid = false;

	if (!info)
		return BP_RESULT_BADINPUT;

	/* get the GPIO_I2C info */
	if (!DATA_TABLES(gpio_pin_lut))
		return BP_RESULT_BADBIOSTABLE;

	header = GET_IMAGE(struct atom_gpio_pin_lut_v2_1,
					DATA_TABLES(gpio_pin_lut));
	if (!header)
		return BP_RESULT_BADBIOSTABLE;

	if (sizeof(struct atom_common_table_header) +
			sizeof(struct atom_gpio_pin_assignment)	>
			le16_to_cpu(header->table_header.structuresize))
		return BP_RESULT_BADBIOSTABLE;

	/* TODO: is version change? */
	if (header->table_header.content_revision != 1)
		return BP_RESULT_UNSUPPORTED;

	/* get data count */
	count = (le16_to_cpu(header->table_header.structuresize)
			- sizeof(struct atom_common_table_header))
				/ sizeof(struct atom_gpio_pin_assignment);

	for (table_index = 0; table_index < count; table_index++) {
		if (((record->i2c_id & I2C_HW_CAP) == (
		header->gpio_pin[table_index].gpio_id &
						I2C_HW_CAP)) &&
		((record->i2c_id & I2C_HW_ENGINE_ID_MASK)  ==
		(header->gpio_pin[table_index].gpio_id &
					I2C_HW_ENGINE_ID_MASK)) &&
		((record->i2c_id & I2C_HW_LANE_MUX) ==
		(header->gpio_pin[table_index].gpio_id &
						I2C_HW_LANE_MUX))) {
			/* still valid */
			find_valid = true;
			break;
		}
	}

	/* If we don't find the entry that we are looking for then
	 *  we will return BP_Result_BadBiosTable.
	 */
	if (find_valid == false)
		return BP_RESULT_BADBIOSTABLE;

	/* get the GPIO_I2C_INFO */
	info->i2c_hw_assist = (record->i2c_id & I2C_HW_CAP) ? true : false;
	info->i2c_line = record->i2c_id & I2C_HW_LANE_MUX;
	info->i2c_engine_id = (record->i2c_id & I2C_HW_ENGINE_ID_MASK) >> 4;
	info->i2c_slave_address = record->i2c_slave_addr;

	/* TODO: check how to get register offset for en, Y, etc. */
	info->gpio_info.clk_a_register_index =
			le16_to_cpu(
			header->gpio_pin[table_index].data_a_reg_index);
	info->gpio_info.clk_a_shift =
			header->gpio_pin[table_index].gpio_bitshift;

	return BP_RESULT_OK;
}

static enum bp_result bios_parser_get_hpd_info(
	struct dc_bios *dcb,
	struct graphics_object_id id,
	struct graphics_object_hpd_info *info)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	struct atom_display_object_path_v2 *object;
	struct atom_hpd_int_record *record = NULL;

	if (!info)
		return BP_RESULT_BADINPUT;

	object = get_bios_object(bp, id);

	if (!object)
		return BP_RESULT_BADINPUT;

	record = get_hpd_record(bp, object);

	if (record != NULL) {
		info->hpd_int_gpio_uid = record->pin_id;
		info->hpd_active = record->plugin_pin_state;
		return BP_RESULT_OK;
	}

	return BP_RESULT_NORECORD;
}

static struct atom_hpd_int_record *get_hpd_record(
	struct bios_parser *bp,
	struct atom_display_object_path_v2 *object)
{
	struct atom_common_record_header *header;
	uint32_t offset;

	if (!object) {
		BREAK_TO_DEBUGGER(); /* Invalid object */
		return NULL;
	}

	offset = le16_to_cpu(object->disp_recordoffset)
			+ bp->object_info_tbl_offset;

	for (;;) {
		header = GET_IMAGE(struct atom_common_record_header, offset);

		if (!header)
			return NULL;

		if (header->record_type == LAST_RECORD_TYPE ||
			!header->record_size)
			break;

		if (header->record_type == ATOM_HPD_INT_RECORD_TYPE
			&& sizeof(struct atom_hpd_int_record) <=
							header->record_size)
			return (struct atom_hpd_int_record *) header;

		offset += header->record_size;
	}

	return NULL;
}

/**
 * bios_parser_get_gpio_pin_info
 * Get GpioPin information of input gpio id
 *
 * @param gpio_id, GPIO ID
 * @param info, GpioPin information structure
 * @return Bios parser result code
 * @note
 *  to get the GPIO PIN INFO, we need:
 *  1. get the GPIO_ID from other object table, see GetHPDInfo()
 *  2. in DATA_TABLE.GPIO_Pin_LUT, search all records,
 *	to get the registerA  offset/mask
 */
static enum bp_result bios_parser_get_gpio_pin_info(
	struct dc_bios *dcb,
	uint32_t gpio_id,
	struct gpio_pin_info *info)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	struct atom_gpio_pin_lut_v2_1 *header;
	uint32_t count = 0;
	uint32_t i = 0;

	if (!DATA_TABLES(gpio_pin_lut))
		return BP_RESULT_BADBIOSTABLE;

	header = GET_IMAGE(struct atom_gpio_pin_lut_v2_1,
						DATA_TABLES(gpio_pin_lut));
	if (!header)
		return BP_RESULT_BADBIOSTABLE;

	if (sizeof(struct atom_common_table_header) +
			sizeof(struct atom_gpio_pin_assignment)
			> le16_to_cpu(header->table_header.structuresize))
		return BP_RESULT_BADBIOSTABLE;

	if (header->table_header.content_revision != 1)
		return BP_RESULT_UNSUPPORTED;

	/* Temporary hard code gpio pin info */
#if defined(FOR_SIMNOW_BOOT)
	{
		struct  atom_gpio_pin_assignment  gpio_pin[8] = {
				{0x5db5, 0, 0, 1, 0},
				{0x5db5, 8, 8, 2, 0},
				{0x5db5, 0x10, 0x10, 3, 0},
				{0x5db5, 0x18, 0x14, 4, 0},
				{0x5db5, 0x1A, 0x18, 5, 0},
				{0x5db5, 0x1C, 0x1C, 6, 0},
		};

		count = 6;
		memmove(header->gpio_pin, gpio_pin, sizeof(gpio_pin));
	}
#else
	count = (le16_to_cpu(header->table_header.structuresize)
			- sizeof(struct atom_common_table_header))
				/ sizeof(struct atom_gpio_pin_assignment);
#endif
	for (i = 0; i < count; ++i) {
		if (header->gpio_pin[i].gpio_id != gpio_id)
			continue;

		info->offset =
			(uint32_t) le16_to_cpu(
					header->gpio_pin[i].data_a_reg_index);
		info->offset_y = info->offset + 2;
		info->offset_en = info->offset + 1;
		info->offset_mask = info->offset - 1;

		info->mask = (uint32_t) (1 <<
			header->gpio_pin[i].gpio_bitshift);
		info->mask_y = info->mask + 2;
		info->mask_en = info->mask + 1;
		info->mask_mask = info->mask - 1;

		return BP_RESULT_OK;
	}

	return BP_RESULT_NORECORD;
}

static struct device_id device_type_from_device_id(uint16_t device_id)
{

	struct device_id result_device_id;

	result_device_id.raw_device_tag = device_id;

	switch (device_id) {
	case ATOM_DISPLAY_LCD1_SUPPORT:
		result_device_id.device_type = DEVICE_TYPE_LCD;
		result_device_id.enum_id = 1;
		break;

	case ATOM_DISPLAY_DFP1_SUPPORT:
		result_device_id.device_type = DEVICE_TYPE_DFP;
		result_device_id.enum_id = 1;
		break;

	case ATOM_DISPLAY_DFP2_SUPPORT:
		result_device_id.device_type = DEVICE_TYPE_DFP;
		result_device_id.enum_id = 2;
		break;

	case ATOM_DISPLAY_DFP3_SUPPORT:
		result_device_id.device_type = DEVICE_TYPE_DFP;
		result_device_id.enum_id = 3;
		break;

	case ATOM_DISPLAY_DFP4_SUPPORT:
		result_device_id.device_type = DEVICE_TYPE_DFP;
		result_device_id.enum_id = 4;
		break;

	case ATOM_DISPLAY_DFP5_SUPPORT:
		result_device_id.device_type = DEVICE_TYPE_DFP;
		result_device_id.enum_id = 5;
		break;

	case ATOM_DISPLAY_DFP6_SUPPORT:
		result_device_id.device_type = DEVICE_TYPE_DFP;
		result_device_id.enum_id = 6;
		break;

	default:
		BREAK_TO_DEBUGGER(); /* Invalid device Id */
		result_device_id.device_type = DEVICE_TYPE_UNKNOWN;
		result_device_id.enum_id = 0;
	}
	return result_device_id;
}

static enum bp_result bios_parser_get_device_tag(
	struct dc_bios *dcb,
	struct graphics_object_id connector_object_id,
	uint32_t device_tag_index,
	struct connector_device_tag_info *info)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	struct atom_display_object_path_v2 *object;

	if (!info)
		return BP_RESULT_BADINPUT;

	/* getBiosObject will return MXM object */
	object = get_bios_object(bp, connector_object_id);

	if (!object) {
		BREAK_TO_DEBUGGER(); /* Invalid object id */
		return BP_RESULT_BADINPUT;
	}

	info->acpi_device = 0; /* BIOS no longer provides this */
	info->dev_id = device_type_from_device_id(object->device_tag);

	return BP_RESULT_OK;
}

static enum bp_result get_ss_info_v4_1(
	struct bios_parser *bp,
	uint32_t id,
	uint32_t index,
	struct spread_spectrum_info *ss_info)
{
	enum bp_result result = BP_RESULT_OK;
	struct atom_display_controller_info_v4_1 *disp_cntl_tbl = NULL;
	struct atom_smu_info_v3_3 *smu_info = NULL;

	if (!ss_info)
		return BP_RESULT_BADINPUT;

	if (!DATA_TABLES(dce_info))
		return BP_RESULT_BADBIOSTABLE;

	disp_cntl_tbl =  GET_IMAGE(struct atom_display_controller_info_v4_1,
							DATA_TABLES(dce_info));
	if (!disp_cntl_tbl)
		return BP_RESULT_BADBIOSTABLE;


	ss_info->type.STEP_AND_DELAY_INFO = false;
	ss_info->spread_percentage_divider = 1000;
	/* BIOS no longer uses target clock.  Always enable for now */
	ss_info->target_clock_range = 0xffffffff;

	switch (id) {
	case AS_SIGNAL_TYPE_DVI:
		ss_info->spread_spectrum_percentage =
				disp_cntl_tbl->dvi_ss_percentage;
		ss_info->spread_spectrum_range =
				disp_cntl_tbl->dvi_ss_rate_10hz * 10;
		if (disp_cntl_tbl->dvi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
			ss_info->type.CENTER_MODE = true;
		break;
	case AS_SIGNAL_TYPE_HDMI:
		ss_info->spread_spectrum_percentage =
				disp_cntl_tbl->hdmi_ss_percentage;
		ss_info->spread_spectrum_range =
				disp_cntl_tbl->hdmi_ss_rate_10hz * 10;
		if (disp_cntl_tbl->hdmi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
			ss_info->type.CENTER_MODE = true;
		break;
	/* TODO LVDS not support anymore? */
	case AS_SIGNAL_TYPE_DISPLAY_PORT:
		ss_info->spread_spectrum_percentage =
				disp_cntl_tbl->dp_ss_percentage;
		ss_info->spread_spectrum_range =
				disp_cntl_tbl->dp_ss_rate_10hz * 10;
		if (disp_cntl_tbl->dp_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
			ss_info->type.CENTER_MODE = true;
		break;
	case AS_SIGNAL_TYPE_GPU_PLL:
		/* atom_firmware: DAL only get data from dce_info table.
		 * if data within smu_info is needed for DAL, VBIOS should
		 * copy it into dce_info
		 */
		result = BP_RESULT_UNSUPPORTED;
		break;
	case AS_SIGNAL_TYPE_XGMI:
		smu_info =  GET_IMAGE(struct atom_smu_info_v3_3,
				      DATA_TABLES(smu_info));
		if (!smu_info)
			return BP_RESULT_BADBIOSTABLE;

		ss_info->spread_spectrum_percentage =
				smu_info->waflclk_ss_percentage;
		ss_info->spread_spectrum_range =
				smu_info->gpuclk_ss_rate_10hz * 10;
		if (smu_info->waflclk_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
			ss_info->type.CENTER_MODE = true;
		break;
	default:
		result = BP_RESULT_UNSUPPORTED;
	}

	return result;
}

static enum bp_result get_ss_info_v4_2(
	struct bios_parser *bp,
	uint32_t id,
	uint32_t index,
	struct spread_spectrum_info *ss_info)
{
	enum bp_result result = BP_RESULT_OK;
	struct atom_display_controller_info_v4_2 *disp_cntl_tbl = NULL;
	struct atom_smu_info_v3_1 *smu_info = NULL;

	if (!ss_info)
		return BP_RESULT_BADINPUT;

	if (!DATA_TABLES(dce_info))
		return BP_RESULT_BADBIOSTABLE;

	if (!DATA_TABLES(smu_info))
		return BP_RESULT_BADBIOSTABLE;

	disp_cntl_tbl =  GET_IMAGE(struct atom_display_controller_info_v4_2,
							DATA_TABLES(dce_info));
	if (!disp_cntl_tbl)
		return BP_RESULT_BADBIOSTABLE;

	smu_info =  GET_IMAGE(struct atom_smu_info_v3_1, DATA_TABLES(smu_info));
	if (!smu_info)
		return BP_RESULT_BADBIOSTABLE;

	ss_info->type.STEP_AND_DELAY_INFO = false;
	ss_info->spread_percentage_divider = 1000;
	/* BIOS no longer uses target clock.  Always enable for now */
	ss_info->target_clock_range = 0xffffffff;

	switch (id) {
	case AS_SIGNAL_TYPE_DVI:
		ss_info->spread_spectrum_percentage =
				disp_cntl_tbl->dvi_ss_percentage;
		ss_info->spread_spectrum_range =
				disp_cntl_tbl->dvi_ss_rate_10hz * 10;
		if (disp_cntl_tbl->dvi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
			ss_info->type.CENTER_MODE = true;
		break;
	case AS_SIGNAL_TYPE_HDMI:
		ss_info->spread_spectrum_percentage =
				disp_cntl_tbl->hdmi_ss_percentage;
		ss_info->spread_spectrum_range =
				disp_cntl_tbl->hdmi_ss_rate_10hz * 10;
		if (disp_cntl_tbl->hdmi_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
			ss_info->type.CENTER_MODE = true;
		break;
	/* TODO LVDS not support anymore? */
	case AS_SIGNAL_TYPE_DISPLAY_PORT:
		ss_info->spread_spectrum_percentage =
				smu_info->gpuclk_ss_percentage;
		ss_info->spread_spectrum_range =
				smu_info->gpuclk_ss_rate_10hz * 10;
		if (smu_info->gpuclk_ss_mode & ATOM_SS_CENTRE_SPREAD_MODE)
			ss_info->type.CENTER_MODE = true;
		break;
	case AS_SIGNAL_TYPE_GPU_PLL:
		/* atom_firmware: DAL only get data from dce_info table.
		 * if data within smu_info is needed for DAL, VBIOS should
		 * copy it into dce_info
		 */
		result = BP_RESULT_UNSUPPORTED;
		break;
	default:
		result = BP_RESULT_UNSUPPORTED;
	}

	return result;
}

/**
 * bios_parser_get_spread_spectrum_info
 * Get spread spectrum information from the ASIC_InternalSS_Info(ver 2.1 or
 * ver 3.1) or SS_Info table from the VBIOS. Currently ASIC_InternalSS_Info
 * ver 2.1 can co-exist with SS_Info table. Expect ASIC_InternalSS_Info
 * ver 3.1,
 * there is only one entry for each signal /ss id.  However, there is
 * no planning of supporting multiple spread Sprectum entry for EverGreen
 * @param [in] this
 * @param [in] signal, ASSignalType to be converted to info index
 * @param [in] index, number of entries that match the converted info index
 * @param [out] ss_info, sprectrum information structure,
 * @return Bios parser result code
 */
static enum bp_result bios_parser_get_spread_spectrum_info(
	struct dc_bios *dcb,
	enum as_signal_type signal,
	uint32_t index,
	struct spread_spectrum_info *ss_info)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	enum bp_result result = BP_RESULT_UNSUPPORTED;
	struct atom_common_table_header *header;
	struct atom_data_revision tbl_revision;

	if (!ss_info) /* check for bad input */
		return BP_RESULT_BADINPUT;

	if (!DATA_TABLES(dce_info))
		return BP_RESULT_UNSUPPORTED;

	header = GET_IMAGE(struct atom_common_table_header,
						DATA_TABLES(dce_info));
	get_atom_data_table_revision(header, &tbl_revision);

	switch (tbl_revision.major) {
	case 4:
		switch (tbl_revision.minor) {
		case 1:
			return get_ss_info_v4_1(bp, signal, index, ss_info);
		case 2:
		case 3:
			return get_ss_info_v4_2(bp, signal, index, ss_info);
		default:
			break;
		}
		break;
	default:
		break;
	}
	/* there can not be more then one entry for SS Info table */
	return result;
}

static enum bp_result get_embedded_panel_info_v2_1(
		struct bios_parser *bp,
		struct embedded_panel_info *info)
{
	struct lcd_info_v2_1 *lvds;

	if (!info)
		return BP_RESULT_BADINPUT;

	if (!DATA_TABLES(lcd_info))
		return BP_RESULT_UNSUPPORTED;

	lvds = GET_IMAGE(struct lcd_info_v2_1, DATA_TABLES(lcd_info));

	if (!lvds)
		return BP_RESULT_BADBIOSTABLE;

	/* TODO: previous vv1_3, should v2_1 */
	if (!((lvds->table_header.format_revision == 2)
			&& (lvds->table_header.content_revision >= 1)))
		return BP_RESULT_UNSUPPORTED;

	memset(info, 0, sizeof(struct embedded_panel_info));

	/* We need to convert from 10KHz units into KHz units */
	info->lcd_timing.pixel_clk = le16_to_cpu(lvds->lcd_timing.pixclk) * 10;
	/* usHActive does not include borders, according to VBIOS team */
	info->lcd_timing.horizontal_addressable = le16_to_cpu(lvds->lcd_timing.h_active);
	/* usHBlanking_Time includes borders, so we should really be
	 * subtractingborders duing this translation, but LVDS generally
	 * doesn't have borders, so we should be okay leaving this as is for
	 * now.  May need to revisit if we ever have LVDS with borders
	 */
	info->lcd_timing.horizontal_blanking_time = le16_to_cpu(lvds->lcd_timing.h_blanking_time);
	/* usVActive does not include borders, according to VBIOS team*/
	info->lcd_timing.vertical_addressable = le16_to_cpu(lvds->lcd_timing.v_active);
	/* usVBlanking_Time includes borders, so we should really be
	 * subtracting borders duing this translation, but LVDS generally
	 * doesn't have borders, so we should be okay leaving this as is for
	 * now. May need to revisit if we ever have LVDS with borders
	 */
	info->lcd_timing.vertical_blanking_time = le16_to_cpu(lvds->lcd_timing.v_blanking_time);
	info->lcd_timing.horizontal_sync_offset = le16_to_cpu(lvds->lcd_timing.h_sync_offset);
	info->lcd_timing.horizontal_sync_width = le16_to_cpu(lvds->lcd_timing.h_sync_width);
	info->lcd_timing.vertical_sync_offset = le16_to_cpu(lvds->lcd_timing.v_sync_offset);
	info->lcd_timing.vertical_sync_width = le16_to_cpu(lvds->lcd_timing.v_syncwidth);
	info->lcd_timing.horizontal_border = lvds->lcd_timing.h_border;
	info->lcd_timing.vertical_border = lvds->lcd_timing.v_border;

	/* not provided by VBIOS */
	info->lcd_timing.misc_info.HORIZONTAL_CUT_OFF = 0;

	info->lcd_timing.misc_info.H_SYNC_POLARITY = ~(uint32_t) (lvds->lcd_timing.miscinfo
			& ATOM_HSYNC_POLARITY);
	info->lcd_timing.misc_info.V_SYNC_POLARITY = ~(uint32_t) (lvds->lcd_timing.miscinfo
			& ATOM_VSYNC_POLARITY);

	/* not provided by VBIOS */
	info->lcd_timing.misc_info.VERTICAL_CUT_OFF = 0;

	info->lcd_timing.misc_info.H_REPLICATION_BY2 = !!(lvds->lcd_timing.miscinfo
			& ATOM_H_REPLICATIONBY2);
	info->lcd_timing.misc_info.V_REPLICATION_BY2 = !!(lvds->lcd_timing.miscinfo
			& ATOM_V_REPLICATIONBY2);
	info->lcd_timing.misc_info.COMPOSITE_SYNC = !!(lvds->lcd_timing.miscinfo
			& ATOM_COMPOSITESYNC);
	info->lcd_timing.misc_info.INTERLACE = !!(lvds->lcd_timing.miscinfo & ATOM_INTERLACE);

	/* not provided by VBIOS*/
	info->lcd_timing.misc_info.DOUBLE_CLOCK = 0;
	/* not provided by VBIOS*/
	info->ss_id = 0;

	info->realtek_eDPToLVDS = !!(lvds->dplvdsrxid == eDP_TO_LVDS_REALTEK_ID);

	return BP_RESULT_OK;
}

static enum bp_result bios_parser_get_embedded_panel_info(
		struct dc_bios *dcb,
		struct embedded_panel_info *info)
{
	struct bios_parser
	*bp = BP_FROM_DCB(dcb);
	struct atom_common_table_header *header;
	struct atom_data_revision tbl_revision;

	if (!DATA_TABLES(lcd_info))
		return BP_RESULT_FAILURE;

	header = GET_IMAGE(struct atom_common_table_header, DATA_TABLES(lcd_info));

	if (!header)
		return BP_RESULT_BADBIOSTABLE;

	get_atom_data_table_revision(header, &tbl_revision);

	switch (tbl_revision.major) {
	case 2:
		switch (tbl_revision.minor) {
		case 1:
			return get_embedded_panel_info_v2_1(bp, info);
		default:
			break;
		}
	default:
		break;
	}

	return BP_RESULT_FAILURE;
}

static uint32_t get_support_mask_for_device_id(struct device_id device_id)
{
	enum dal_device_type device_type = device_id.device_type;
	uint32_t enum_id = device_id.enum_id;

	switch (device_type) {
	case DEVICE_TYPE_LCD:
		switch (enum_id) {
		case 1:
			return ATOM_DISPLAY_LCD1_SUPPORT;
		default:
			break;
		}
		break;
	case DEVICE_TYPE_DFP:
		switch (enum_id) {
		case 1:
			return ATOM_DISPLAY_DFP1_SUPPORT;
		case 2:
			return ATOM_DISPLAY_DFP2_SUPPORT;
		case 3:
			return ATOM_DISPLAY_DFP3_SUPPORT;
		case 4:
			return ATOM_DISPLAY_DFP4_SUPPORT;
		case 5:
			return ATOM_DISPLAY_DFP5_SUPPORT;
		case 6:
			return ATOM_DISPLAY_DFP6_SUPPORT;
		default:
			break;
		}
		break;
	default:
		break;
	}

	/* Unidentified device ID, return empty support mask. */
	return 0;
}

static bool bios_parser_is_device_id_supported(
	struct dc_bios *dcb,
	struct device_id id)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);

	uint32_t mask = get_support_mask_for_device_id(id);

	return (le16_to_cpu(bp->object_info_tbl.v1_4->supporteddevices) &
								mask) != 0;
}

static uint32_t bios_parser_get_ss_entry_number(
	struct dc_bios *dcb,
	enum as_signal_type signal)
{
	/* TODO: DAL2 atomfirmware implementation does not need this.
	 * why DAL3 need this?
	 */
	return 1;
}

static enum bp_result bios_parser_transmitter_control(
	struct dc_bios *dcb,
	struct bp_transmitter_control *cntl)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);

	if (!bp->cmd_tbl.transmitter_control)
		return BP_RESULT_FAILURE;

	return bp->cmd_tbl.transmitter_control(bp, cntl);
}

static enum bp_result bios_parser_encoder_control(
	struct dc_bios *dcb,
	struct bp_encoder_control *cntl)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);

	if (!bp->cmd_tbl.dig_encoder_control)
		return BP_RESULT_FAILURE;

	return bp->cmd_tbl.dig_encoder_control(bp, cntl);
}

static enum bp_result bios_parser_set_pixel_clock(
	struct dc_bios *dcb,
	struct bp_pixel_clock_parameters *bp_params)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);

	if (!bp->cmd_tbl.set_pixel_clock)
		return BP_RESULT_FAILURE;

	return bp->cmd_tbl.set_pixel_clock(bp, bp_params);
}

static enum bp_result bios_parser_set_dce_clock(
	struct dc_bios *dcb,
	struct bp_set_dce_clock_parameters *bp_params)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);

	if (!bp->cmd_tbl.set_dce_clock)
		return BP_RESULT_FAILURE;

	return bp->cmd_tbl.set_dce_clock(bp, bp_params);
}

static enum bp_result bios_parser_program_crtc_timing(
	struct dc_bios *dcb,
	struct bp_hw_crtc_timing_parameters *bp_params)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);

	if (!bp->cmd_tbl.set_crtc_timing)
		return BP_RESULT_FAILURE;

	return bp->cmd_tbl.set_crtc_timing(bp, bp_params);
}

static enum bp_result bios_parser_enable_crtc(
	struct dc_bios *dcb,
	enum controller_id id,
	bool enable)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);

	if (!bp->cmd_tbl.enable_crtc)
		return BP_RESULT_FAILURE;

	return bp->cmd_tbl.enable_crtc(bp, id, enable);
}

static enum bp_result bios_parser_enable_disp_power_gating(
	struct dc_bios *dcb,
	enum controller_id controller_id,
	enum bp_pipe_control_action action)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);

	if (!bp->cmd_tbl.enable_disp_power_gating)
		return BP_RESULT_FAILURE;

	return bp->cmd_tbl.enable_disp_power_gating(bp, controller_id,
		action);
}

static bool bios_parser_is_accelerated_mode(
	struct dc_bios *dcb)
{
	return bios_is_accelerated_mode(dcb);
}

/**
 * bios_parser_set_scratch_critical_state
 *
 * @brief
 *  update critical state bit in VBIOS scratch register
 *
 * @param
 *  bool - to set or reset state
 */
static void bios_parser_set_scratch_critical_state(
	struct dc_bios *dcb,
	bool state)
{
	bios_set_scratch_critical_state(dcb, state);
}

static enum bp_result bios_parser_get_firmware_info(
	struct dc_bios *dcb,
	struct dc_firmware_info *info)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	enum bp_result result = BP_RESULT_BADBIOSTABLE;
	struct atom_common_table_header *header;

	struct atom_data_revision revision;

	if (info && DATA_TABLES(firmwareinfo)) {
		header = GET_IMAGE(struct atom_common_table_header,
				DATA_TABLES(firmwareinfo));
		get_atom_data_table_revision(header, &revision);
		switch (revision.major) {
		case 3:
			switch (revision.minor) {
			case 1:
				result = get_firmware_info_v3_1(bp, info);
				break;
			case 2:
				result = get_firmware_info_v3_2(bp, info);
				break;
			case 3:
				result = get_firmware_info_v3_2(bp, info);
				break;
			default:
				break;
			}
			break;
		default:
			break;
		}
	}

	return result;
}

static enum bp_result get_firmware_info_v3_1(
	struct bios_parser *bp,
	struct dc_firmware_info *info)
{
	struct atom_firmware_info_v3_1 *firmware_info;
	struct atom_display_controller_info_v4_1 *dce_info = NULL;

	if (!info)
		return BP_RESULT_BADINPUT;

	firmware_info = GET_IMAGE(struct atom_firmware_info_v3_1,
			DATA_TABLES(firmwareinfo));

	dce_info = GET_IMAGE(struct atom_display_controller_info_v4_1,
			DATA_TABLES(dce_info));

	if (!firmware_info || !dce_info)
		return BP_RESULT_BADBIOSTABLE;

	memset(info, 0, sizeof(*info));

	/* Pixel clock pll information. */
	 /* We need to convert from 10KHz units into KHz units */
	info->default_memory_clk = firmware_info->bootup_mclk_in10khz * 10;
	info->default_engine_clk = firmware_info->bootup_sclk_in10khz * 10;

	 /* 27MHz for Vega10: */
	info->pll_info.crystal_frequency = dce_info->dce_refclk_10khz * 10;

	/* Hardcode frequency if BIOS gives no DCE Ref Clk */
	if (info->pll_info.crystal_frequency == 0)
		info->pll_info.crystal_frequency = 27000;
	/*dp_phy_ref_clk is not correct for atom_display_controller_info_v4_2, but we don't use it*/
	info->dp_phy_ref_clk     = dce_info->dpphy_refclk_10khz * 10;
	info->i2c_engine_ref_clk = dce_info->i2c_engine_refclk_10khz * 10;

	/* Get GPU PLL VCO Clock */

	if (bp->cmd_tbl.get_smu_clock_info != NULL) {
		/* VBIOS gives in 10KHz */
		info->smu_gpu_pll_output_freq =
				bp->cmd_tbl.get_smu_clock_info(bp, SMU9_SYSPLL0_ID) * 10;
	}

	info->oem_i2c_present = false;

	return BP_RESULT_OK;
}

static enum bp_result get_firmware_info_v3_2(
	struct bios_parser *bp,
	struct dc_firmware_info *info)
{
	struct atom_firmware_info_v3_2 *firmware_info;
	struct atom_display_controller_info_v4_1 *dce_info = NULL;
	struct atom_common_table_header *header;
	struct atom_data_revision revision;
	struct atom_smu_info_v3_2 *smu_info_v3_2 = NULL;
	struct atom_smu_info_v3_3 *smu_info_v3_3 = NULL;

	if (!info)
		return BP_RESULT_BADINPUT;

	firmware_info = GET_IMAGE(struct atom_firmware_info_v3_2,
			DATA_TABLES(firmwareinfo));

	dce_info = GET_IMAGE(struct atom_display_controller_info_v4_1,
			DATA_TABLES(dce_info));

	if (!firmware_info || !dce_info)
		return BP_RESULT_BADBIOSTABLE;

	memset(info, 0, sizeof(*info));

	header = GET_IMAGE(struct atom_common_table_header,
					DATA_TABLES(smu_info));
	get_atom_data_table_revision(header, &revision);

	if (revision.minor == 2) {
		/* Vega12 */
		smu_info_v3_2 = GET_IMAGE(struct atom_smu_info_v3_2,
							DATA_TABLES(smu_info));

		if (!smu_info_v3_2)
			return BP_RESULT_BADBIOSTABLE;

		info->default_engine_clk = smu_info_v3_2->bootup_dcefclk_10khz * 10;
	} else if (revision.minor == 3) {
		/* Vega20 */
		smu_info_v3_3 = GET_IMAGE(struct atom_smu_info_v3_3,
							DATA_TABLES(smu_info));

		if (!smu_info_v3_3)
			return BP_RESULT_BADBIOSTABLE;

		info->default_engine_clk = smu_info_v3_3->bootup_dcefclk_10khz * 10;
	}

	 // We need to convert from 10KHz units into KHz units.
	info->default_memory_clk = firmware_info->bootup_mclk_in10khz * 10;

	 /* 27MHz for Vega10 & Vega12; 100MHz for Vega20 */
	info->pll_info.crystal_frequency = dce_info->dce_refclk_10khz * 10;
	/* Hardcode frequency if BIOS gives no DCE Ref Clk */
	if (info->pll_info.crystal_frequency == 0) {
		if (revision.minor == 2)
			info->pll_info.crystal_frequency = 27000;
		else if (revision.minor == 3)
			info->pll_info.crystal_frequency = 100000;
	}
	/*dp_phy_ref_clk is not correct for atom_display_controller_info_v4_2, but we don't use it*/
	info->dp_phy_ref_clk     = dce_info->dpphy_refclk_10khz * 10;
	info->i2c_engine_ref_clk = dce_info->i2c_engine_refclk_10khz * 10;

	/* Get GPU PLL VCO Clock */
	if (bp->cmd_tbl.get_smu_clock_info != NULL) {
		if (revision.minor == 2)
			info->smu_gpu_pll_output_freq =
					bp->cmd_tbl.get_smu_clock_info(bp, SMU9_SYSPLL0_ID) * 10;
		else if (revision.minor == 3)
			info->smu_gpu_pll_output_freq =
					bp->cmd_tbl.get_smu_clock_info(bp, SMU11_SYSPLL3_0_ID) * 10;
	}

	if (firmware_info->board_i2c_feature_id == 0x2) {
		info->oem_i2c_present = true;
		info->oem_i2c_obj_id = firmware_info->board_i2c_feature_gpio_id;
	} else {
		info->oem_i2c_present = false;
	}

	return BP_RESULT_OK;
}

static enum bp_result bios_parser_get_encoder_cap_info(
	struct dc_bios *dcb,
	struct graphics_object_id object_id,
	struct bp_encoder_cap_info *info)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	struct atom_display_object_path_v2 *object;
	struct atom_encoder_caps_record *record = NULL;

	if (!info)
		return BP_RESULT_BADINPUT;

	object = get_bios_object(bp, object_id);

	if (!object)
		return BP_RESULT_BADINPUT;

	record = get_encoder_cap_record(bp, object);
	if (!record)
		return BP_RESULT_NORECORD;

	info->DP_HBR2_CAP = (record->encodercaps &
			ATOM_ENCODER_CAP_RECORD_HBR2) ? 1 : 0;
	info->DP_HBR2_EN = (record->encodercaps &
			ATOM_ENCODER_CAP_RECORD_HBR2_EN) ? 1 : 0;
	info->DP_HBR3_EN = (record->encodercaps &
			ATOM_ENCODER_CAP_RECORD_HBR3_EN) ? 1 : 0;
	info->HDMI_6GB_EN = (record->encodercaps &
			ATOM_ENCODER_CAP_RECORD_HDMI6Gbps_EN) ? 1 : 0;
	info->DP_IS_USB_C = (record->encodercaps &
			ATOM_ENCODER_CAP_RECORD_USB_C_TYPE) ? 1 : 0;

	return BP_RESULT_OK;
}


static struct atom_encoder_caps_record *get_encoder_cap_record(
	struct bios_parser *bp,
	struct atom_display_object_path_v2 *object)
{
	struct atom_common_record_header *header;
	uint32_t offset;

	if (!object) {
		BREAK_TO_DEBUGGER(); /* Invalid object */
		return NULL;
	}

	offset = object->encoder_recordoffset + bp->object_info_tbl_offset;

	for (;;) {
		header = GET_IMAGE(struct atom_common_record_header, offset);

		if (!header)
			return NULL;

		offset += header->record_size;

		if (header->record_type == LAST_RECORD_TYPE ||
				!header->record_size)
			break;

		if (header->record_type != ATOM_ENCODER_CAP_RECORD_TYPE)
			continue;

		if (sizeof(struct atom_encoder_caps_record) <=
							header->record_size)
			return (struct atom_encoder_caps_record *)header;
	}

	return NULL;
}

/*
 * get_integrated_info_v11
 *
 * @brief
 * Get V8 integrated BIOS information
 *
 * @param
 * bios_parser *bp - [in]BIOS parser handler to get master data table
 * integrated_info *info - [out] store and output integrated info
 *
 * @return
 * enum bp_result - BP_RESULT_OK if information is available,
 *                  BP_RESULT_BADBIOSTABLE otherwise.
 */
static enum bp_result get_integrated_info_v11(
	struct bios_parser *bp,
	struct integrated_info *info)
{
	struct atom_integrated_system_info_v1_11 *info_v11;
	uint32_t i;

	info_v11 = GET_IMAGE(struct atom_integrated_system_info_v1_11,
					DATA_TABLES(integratedsysteminfo));

	if (info_v11 == NULL)
		return BP_RESULT_BADBIOSTABLE;

	info->gpu_cap_info =
	le32_to_cpu(info_v11->gpucapinfo);
	/*
	* system_config: Bit[0] = 0 : PCIE power gating disabled
	*                       = 1 : PCIE power gating enabled
	*                Bit[1] = 0 : DDR-PLL shut down disabled
	*                       = 1 : DDR-PLL shut down enabled
	*                Bit[2] = 0 : DDR-PLL power down disabled
	*                       = 1 : DDR-PLL power down enabled
	*/
	info->system_config = le32_to_cpu(info_v11->system_config);
	info->cpu_cap_info = le32_to_cpu(info_v11->cpucapinfo);
	info->memory_type = info_v11->memorytype;
	info->ma_channel_number = info_v11->umachannelnumber;
	info->lvds_ss_percentage =
	le16_to_cpu(info_v11->lvds_ss_percentage);
	info->dp_ss_control =
	le16_to_cpu(info_v11->reserved1);
	info->lvds_sspread_rate_in_10hz =
	le16_to_cpu(info_v11->lvds_ss_rate_10hz);
	info->hdmi_ss_percentage =
	le16_to_cpu(info_v11->hdmi_ss_percentage);
	info->hdmi_sspread_rate_in_10hz =
	le16_to_cpu(info_v11->hdmi_ss_rate_10hz);
	info->dvi_ss_percentage =
	le16_to_cpu(info_v11->dvi_ss_percentage);
	info->dvi_sspread_rate_in_10_hz =
	le16_to_cpu(info_v11->dvi_ss_rate_10hz);
	info->lvds_misc = info_v11->lvds_misc;
	for (i = 0; i < NUMBER_OF_UCHAR_FOR_GUID; ++i) {
		info->ext_disp_conn_info.gu_id[i] =
				info_v11->extdispconninfo.guid[i];
	}

	for (i = 0; i < MAX_NUMBER_OF_EXT_DISPLAY_PATH; ++i) {
		info->ext_disp_conn_info.path[i].device_connector_id =
		object_id_from_bios_object_id(
		le16_to_cpu(info_v11->extdispconninfo.path[i].connectorobjid));

		info->ext_disp_conn_info.path[i].ext_encoder_obj_id =
		object_id_from_bios_object_id(
			le16_to_cpu(
			info_v11->extdispconninfo.path[i].ext_encoder_objid));

		info->ext_disp_conn_info.path[i].device_tag =
			le16_to_cpu(
				info_v11->extdispconninfo.path[i].device_tag);
		info->ext_disp_conn_info.path[i].device_acpi_enum =
		le16_to_cpu(
			info_v11->extdispconninfo.path[i].device_acpi_enum);
		info->ext_disp_conn_info.path[i].ext_aux_ddc_lut_index =
			info_v11->extdispconninfo.path[i].auxddclut_index;
		info->ext_disp_conn_info.path[i].ext_hpd_pin_lut_index =
			info_v11->extdispconninfo.path[i].hpdlut_index;
		info->ext_disp_conn_info.path[i].channel_mapping.raw =
			info_v11->extdispconninfo.path[i].channelmapping;
		info->ext_disp_conn_info.path[i].caps =
				le16_to_cpu(info_v11->extdispconninfo.path[i].caps);
	}
	info->ext_disp_conn_info.checksum =
	info_v11->extdispconninfo.checksum;

	info->dp0_ext_hdmi_slv_addr = info_v11->dp0_retimer_set.HdmiSlvAddr;
	info->dp0_ext_hdmi_reg_num = info_v11->dp0_retimer_set.HdmiRegNum;
	for (i = 0; i < info->dp0_ext_hdmi_reg_num; i++) {
		info->dp0_ext_hdmi_reg_settings[i].i2c_reg_index =
				info_v11->dp0_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
		info->dp0_ext_hdmi_reg_settings[i].i2c_reg_val =
				info_v11->dp0_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
	}
	info->dp0_ext_hdmi_6g_reg_num = info_v11->dp0_retimer_set.Hdmi6GRegNum;
	for (i = 0; i < info->dp0_ext_hdmi_6g_reg_num; i++) {
		info->dp0_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
				info_v11->dp0_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
		info->dp0_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
				info_v11->dp0_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
	}

	info->dp1_ext_hdmi_slv_addr = info_v11->dp1_retimer_set.HdmiSlvAddr;
	info->dp1_ext_hdmi_reg_num = info_v11->dp1_retimer_set.HdmiRegNum;
	for (i = 0; i < info->dp1_ext_hdmi_reg_num; i++) {
		info->dp1_ext_hdmi_reg_settings[i].i2c_reg_index =
				info_v11->dp1_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
		info->dp1_ext_hdmi_reg_settings[i].i2c_reg_val =
				info_v11->dp1_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
	}
	info->dp1_ext_hdmi_6g_reg_num = info_v11->dp1_retimer_set.Hdmi6GRegNum;
	for (i = 0; i < info->dp1_ext_hdmi_6g_reg_num; i++) {
		info->dp1_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
				info_v11->dp1_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
		info->dp1_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
				info_v11->dp1_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
	}

	info->dp2_ext_hdmi_slv_addr = info_v11->dp2_retimer_set.HdmiSlvAddr;
	info->dp2_ext_hdmi_reg_num = info_v11->dp2_retimer_set.HdmiRegNum;
	for (i = 0; i < info->dp2_ext_hdmi_reg_num; i++) {
		info->dp2_ext_hdmi_reg_settings[i].i2c_reg_index =
				info_v11->dp2_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
		info->dp2_ext_hdmi_reg_settings[i].i2c_reg_val =
				info_v11->dp2_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
	}
	info->dp2_ext_hdmi_6g_reg_num = info_v11->dp2_retimer_set.Hdmi6GRegNum;
	for (i = 0; i < info->dp2_ext_hdmi_6g_reg_num; i++) {
		info->dp2_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
				info_v11->dp2_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
		info->dp2_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
				info_v11->dp2_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
	}

	info->dp3_ext_hdmi_slv_addr = info_v11->dp3_retimer_set.HdmiSlvAddr;
	info->dp3_ext_hdmi_reg_num = info_v11->dp3_retimer_set.HdmiRegNum;
	for (i = 0; i < info->dp3_ext_hdmi_reg_num; i++) {
		info->dp3_ext_hdmi_reg_settings[i].i2c_reg_index =
				info_v11->dp3_retimer_set.HdmiRegSetting[i].ucI2cRegIndex;
		info->dp3_ext_hdmi_reg_settings[i].i2c_reg_val =
				info_v11->dp3_retimer_set.HdmiRegSetting[i].ucI2cRegVal;
	}
	info->dp3_ext_hdmi_6g_reg_num = info_v11->dp3_retimer_set.Hdmi6GRegNum;
	for (i = 0; i < info->dp3_ext_hdmi_6g_reg_num; i++) {
		info->dp3_ext_hdmi_6g_reg_settings[i].i2c_reg_index =
				info_v11->dp3_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegIndex;
		info->dp3_ext_hdmi_6g_reg_settings[i].i2c_reg_val =
				info_v11->dp3_retimer_set.Hdmi6GhzRegSetting[i].ucI2cRegVal;
	}


	/** TODO - review **/
	#if 0
	info->boot_up_engine_clock = le32_to_cpu(info_v11->ulBootUpEngineClock)
									* 10;
	info->dentist_vco_freq = le32_to_cpu(info_v11->ulDentistVCOFreq) * 10;
	info->boot_up_uma_clock = le32_to_cpu(info_v8->ulBootUpUMAClock) * 10;

	for (i = 0; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) {
		/* Convert [10KHz] into [KHz] */
		info->disp_clk_voltage[i].max_supported_clk =
		le32_to_cpu(info_v11->sDISPCLK_Voltage[i].
			ulMaximumSupportedCLK) * 10;
		info->disp_clk_voltage[i].voltage_index =
		le32_to_cpu(info_v11->sDISPCLK_Voltage[i].ulVoltageIndex);
	}

	info->boot_up_req_display_vector =
			le32_to_cpu(info_v11->ulBootUpReqDisplayVector);
	info->boot_up_nb_voltage =
			le16_to_cpu(info_v11->usBootUpNBVoltage);
	info->ext_disp_conn_info_offset =
			le16_to_cpu(info_v11->usExtDispConnInfoOffset);
	info->gmc_restore_reset_time =
			le32_to_cpu(info_v11->ulGMCRestoreResetTime);
	info->minimum_n_clk =
			le32_to_cpu(info_v11->ulNbpStateNClkFreq[0]);
	for (i = 1; i < 4; ++i)
		info->minimum_n_clk =
				info->minimum_n_clk <
				le32_to_cpu(info_v11->ulNbpStateNClkFreq[i]) ?
				info->minimum_n_clk : le32_to_cpu(
					info_v11->ulNbpStateNClkFreq[i]);

	info->idle_n_clk = le32_to_cpu(info_v11->ulIdleNClk);
	info->ddr_dll_power_up_time =
	    le32_to_cpu(info_v11->ulDDR_DLL_PowerUpTime);
	info->ddr_pll_power_up_time =
		le32_to_cpu(info_v11->ulDDR_PLL_PowerUpTime);
	info->pcie_clk_ss_type = le16_to_cpu(info_v11->usPCIEClkSSType);
	info->max_lvds_pclk_freq_in_single_link =
		le16_to_cpu(info_v11->usMaxLVDSPclkFreqInSingleLink);
	info->max_lvds_pclk_freq_in_single_link =
		le16_to_cpu(info_v11->usMaxLVDSPclkFreqInSingleLink);
	info->lvds_pwr_on_seq_dig_on_to_de_in_4ms =
		info_v11->ucLVDSPwrOnSeqDIGONtoDE_in4Ms;
	info->lvds_pwr_on_seq_de_to_vary_bl_in_4ms =
		info_v11->ucLVDSPwrOnSeqDEtoVARY_BL_in4Ms;
	info->lvds_pwr_on_seq_vary_bl_to_blon_in_4ms =
		info_v11->ucLVDSPwrOnSeqVARY_BLtoBLON_in4Ms;
	info->lvds_pwr_off_seq_vary_bl_to_de_in4ms =
		info_v11->ucLVDSPwrOffSeqVARY_BLtoDE_in4Ms;
	info->lvds_pwr_off_seq_de_to_dig_on_in4ms =
		info_v11->ucLVDSPwrOffSeqDEtoDIGON_in4Ms;
	info->lvds_pwr_off_seq_blon_to_vary_bl_in_4ms =
		info_v11->ucLVDSPwrOffSeqBLONtoVARY_BL_in4Ms;
	info->lvds_off_to_on_delay_in_4ms =
		info_v11->ucLVDSOffToOnDelay_in4Ms;
	info->lvds_bit_depth_control_val =
		le32_to_cpu(info_v11->ulLCDBitDepthControlVal);

	for (i = 0; i < NUMBER_OF_AVAILABLE_SCLK; ++i) {
		/* Convert [10KHz] into [KHz] */
		info->avail_s_clk[i].supported_s_clk =
			le32_to_cpu(info_v11->sAvail_SCLK[i].ulSupportedSCLK)
									* 10;
		info->avail_s_clk[i].voltage_index =
			le16_to_cpu(info_v11->sAvail_SCLK[i].usVoltageIndex);
		info->avail_s_clk[i].voltage_id =
			le16_to_cpu(info_v11->sAvail_SCLK[i].usVoltageID);
	}
	#endif /* TODO*/

	return BP_RESULT_OK;
}


/*
 * construct_integrated_info
 *
 * @brief
 * Get integrated BIOS information based on table revision
 *
 * @param
 * bios_parser *bp - [in]BIOS parser handler to get master data table
 * integrated_info *info - [out] store and output integrated info
 *
 * @return
 * enum bp_result - BP_RESULT_OK if information is available,
 *                  BP_RESULT_BADBIOSTABLE otherwise.
 */
static enum bp_result construct_integrated_info(
	struct bios_parser *bp,
	struct integrated_info *info)
{
	enum bp_result result = BP_RESULT_BADBIOSTABLE;

	struct atom_common_table_header *header;
	struct atom_data_revision revision;
	uint32_t i;
	uint32_t j;

	if (info && DATA_TABLES(integratedsysteminfo)) {
		header = GET_IMAGE(struct atom_common_table_header,
					DATA_TABLES(integratedsysteminfo));

		get_atom_data_table_revision(header, &revision);

		/* Don't need to check major revision as they are all 1 */
		switch (revision.minor) {
		case 11:
		case 12:
			result = get_integrated_info_v11(bp, info);
			break;
		default:
			return result;
		}
	}

	if (result != BP_RESULT_OK)
		return result;

	/* Sort voltage table from low to high*/
	for (i = 1; i < NUMBER_OF_DISP_CLK_VOLTAGE; ++i) {
		for (j = i; j > 0; --j) {
			if (info->disp_clk_voltage[j].max_supported_clk <
				info->disp_clk_voltage[j-1].max_supported_clk
				) {
				/* swap j and j - 1*/
				swap(info->disp_clk_voltage[j - 1],
				     info->disp_clk_voltage[j]);
			}
		}
	}

	return result;
}

static struct integrated_info *bios_parser_create_integrated_info(
	struct dc_bios *dcb)
{
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	struct integrated_info *info = NULL;

	info = kzalloc(sizeof(struct integrated_info), GFP_KERNEL);

	if (info == NULL) {
		ASSERT_CRITICAL(0);
		return NULL;
	}

	if (construct_integrated_info(bp, info) == BP_RESULT_OK)
		return info;

	kfree(info);

	return NULL;
}

static enum bp_result update_slot_layout_info(
	struct dc_bios *dcb,
	unsigned int i,
	struct slot_layout_info *slot_layout_info)
{
	unsigned int record_offset;
	unsigned int j;
	struct atom_display_object_path_v2 *object;
	struct atom_bracket_layout_record *record;
	struct atom_common_record_header *record_header;
	enum bp_result result;
	struct bios_parser *bp;
	struct object_info_table *tbl;
	struct display_object_info_table_v1_4 *v1_4;

	record = NULL;
	record_header = NULL;
	result = BP_RESULT_NORECORD;

	bp = BP_FROM_DCB(dcb);
	tbl = &bp->object_info_tbl;
	v1_4 = tbl->v1_4;

	object = &v1_4->display_path[i];
	record_offset = (unsigned int)
		(object->disp_recordoffset) +
		(unsigned int)(bp->object_info_tbl_offset);

	for (;;) {

		record_header = (struct atom_common_record_header *)
			GET_IMAGE(struct atom_common_record_header,
			record_offset);
		if (record_header == NULL) {
			result = BP_RESULT_BADBIOSTABLE;
			break;
		}

		/* the end of the list */
		if (record_header->record_type == 0xff ||
			record_header->record_size == 0)	{
			break;
		}

		if (record_header->record_type ==
			ATOM_BRACKET_LAYOUT_RECORD_TYPE &&
			sizeof(struct atom_bracket_layout_record)
			<= record_header->record_size) {
			record = (struct atom_bracket_layout_record *)
				(record_header);
			result = BP_RESULT_OK;
			break;
		}

		record_offset += record_header->record_size;
	}

	/* return if the record not found */
	if (result != BP_RESULT_OK)
		return result;

	/* get slot sizes */
	slot_layout_info->length = record->bracketlen;
	slot_layout_info->width = record->bracketwidth;

	/* get info for each connector in the slot */
	slot_layout_info->num_of_connectors = record->conn_num;
	for (j = 0; j < slot_layout_info->num_of_connectors; ++j) {
		slot_layout_info->connectors[j].connector_type =
			(enum connector_layout_type)
			(record->conn_info[j].connector_type);
		switch (record->conn_info[j].connector_type) {
		case CONNECTOR_TYPE_DVI_D:
			slot_layout_info->connectors[j].connector_type =
				CONNECTOR_LAYOUT_TYPE_DVI_D;
			slot_layout_info->connectors[j].length =
				CONNECTOR_SIZE_DVI;
			break;

		case CONNECTOR_TYPE_HDMI:
			slot_layout_info->connectors[j].connector_type =
				CONNECTOR_LAYOUT_TYPE_HDMI;
			slot_layout_info->connectors[j].length =
				CONNECTOR_SIZE_HDMI;
			break;

		case CONNECTOR_TYPE_DISPLAY_PORT:
			slot_layout_info->connectors[j].connector_type =
				CONNECTOR_LAYOUT_TYPE_DP;
			slot_layout_info->connectors[j].length =
				CONNECTOR_SIZE_DP;
			break;

		case CONNECTOR_TYPE_MINI_DISPLAY_PORT:
			slot_layout_info->connectors[j].connector_type =
				CONNECTOR_LAYOUT_TYPE_MINI_DP;
			slot_layout_info->connectors[j].length =
				CONNECTOR_SIZE_MINI_DP;
			break;

		default:
			slot_layout_info->connectors[j].connector_type =
				CONNECTOR_LAYOUT_TYPE_UNKNOWN;
			slot_layout_info->connectors[j].length =
				CONNECTOR_SIZE_UNKNOWN;
		}

		slot_layout_info->connectors[j].position =
			record->conn_info[j].position;
		slot_layout_info->connectors[j].connector_id =
			object_id_from_bios_object_id(
				record->conn_info[j].connectorobjid);
	}
	return result;
}


static enum bp_result get_bracket_layout_record(
	struct dc_bios *dcb,
	unsigned int bracket_layout_id,
	struct slot_layout_info *slot_layout_info)
{
	unsigned int i;
	struct bios_parser *bp = BP_FROM_DCB(dcb);
	enum bp_result result;
	struct object_info_table *tbl;
	struct display_object_info_table_v1_4 *v1_4;

	if (slot_layout_info == NULL) {
		DC_LOG_DETECTION_EDID_PARSER("Invalid slot_layout_info\n");
		return BP_RESULT_BADINPUT;
	}
	tbl = &bp->object_info_tbl;
	v1_4 = tbl->v1_4;

	result = BP_RESULT_NORECORD;
	for (i = 0; i < v1_4->number_of_path; ++i)	{

		if (bracket_layout_id ==
			v1_4->display_path[i].display_objid) {
			result = update_slot_layout_info(dcb, i,
				slot_layout_info);
			break;
		}
	}
	return result;
}

static enum bp_result bios_get_board_layout_info(
	struct dc_bios *dcb,
	struct board_layout_info *board_layout_info)
{
	unsigned int i;
	enum bp_result record_result;

	const unsigned int slot_index_to_vbios_id[MAX_BOARD_SLOTS] = {
		GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID1,
		GENERICOBJECT_BRACKET_LAYOUT_ENUM_ID2,
		0, 0
	};

	if (board_layout_info == NULL) {
		DC_LOG_DETECTION_EDID_PARSER("Invalid board_layout_info\n");
		return BP_RESULT_BADINPUT;
	}

	board_layout_info->num_of_slots = 0;

	for (i = 0; i < MAX_BOARD_SLOTS; ++i) {
		record_result = get_bracket_layout_record(dcb,
			slot_index_to_vbios_id[i],
			&board_layout_info->slots[i]);

		if (record_result == BP_RESULT_NORECORD && i > 0)
			break; /* no more slots present in bios */
		else if (record_result != BP_RESULT_OK)
			return record_result;  /* fail */

		++board_layout_info->num_of_slots;
	}

	/* all data is valid */
	board_layout_info->is_number_of_slots_valid = 1;
	board_layout_info->is_slots_size_valid = 1;
	board_layout_info->is_connector_offsets_valid = 1;
	board_layout_info->is_connector_lengths_valid = 1;

	return BP_RESULT_OK;
}

static const struct dc_vbios_funcs vbios_funcs = {
	.get_connectors_number = bios_parser_get_connectors_number,

	.get_connector_id = bios_parser_get_connector_id,

	.get_src_obj = bios_parser_get_src_obj,

	.get_i2c_info = bios_parser_get_i2c_info,

	.get_hpd_info = bios_parser_get_hpd_info,

	.get_device_tag = bios_parser_get_device_tag,

	.get_spread_spectrum_info = bios_parser_get_spread_spectrum_info,

	.get_ss_entry_number = bios_parser_get_ss_entry_number,

	.get_embedded_panel_info = bios_parser_get_embedded_panel_info,

	.get_gpio_pin_info = bios_parser_get_gpio_pin_info,

	.get_encoder_cap_info = bios_parser_get_encoder_cap_info,

	.is_device_id_supported = bios_parser_is_device_id_supported,

	.is_accelerated_mode = bios_parser_is_accelerated_mode,

	.set_scratch_critical_state = bios_parser_set_scratch_critical_state,


/*	 COMMANDS */
	.encoder_control = bios_parser_encoder_control,

	.transmitter_control = bios_parser_transmitter_control,

	.enable_crtc = bios_parser_enable_crtc,

	.set_pixel_clock = bios_parser_set_pixel_clock,

	.set_dce_clock = bios_parser_set_dce_clock,

	.program_crtc_timing = bios_parser_program_crtc_timing,

	.enable_disp_power_gating = bios_parser_enable_disp_power_gating,

	.bios_parser_destroy = firmware_parser_destroy,

	.get_board_layout_info = bios_get_board_layout_info,
};

static bool bios_parser2_construct(
	struct bios_parser *bp,
	struct bp_init_data *init,
	enum dce_version dce_version)
{
	uint16_t *rom_header_offset = NULL;
	struct atom_rom_header_v2_2 *rom_header = NULL;
	struct display_object_info_table_v1_4 *object_info_tbl;
	struct atom_data_revision tbl_rev = {0};

	if (!init)
		return false;

	if (!init->bios)
		return false;

	bp->base.funcs = &vbios_funcs;
	bp->base.bios = init->bios;
	bp->base.bios_size = bp->base.bios[OFFSET_TO_ATOM_ROM_IMAGE_SIZE] * BIOS_IMAGE_SIZE_UNIT;

	bp->base.ctx = init->ctx;

	bp->base.bios_local_image = NULL;

	rom_header_offset =
			GET_IMAGE(uint16_t, OFFSET_TO_ATOM_ROM_HEADER_POINTER);

	if (!rom_header_offset)
		return false;

	rom_header = GET_IMAGE(struct atom_rom_header_v2_2, *rom_header_offset);

	if (!rom_header)
		return false;

	get_atom_data_table_revision(&rom_header->table_header, &tbl_rev);
	if (!(tbl_rev.major >= 2 && tbl_rev.minor >= 2))
		return false;

	bp->master_data_tbl =
		GET_IMAGE(struct atom_master_data_table_v2_1,
				rom_header->masterdatatable_offset);

	if (!bp->master_data_tbl)
		return false;

	bp->object_info_tbl_offset = DATA_TABLES(displayobjectinfo);

	if (!bp->object_info_tbl_offset)
		return false;

	object_info_tbl =
			GET_IMAGE(struct display_object_info_table_v1_4,
						bp->object_info_tbl_offset);

	if (!object_info_tbl)
		return false;

	get_atom_data_table_revision(&object_info_tbl->table_header,
		&bp->object_info_tbl.revision);

	if (bp->object_info_tbl.revision.major == 1
		&& bp->object_info_tbl.revision.minor >= 4) {
		struct display_object_info_table_v1_4 *tbl_v1_4;

		tbl_v1_4 = GET_IMAGE(struct display_object_info_table_v1_4,
			bp->object_info_tbl_offset);
		if (!tbl_v1_4)
			return false;

		bp->object_info_tbl.v1_4 = tbl_v1_4;
	} else
		return false;

	dal_firmware_parser_init_cmd_tbl(bp);
	dal_bios_parser_init_cmd_tbl_helper2(&bp->cmd_helper, dce_version);

	bp->base.integrated_info = bios_parser_create_integrated_info(&bp->base);
	bp->base.fw_info_valid = bios_parser_get_firmware_info(&bp->base, &bp->base.fw_info) == BP_RESULT_OK;

	return true;
}

struct dc_bios *firmware_parser_create(
	struct bp_init_data *init,
	enum dce_version dce_version)
{
	struct bios_parser *bp = NULL;

	bp = kzalloc(sizeof(struct bios_parser), GFP_KERNEL);
	if (!bp)
		return NULL;

	if (bios_parser2_construct(bp, init, dce_version))
		return &bp->base;

	kfree(bp);
	return NULL;
}