Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Harry Wentland | 3042 | 22.02% | 19 | 7.82% |
Nicholas Kazlauskas | 1246 | 9.02% | 8 | 3.29% |
Anthony Koo | 1100 | 7.96% | 18 | 7.41% |
Leo (Sunpeng) Li | 953 | 6.90% | 11 | 4.53% |
Andrew Jiang | 584 | 4.23% | 6 | 2.47% |
Dmytro Laktyushkin | 558 | 4.04% | 14 | 5.76% |
Bhawanpreet Lakha | 515 | 3.73% | 13 | 5.35% |
SivapiriyanKumarasamy | 459 | 3.32% | 10 | 4.12% |
Jun Lei | 411 | 2.97% | 10 | 4.12% |
Martin Leung | 408 | 2.95% | 5 | 2.06% |
David Francis | 326 | 2.36% | 6 | 2.47% |
Yongqiang Sun | 264 | 1.91% | 19 | 7.82% |
Eryk Brol | 257 | 1.86% | 2 | 0.82% |
Leon Elazar | 249 | 1.80% | 4 | 1.65% |
Samson Tam | 237 | 1.72% | 2 | 0.82% |
Murton Liu | 208 | 1.51% | 2 | 0.82% |
Aidan Wood | 204 | 1.48% | 1 | 0.41% |
Eric Yang | 196 | 1.42% | 7 | 2.88% |
Andrey Grodzovsky | 184 | 1.33% | 6 | 2.47% |
Wenjing Liu | 168 | 1.22% | 4 | 1.65% |
Mikita Lipski | 160 | 1.16% | 2 | 0.82% |
Tony Cheng | 151 | 1.09% | 3 | 1.23% |
Vitaly Prosyak | 138 | 1.00% | 2 | 0.82% |
Lewis Huang | 137 | 0.99% | 3 | 1.23% |
Noah Abradjian | 134 | 0.97% | 1 | 0.41% |
Eric Cook | 126 | 0.91% | 1 | 0.41% |
Sylvia Tsai | 123 | 0.89% | 1 | 0.41% |
Robin Singh | 117 | 0.85% | 1 | 0.41% |
Su Sung Chung | 116 | 0.84% | 3 | 1.23% |
Jaehyun Chung | 115 | 0.83% | 2 | 0.82% |
Jerry (Fangzhi) Zuo | 112 | 0.81% | 3 | 1.23% |
Charlene Liu | 111 | 0.80% | 4 | 1.65% |
Michael Strauss | 66 | 0.48% | 2 | 0.82% |
Nikola Cornij | 59 | 0.43% | 1 | 0.41% |
Dave Airlie | 49 | 0.35% | 3 | 1.23% |
ShihChen Chen | 48 | 0.35% | 1 | 0.41% |
Wesley Chalmers | 46 | 0.33% | 2 | 0.82% |
Krunoslav Kovac | 44 | 0.32% | 3 | 1.23% |
Tao.Huang | 42 | 0.30% | 1 | 0.41% |
Stylon Wang | 35 | 0.25% | 1 | 0.41% |
Aric Cyr | 31 | 0.22% | 3 | 1.23% |
Julian Parkin | 27 | 0.20% | 2 | 0.82% |
Dor Askayo | 26 | 0.19% | 1 | 0.41% |
Geling Li | 22 | 0.16% | 1 | 0.41% |
Duke Du | 22 | 0.16% | 1 | 0.41% |
Reza Amini | 21 | 0.15% | 2 | 0.82% |
zhong shiqi | 19 | 0.14% | 1 | 0.41% |
Alex Deucher | 19 | 0.14% | 1 | 0.41% |
Yue Hin Lau | 16 | 0.12% | 3 | 1.23% |
Amy Zhang | 14 | 0.10% | 2 | 0.82% |
Corbin McElhanney | 14 | 0.10% | 2 | 0.82% |
Fatemeh Darbehani | 14 | 0.10% | 1 | 0.41% |
Joshua Aberback | 11 | 0.08% | 3 | 1.23% |
Roman Li | 10 | 0.07% | 1 | 0.41% |
Bayan Zabihiyan | 8 | 0.06% | 1 | 0.41% |
Calvin Hou | 8 | 0.06% | 1 | 0.41% |
Colin Ian King | 8 | 0.06% | 1 | 0.41% |
Isabel Zhang | 7 | 0.05% | 1 | 0.41% |
Rex Zhu | 6 | 0.04% | 1 | 0.41% |
Ville Syrjälä | 4 | 0.03% | 1 | 0.41% |
Ken Chalmers | 3 | 0.02% | 1 | 0.41% |
Sam Ravnborg | 3 | 0.02% | 1 | 0.41% |
Nathan Chancellor | 2 | 0.01% | 1 | 0.41% |
Hersen Wu | 1 | 0.01% | 1 | 0.41% |
zhengbin | 1 | 0.01% | 1 | 0.41% |
Yasir Al Shekerchi | 1 | 0.01% | 1 | 0.41% |
Total | 13816 | 243 |
/* * Copyright 2015 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: AMD */ #include <linux/slab.h> #include <linux/mm.h> #include "dm_services.h" #include "dc.h" #include "core_status.h" #include "core_types.h" #include "hw_sequencer.h" #include "dce/dce_hwseq.h" #include "resource.h" #include "clk_mgr.h" #include "clock_source.h" #include "dc_bios_types.h" #include "bios_parser_interface.h" #include "include/irq_service_interface.h" #include "transform.h" #include "dmcu.h" #include "dpp.h" #include "timing_generator.h" #include "abm.h" #include "virtual/virtual_link_encoder.h" #include "link_hwss.h" #include "link_encoder.h" #include "dc_link_ddc.h" #include "dm_helpers.h" #include "mem_input.h" #include "hubp.h" #include "dc_link_dp.h" #include "dc_dmub_srv.h" #include "dsc.h" #include "vm_helper.h" #include "dce/dce_i2c.h" #define CTX \ dc->ctx #define DC_LOGGER \ dc->ctx->logger static const char DC_BUILD_ID[] = "production-build"; /** * DOC: Overview * * DC is the OS-agnostic component of the amdgpu DC driver. * * DC maintains and validates a set of structs representing the state of the * driver and writes that state to AMD hardware * * Main DC HW structs: * * struct dc - The central struct. One per driver. Created on driver load, * destroyed on driver unload. * * struct dc_context - One per driver. * Used as a backpointer by most other structs in dc. * * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP * plugpoints). Created on driver load, destroyed on driver unload. * * struct dc_sink - One per display. Created on boot or hotplug. * Destroyed on shutdown or hotunplug. A dc_link can have a local sink * (the display directly attached). It may also have one or more remote * sinks (in the Multi-Stream Transport case) * * struct resource_pool - One per driver. Represents the hw blocks not in the * main pipeline. Not directly accessible by dm. * * Main dc state structs: * * These structs can be created and destroyed as needed. There is a full set of * these structs in dc->current_state representing the currently programmed state. * * struct dc_state - The global DC state to track global state information, * such as bandwidth values. * * struct dc_stream_state - Represents the hw configuration for the pipeline from * a framebuffer to a display. Maps one-to-one with dc_sink. * * struct dc_plane_state - Represents a framebuffer. Each stream has at least one, * and may have more in the Multi-Plane Overlay case. * * struct resource_context - Represents the programmable state of everything in * the resource_pool. Not directly accessible by dm. * * struct pipe_ctx - A member of struct resource_context. Represents the * internal hardware pipeline components. Each dc_plane_state has either * one or two (in the pipe-split case). */ /******************************************************************************* * Private functions ******************************************************************************/ static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new) { if (new > *original) *original = new; } static void destroy_links(struct dc *dc) { uint32_t i; for (i = 0; i < dc->link_count; i++) { if (NULL != dc->links[i]) link_destroy(&dc->links[i]); } } static bool create_links( struct dc *dc, uint32_t num_virtual_links) { int i; int connectors_num; struct dc_bios *bios = dc->ctx->dc_bios; dc->link_count = 0; connectors_num = bios->funcs->get_connectors_number(bios); if (connectors_num > ENUM_ID_COUNT) { dm_error( "DC: Number of connectors %d exceeds maximum of %d!\n", connectors_num, ENUM_ID_COUNT); return false; } dm_output_to_console( "DC: %s: connectors_num: physical:%d, virtual:%d\n", __func__, connectors_num, num_virtual_links); for (i = 0; i < connectors_num; i++) { struct link_init_data link_init_params = {0}; struct dc_link *link; link_init_params.ctx = dc->ctx; /* next BIOS object table connector */ link_init_params.connector_index = i; link_init_params.link_index = dc->link_count; link_init_params.dc = dc; link = link_create(&link_init_params); if (link) { bool should_destory_link = false; if (link->connector_signal == SIGNAL_TYPE_EDP) { if (dc->config.edp_not_connected) should_destory_link = true; else if (dc->debug.remove_disconnect_edp) { enum dc_connection_type type; dc_link_detect_sink(link, &type); if (type == dc_connection_none) should_destory_link = true; } } if (dc->config.force_enum_edp || !should_destory_link) { dc->links[dc->link_count] = link; link->dc = dc; ++dc->link_count; } else { link_destroy(&link); } } } for (i = 0; i < num_virtual_links; i++) { struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL); struct encoder_init_data enc_init = {0}; if (link == NULL) { BREAK_TO_DEBUGGER(); goto failed_alloc; } link->link_index = dc->link_count; dc->links[dc->link_count] = link; dc->link_count++; link->ctx = dc->ctx; link->dc = dc; link->connector_signal = SIGNAL_TYPE_VIRTUAL; link->link_id.type = OBJECT_TYPE_CONNECTOR; link->link_id.id = CONNECTOR_ID_VIRTUAL; link->link_id.enum_id = ENUM_ID_1; link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL); if (!link->link_enc) { BREAK_TO_DEBUGGER(); goto failed_alloc; } link->link_status.dpcd_caps = &link->dpcd_caps; enc_init.ctx = dc->ctx; enc_init.channel = CHANNEL_ID_UNKNOWN; enc_init.hpd_source = HPD_SOURCEID_UNKNOWN; enc_init.transmitter = TRANSMITTER_UNKNOWN; enc_init.connector = link->link_id; enc_init.encoder.type = OBJECT_TYPE_ENCODER; enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL; enc_init.encoder.enum_id = ENUM_ID_1; virtual_link_encoder_construct(link->link_enc, &enc_init); } return true; failed_alloc: return false; } static struct dc_perf_trace *dc_perf_trace_create(void) { return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL); } static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace) { kfree(*perf_trace); *perf_trace = NULL; } /** ***************************************************************************** * Function: dc_stream_adjust_vmin_vmax * * @brief * Looks up the pipe context of dc_stream_state and updates the * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh * Rate, which is a power-saving feature that targets reducing panel * refresh rate while the screen is static * * @param [in] dc: dc reference * @param [in] stream: Initial dc stream state * @param [in] adjust: Updated parameters for vertical_total_min and * vertical_total_max ***************************************************************************** */ bool dc_stream_adjust_vmin_vmax(struct dc *dc, struct dc_stream_state *stream, struct dc_crtc_timing_adjust *adjust) { int i = 0; bool ret = false; stream->adjust = *adjust; for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream && pipe->stream_res.tg) { dc->hwss.set_drr(&pipe, 1, adjust->v_total_min, adjust->v_total_max, adjust->v_total_mid, adjust->v_total_mid_frame_num); ret = true; } } return ret; } bool dc_stream_get_crtc_position(struct dc *dc, struct dc_stream_state **streams, int num_streams, unsigned int *v_pos, unsigned int *nom_v_pos) { /* TODO: Support multiple streams */ const struct dc_stream_state *stream = streams[0]; int i = 0; bool ret = false; struct crtc_position position; for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream && pipe->stream_res.stream_enc) { dc->hwss.get_position(&pipe, 1, &position); *v_pos = position.vertical_count; *nom_v_pos = position.nominal_vcount; ret = true; } } return ret; } /** * dc_stream_configure_crc() - Configure CRC capture for the given stream. * @dc: DC Object * @stream: The stream to configure CRC on. * @enable: Enable CRC if true, disable otherwise. * @continuous: Capture CRC on every frame if true. Otherwise, only capture * once. * * By default, only CRC0 is configured, and the entire frame is used to * calculate the crc. */ bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream, bool enable, bool continuous) { int i; struct pipe_ctx *pipe; struct crc_params param; struct timing_generator *tg; for (i = 0; i < MAX_PIPES; i++) { pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream) break; } /* Stream not found */ if (i == MAX_PIPES) return false; /* Always capture the full frame */ param.windowa_x_start = 0; param.windowa_y_start = 0; param.windowa_x_end = pipe->stream->timing.h_addressable; param.windowa_y_end = pipe->stream->timing.v_addressable; param.windowb_x_start = 0; param.windowb_y_start = 0; param.windowb_x_end = pipe->stream->timing.h_addressable; param.windowb_y_end = pipe->stream->timing.v_addressable; /* Default to the union of both windows */ param.selection = UNION_WINDOW_A_B; param.continuous_mode = continuous; param.enable = enable; tg = pipe->stream_res.tg; /* Only call if supported */ if (tg->funcs->configure_crc) return tg->funcs->configure_crc(tg, ¶m); DC_LOG_WARNING("CRC capture not supported."); return false; } /** * dc_stream_get_crc() - Get CRC values for the given stream. * @dc: DC object * @stream: The DC stream state of the stream to get CRCs from. * @r_cr, g_y, b_cb: CRC values for the three channels are stored here. * * dc_stream_configure_crc needs to be called beforehand to enable CRCs. * Return false if stream is not found, or if CRCs are not enabled. */ bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream, uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb) { int i; struct pipe_ctx *pipe; struct timing_generator *tg; for (i = 0; i < MAX_PIPES; i++) { pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (pipe->stream == stream) break; } /* Stream not found */ if (i == MAX_PIPES) return false; tg = pipe->stream_res.tg; if (tg->funcs->get_crc) return tg->funcs->get_crc(tg, r_cr, g_y, b_cb); DC_LOG_WARNING("CRC capture not supported."); return false; } void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream, enum dc_dynamic_expansion option) { /* OPP FMT dyn expansion updates*/ int i = 0; struct pipe_ctx *pipe_ctx; for (i = 0; i < MAX_PIPES; i++) { if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) { pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; pipe_ctx->stream_res.opp->dyn_expansion = option; pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion( pipe_ctx->stream_res.opp, COLOR_SPACE_YCBCR601, stream->timing.display_color_depth, stream->signal); } } } void dc_stream_set_dither_option(struct dc_stream_state *stream, enum dc_dither_option option) { struct bit_depth_reduction_params params; struct dc_link *link = stream->link; struct pipe_ctx *pipes = NULL; int i; for (i = 0; i < MAX_PIPES; i++) { if (link->dc->current_state->res_ctx.pipe_ctx[i].stream == stream) { pipes = &link->dc->current_state->res_ctx.pipe_ctx[i]; break; } } if (!pipes) return; if (option > DITHER_OPTION_MAX) return; stream->dither_option = option; memset(¶ms, 0, sizeof(params)); resource_build_bit_depth_reduction_params(stream, ¶ms); stream->bit_depth_params = params; if (pipes->plane_res.xfm && pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) { pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth( pipes->plane_res.xfm, pipes->plane_res.scl_data.lb_params.depth, &stream->bit_depth_params); } pipes->stream_res.opp->funcs-> opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms); } bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream) { int i = 0; bool ret = false; struct pipe_ctx *pipes; for (i = 0; i < MAX_PIPES; i++) { if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) { pipes = &dc->current_state->res_ctx.pipe_ctx[i]; dc->hwss.program_gamut_remap(pipes); ret = true; } } return ret; } bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream) { int i = 0; bool ret = false; struct pipe_ctx *pipes; for (i = 0; i < MAX_PIPES; i++) { if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) { pipes = &dc->current_state->res_ctx.pipe_ctx[i]; dc->hwss.program_output_csc(dc, pipes, stream->output_color_space, stream->csc_color_matrix.matrix, pipes->stream_res.opp->inst); ret = true; } } return ret; } void dc_stream_set_static_screen_params(struct dc *dc, struct dc_stream_state **streams, int num_streams, const struct dc_static_screen_params *params) { int i = 0; int j = 0; struct pipe_ctx *pipes_affected[MAX_PIPES]; int num_pipes_affected = 0; for (i = 0; i < num_streams; i++) { struct dc_stream_state *stream = streams[i]; for (j = 0; j < MAX_PIPES; j++) { if (dc->current_state->res_ctx.pipe_ctx[j].stream == stream) { pipes_affected[num_pipes_affected++] = &dc->current_state->res_ctx.pipe_ctx[j]; } } } dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params); } static void dc_destruct(struct dc *dc) { if (dc->current_state) { dc_release_state(dc->current_state); dc->current_state = NULL; } destroy_links(dc); if (dc->clk_mgr) { dc_destroy_clk_mgr(dc->clk_mgr); dc->clk_mgr = NULL; } dc_destroy_resource_pool(dc); if (dc->ctx->gpio_service) dal_gpio_service_destroy(&dc->ctx->gpio_service); if (dc->ctx->created_bios) dal_bios_parser_destroy(&dc->ctx->dc_bios); dc_perf_trace_destroy(&dc->ctx->perf_trace); kfree(dc->ctx); dc->ctx = NULL; kfree(dc->bw_vbios); dc->bw_vbios = NULL; kfree(dc->bw_dceip); dc->bw_dceip = NULL; #ifdef CONFIG_DRM_AMD_DC_DCN kfree(dc->dcn_soc); dc->dcn_soc = NULL; kfree(dc->dcn_ip); dc->dcn_ip = NULL; #endif kfree(dc->vm_helper); dc->vm_helper = NULL; } static bool dc_construct_ctx(struct dc *dc, const struct dc_init_data *init_params) { struct dc_context *dc_ctx; enum dce_version dc_version = DCE_VERSION_UNKNOWN; dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL); if (!dc_ctx) return false; dc_ctx->cgs_device = init_params->cgs_device; dc_ctx->driver_context = init_params->driver; dc_ctx->dc = dc; dc_ctx->asic_id = init_params->asic_id; dc_ctx->dc_sink_id_count = 0; dc_ctx->dc_stream_id_count = 0; dc_ctx->dce_environment = init_params->dce_environment; /* Create logger */ dc_version = resource_parse_asic_id(init_params->asic_id); dc_ctx->dce_version = dc_version; dc_ctx->perf_trace = dc_perf_trace_create(); if (!dc_ctx->perf_trace) { ASSERT_CRITICAL(false); return false; } dc->ctx = dc_ctx; return true; } static bool dc_construct(struct dc *dc, const struct dc_init_data *init_params) { struct dc_context *dc_ctx; struct bw_calcs_dceip *dc_dceip; struct bw_calcs_vbios *dc_vbios; #ifdef CONFIG_DRM_AMD_DC_DCN struct dcn_soc_bounding_box *dcn_soc; struct dcn_ip_params *dcn_ip; #endif dc->config = init_params->flags; // Allocate memory for the vm_helper dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL); if (!dc->vm_helper) { dm_error("%s: failed to create dc->vm_helper\n", __func__); goto fail; } memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides)); dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL); if (!dc_dceip) { dm_error("%s: failed to create dceip\n", __func__); goto fail; } dc->bw_dceip = dc_dceip; dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL); if (!dc_vbios) { dm_error("%s: failed to create vbios\n", __func__); goto fail; } dc->bw_vbios = dc_vbios; #ifdef CONFIG_DRM_AMD_DC_DCN dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL); if (!dcn_soc) { dm_error("%s: failed to create dcn_soc\n", __func__); goto fail; } dc->dcn_soc = dcn_soc; dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL); if (!dcn_ip) { dm_error("%s: failed to create dcn_ip\n", __func__); goto fail; } dc->dcn_ip = dcn_ip; dc->soc_bounding_box = init_params->soc_bounding_box; #endif if (!dc_construct_ctx(dc, init_params)) { dm_error("%s: failed to create ctx\n", __func__); goto fail; } dc_ctx = dc->ctx; /* Resource should construct all asic specific resources. * This should be the only place where we need to parse the asic id */ if (init_params->vbios_override) dc_ctx->dc_bios = init_params->vbios_override; else { /* Create BIOS parser */ struct bp_init_data bp_init_data; bp_init_data.ctx = dc_ctx; bp_init_data.bios = init_params->asic_id.atombios_base_address; dc_ctx->dc_bios = dal_bios_parser_create( &bp_init_data, dc_ctx->dce_version); if (!dc_ctx->dc_bios) { ASSERT_CRITICAL(false); goto fail; } dc_ctx->created_bios = true; } dc->vendor_signature = init_params->vendor_signature; /* Create GPIO service */ dc_ctx->gpio_service = dal_gpio_service_create( dc_ctx->dce_version, dc_ctx->dce_environment, dc_ctx); if (!dc_ctx->gpio_service) { ASSERT_CRITICAL(false); goto fail; } dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version); if (!dc->res_pool) goto fail; dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg); if (!dc->clk_mgr) goto fail; if (dc->res_pool->funcs->update_bw_bounding_box) dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params); /* Creation of current_state must occur after dc->dml * is initialized in dc_create_resource_pool because * on creation it copies the contents of dc->dml */ dc->current_state = dc_create_state(dc); if (!dc->current_state) { dm_error("%s: failed to create validate ctx\n", __func__); goto fail; } dc_resource_state_construct(dc, dc->current_state); if (!create_links(dc, init_params->num_virtual_links)) goto fail; return true; fail: return false; } static bool disable_all_writeback_pipes_for_stream( const struct dc *dc, struct dc_stream_state *stream, struct dc_state *context) { int i; for (i = 0; i < stream->num_wb_info; i++) stream->writeback_info[i].wb_enabled = false; return true; } void apply_ctx_interdependent_lock(struct dc *dc, struct dc_state *context, struct dc_stream_state *stream, bool lock) { int i = 0; /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */ if (dc->hwss.interdependent_update_lock) dc->hwss.interdependent_update_lock(dc, context, lock); else { for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i]; // Copied conditions that were previously in dce110_apply_ctx_for_surface if (stream == pipe_ctx->stream) { if (!pipe_ctx->top_pipe && (pipe_ctx->plane_state || old_pipe_ctx->plane_state)) dc->hwss.pipe_control_lock(dc, pipe_ctx, lock); } } } } static void disable_dangling_plane(struct dc *dc, struct dc_state *context) { int i, j; struct dc_state *dangling_context = dc_create_state(dc); struct dc_state *current_ctx; if (dangling_context == NULL) return; dc_resource_state_copy_construct(dc->current_state, dangling_context); for (i = 0; i < dc->res_pool->pipe_count; i++) { struct dc_stream_state *old_stream = dc->current_state->res_ctx.pipe_ctx[i].stream; bool should_disable = true; for (j = 0; j < context->stream_count; j++) { if (old_stream == context->streams[j]) { should_disable = false; break; } } if (should_disable && old_stream) { dc_rem_all_planes_for_stream(dc, old_stream, dangling_context); disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context); if (dc->hwss.apply_ctx_for_surface) { apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true); dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context); apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false); dc->hwss.post_unlock_program_front_end(dc, dangling_context); } if (dc->hwss.program_front_end_for_ctx) { dc->hwss.interdependent_update_lock(dc, dc->current_state, true); dc->hwss.program_front_end_for_ctx(dc, dangling_context); dc->hwss.interdependent_update_lock(dc, dc->current_state, false); dc->hwss.post_unlock_program_front_end(dc, dangling_context); } } } current_ctx = dc->current_state; dc->current_state = dangling_context; dc_release_state(current_ctx); } static void wait_for_no_pipes_pending(struct dc *dc, struct dc_state *context) { int i; PERF_TRACE(); for (i = 0; i < MAX_PIPES; i++) { int count = 0; struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i]; if (!pipe->plane_state) continue; /* Timeout 100 ms */ while (count < 100000) { /* Must set to false to start with, due to OR in update function */ pipe->plane_state->status.is_flip_pending = false; dc->hwss.update_pending_status(pipe); if (!pipe->plane_state->status.is_flip_pending) break; udelay(1); count++; } ASSERT(!pipe->plane_state->status.is_flip_pending); } PERF_TRACE(); } /******************************************************************************* * Public functions ******************************************************************************/ struct dc *dc_create(const struct dc_init_data *init_params) { struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL); unsigned int full_pipe_count; if (NULL == dc) goto alloc_fail; if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) { if (false == dc_construct_ctx(dc, init_params)) { dc_destruct(dc); goto construct_fail; } } else { if (false == dc_construct(dc, init_params)) { dc_destruct(dc); goto construct_fail; } full_pipe_count = dc->res_pool->pipe_count; if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE) full_pipe_count--; dc->caps.max_streams = min( full_pipe_count, dc->res_pool->stream_enc_count); dc->optimize_seamless_boot_streams = 0; dc->caps.max_links = dc->link_count; dc->caps.max_audios = dc->res_pool->audio_count; dc->caps.linear_pitch_alignment = 64; dc->caps.max_dp_protocol_version = DP_VERSION_1_4; if (dc->res_pool->dmcu != NULL) dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version; } /* Populate versioning information */ dc->versions.dc_ver = DC_VER; dc->build_id = DC_BUILD_ID; DC_LOG_DC("Display Core initialized\n"); return dc; construct_fail: kfree(dc); alloc_fail: return NULL; } void dc_hardware_init(struct dc *dc) { if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW) dc->hwss.init_hw(dc); } void dc_init_callbacks(struct dc *dc, const struct dc_callback_init *init_params) { #ifdef CONFIG_DRM_AMD_DC_HDCP dc->ctx->cp_psp = init_params->cp_psp; #endif } void dc_deinit_callbacks(struct dc *dc) { #ifdef CONFIG_DRM_AMD_DC_HDCP memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp)); #endif } void dc_destroy(struct dc **dc) { dc_destruct(*dc); kfree(*dc); *dc = NULL; } static void enable_timing_multisync( struct dc *dc, struct dc_state *ctx) { int i = 0, multisync_count = 0; int pipe_count = dc->res_pool->pipe_count; struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL }; for (i = 0; i < pipe_count; i++) { if (!ctx->res_ctx.pipe_ctx[i].stream || !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled) continue; if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source) continue; multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i]; multisync_count++; } if (multisync_count > 0) { dc->hwss.enable_per_frame_crtc_position_reset( dc, multisync_count, multisync_pipes); } } static void program_timing_sync( struct dc *dc, struct dc_state *ctx) { int i, j, k; int group_index = 0; int num_group = 0; int pipe_count = dc->res_pool->pipe_count; struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL }; for (i = 0; i < pipe_count; i++) { if (!ctx->res_ctx.pipe_ctx[i].stream || ctx->res_ctx.pipe_ctx[i].top_pipe) continue; unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i]; } for (i = 0; i < pipe_count; i++) { int group_size = 1; struct pipe_ctx *pipe_set[MAX_PIPES]; if (!unsynced_pipes[i]) continue; pipe_set[0] = unsynced_pipes[i]; unsynced_pipes[i] = NULL; /* Add tg to the set, search rest of the tg's for ones with * same timing, add all tgs with same timing to the group */ for (j = i + 1; j < pipe_count; j++) { if (!unsynced_pipes[j]) continue; if (resource_are_streams_timing_synchronizable( unsynced_pipes[j]->stream, pipe_set[0]->stream)) { pipe_set[group_size] = unsynced_pipes[j]; unsynced_pipes[j] = NULL; group_size++; } } /* set first pipe with plane as master */ for (j = 0; j < group_size; j++) { if (pipe_set[j]->plane_state) { if (j == 0) break; swap(pipe_set[0], pipe_set[j]); break; } } for (k = 0; k < group_size; k++) { struct dc_stream_status *status = dc_stream_get_status_from_state(ctx, pipe_set[k]->stream); status->timing_sync_info.group_id = num_group; status->timing_sync_info.group_size = group_size; if (k == 0) status->timing_sync_info.master = true; else status->timing_sync_info.master = false; } /* remove any other pipes with plane as they have already been synced */ for (j = j + 1; j < group_size; j++) { if (pipe_set[j]->plane_state) { group_size--; pipe_set[j] = pipe_set[group_size]; j--; } } if (group_size > 1) { dc->hwss.enable_timing_synchronization( dc, group_index, group_size, pipe_set); group_index++; } num_group++; } } static bool context_changed( struct dc *dc, struct dc_state *context) { uint8_t i; if (context->stream_count != dc->current_state->stream_count) return true; for (i = 0; i < dc->current_state->stream_count; i++) { if (dc->current_state->streams[i] != context->streams[i]) return true; } return false; } bool dc_validate_seamless_boot_timing(const struct dc *dc, const struct dc_sink *sink, struct dc_crtc_timing *crtc_timing) { struct timing_generator *tg; struct stream_encoder *se = NULL; struct dc_crtc_timing hw_crtc_timing = {0}; struct dc_link *link = sink->link; unsigned int i, enc_inst, tg_inst = 0; // Seamless port only support single DP and EDP so far if (sink->sink_signal != SIGNAL_TYPE_DISPLAY_PORT && sink->sink_signal != SIGNAL_TYPE_EDP) return false; /* Check for enabled DIG to identify enabled display */ if (!link->link_enc->funcs->is_dig_enabled(link->link_enc)) return false; enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc); if (enc_inst == ENGINE_ID_UNKNOWN) return false; for (i = 0; i < dc->res_pool->stream_enc_count; i++) { if (dc->res_pool->stream_enc[i]->id == enc_inst) { se = dc->res_pool->stream_enc[i]; tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg( dc->res_pool->stream_enc[i]); break; } } // tg_inst not found if (i == dc->res_pool->stream_enc_count) return false; if (tg_inst >= dc->res_pool->timing_generator_count) return false; tg = dc->res_pool->timing_generators[tg_inst]; if (!tg->funcs->get_hw_timing) return false; if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing)) return false; if (crtc_timing->h_total != hw_crtc_timing.h_total) return false; if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left) return false; if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable) return false; if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right) return false; if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch) return false; if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width) return false; if (crtc_timing->v_total != hw_crtc_timing.v_total) return false; if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top) return false; if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable) return false; if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom) return false; if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch) return false; if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width) return false; if (dc_is_dp_signal(link->connector_signal)) { unsigned int pix_clk_100hz; dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz( dc->res_pool->dp_clock_source, tg_inst, &pix_clk_100hz); if (crtc_timing->pix_clk_100hz != pix_clk_100hz) return false; if (!se->funcs->dp_get_pixel_format) return false; if (!se->funcs->dp_get_pixel_format( se, &hw_crtc_timing.pixel_encoding, &hw_crtc_timing.display_color_depth)) return false; if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth) return false; if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding) return false; } return true; } bool dc_enable_stereo( struct dc *dc, struct dc_state *context, struct dc_stream_state *streams[], uint8_t stream_count) { bool ret = true; int i, j; struct pipe_ctx *pipe; for (i = 0; i < MAX_PIPES; i++) { if (context != NULL) pipe = &context->res_ctx.pipe_ctx[i]; else pipe = &dc->current_state->res_ctx.pipe_ctx[i]; for (j = 0 ; pipe && j < stream_count; j++) { if (streams[j] && streams[j] == pipe->stream && dc->hwss.setup_stereo) dc->hwss.setup_stereo(pipe, dc); } } return ret; } /* * Applies given context to HW and copy it into current context. * It's up to the user to release the src context afterwards. */ static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context) { struct dc_bios *dcb = dc->ctx->dc_bios; enum dc_status result = DC_ERROR_UNEXPECTED; struct pipe_ctx *pipe; int i, k, l; struct dc_stream_state *dc_streams[MAX_STREAMS] = {0}; disable_dangling_plane(dc, context); for (i = 0; i < context->stream_count; i++) dc_streams[i] = context->streams[i]; if (!dcb->funcs->is_accelerated_mode(dcb)) dc->hwss.enable_accelerated_mode(dc, context); for (i = 0; i < context->stream_count; i++) { if (context->streams[i]->apply_seamless_boot_optimization) dc->optimize_seamless_boot_streams++; } if (dc->optimize_seamless_boot_streams == 0) dc->hwss.prepare_bandwidth(dc, context); /* re-program planes for existing stream, in case we need to * free up plane resource for later use */ if (dc->hwss.apply_ctx_for_surface) { for (i = 0; i < context->stream_count; i++) { if (context->streams[i]->mode_changed) continue; apply_ctx_interdependent_lock(dc, context, context->streams[i], true); dc->hwss.apply_ctx_for_surface( dc, context->streams[i], context->stream_status[i].plane_count, context); /* use new pipe config in new context */ apply_ctx_interdependent_lock(dc, context, context->streams[i], false); dc->hwss.post_unlock_program_front_end(dc, context); } } /* Program hardware */ for (i = 0; i < dc->res_pool->pipe_count; i++) { pipe = &context->res_ctx.pipe_ctx[i]; dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe); } result = dc->hwss.apply_ctx_to_hw(dc, context); if (result != DC_OK) return result; if (context->stream_count > 1 && !dc->debug.disable_timing_sync) { enable_timing_multisync(dc, context); program_timing_sync(dc, context); } /* Program all planes within new context*/ if (dc->hwss.program_front_end_for_ctx) { dc->hwss.interdependent_update_lock(dc, context, true); dc->hwss.program_front_end_for_ctx(dc, context); dc->hwss.interdependent_update_lock(dc, context, false); dc->hwss.post_unlock_program_front_end(dc, context); } for (i = 0; i < context->stream_count; i++) { const struct dc_link *link = context->streams[i]->link; if (!context->streams[i]->mode_changed) continue; if (dc->hwss.apply_ctx_for_surface) { apply_ctx_interdependent_lock(dc, context, context->streams[i], true); dc->hwss.apply_ctx_for_surface( dc, context->streams[i], context->stream_status[i].plane_count, context); apply_ctx_interdependent_lock(dc, context, context->streams[i], false); dc->hwss.post_unlock_program_front_end(dc, context); } /* * enable stereo * TODO rework dc_enable_stereo call to work with validation sets? */ for (k = 0; k < MAX_PIPES; k++) { pipe = &context->res_ctx.pipe_ctx[k]; for (l = 0 ; pipe && l < context->stream_count; l++) { if (context->streams[l] && context->streams[l] == pipe->stream && dc->hwss.setup_stereo) dc->hwss.setup_stereo(pipe, dc); } } CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}", context->streams[i]->timing.h_addressable, context->streams[i]->timing.v_addressable, context->streams[i]->timing.h_total, context->streams[i]->timing.v_total, context->streams[i]->timing.pix_clk_100hz / 10); } dc_enable_stereo(dc, context, dc_streams, context->stream_count); if (dc->optimize_seamless_boot_streams == 0) { /* Must wait for no flips to be pending before doing optimize bw */ wait_for_no_pipes_pending(dc, context); /* pplib is notified if disp_num changed */ dc->hwss.optimize_bandwidth(dc, context); } for (i = 0; i < context->stream_count; i++) context->streams[i]->mode_changed = false; dc_release_state(dc->current_state); dc->current_state = context; dc_retain_state(dc->current_state); return result; } bool dc_commit_state(struct dc *dc, struct dc_state *context) { enum dc_status result = DC_ERROR_UNEXPECTED; int i; if (false == context_changed(dc, context)) return DC_OK; DC_LOG_DC("%s: %d streams\n", __func__, context->stream_count); for (i = 0; i < context->stream_count; i++) { struct dc_stream_state *stream = context->streams[i]; dc_stream_log(dc, stream); } result = dc_commit_state_no_check(dc, context); return (result == DC_OK); } static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context) { int i; struct pipe_ctx *pipe; for (i = 0; i < MAX_PIPES; i++) { pipe = &context->res_ctx.pipe_ctx[i]; if (!pipe->plane_state) continue; /* Must set to false to start with, due to OR in update function */ pipe->plane_state->status.is_flip_pending = false; dc->hwss.update_pending_status(pipe); if (pipe->plane_state->status.is_flip_pending) return true; } return false; } bool dc_post_update_surfaces_to_stream(struct dc *dc) { int i; struct dc_state *context = dc->current_state; if ((!dc->optimized_required) || dc->optimize_seamless_boot_streams > 0) return true; post_surface_trace(dc); if (is_flip_pending_in_pipes(dc, context)) return true; for (i = 0; i < dc->res_pool->pipe_count; i++) if (context->res_ctx.pipe_ctx[i].stream == NULL || context->res_ctx.pipe_ctx[i].plane_state == NULL) { context->res_ctx.pipe_ctx[i].pipe_idx = i; dc->hwss.disable_plane(dc, &context->res_ctx.pipe_ctx[i]); } dc->hwss.optimize_bandwidth(dc, context); dc->optimized_required = false; dc->wm_optimized_required = false; return true; } struct dc_state *dc_create_state(struct dc *dc) { struct dc_state *context = kvzalloc(sizeof(struct dc_state), GFP_KERNEL); if (!context) return NULL; /* Each context must have their own instance of VBA and in order to * initialize and obtain IP and SOC the base DML instance from DC is * initially copied into every context */ #ifdef CONFIG_DRM_AMD_DC_DCN memcpy(&context->bw_ctx.dml, &dc->dml, sizeof(struct display_mode_lib)); #endif kref_init(&context->refcount); return context; } struct dc_state *dc_copy_state(struct dc_state *src_ctx) { int i, j; struct dc_state *new_ctx = kvmalloc(sizeof(struct dc_state), GFP_KERNEL); if (!new_ctx) return NULL; memcpy(new_ctx, src_ctx, sizeof(struct dc_state)); for (i = 0; i < MAX_PIPES; i++) { struct pipe_ctx *cur_pipe = &new_ctx->res_ctx.pipe_ctx[i]; if (cur_pipe->top_pipe) cur_pipe->top_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx]; if (cur_pipe->bottom_pipe) cur_pipe->bottom_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx]; if (cur_pipe->prev_odm_pipe) cur_pipe->prev_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx]; if (cur_pipe->next_odm_pipe) cur_pipe->next_odm_pipe = &new_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx]; } for (i = 0; i < new_ctx->stream_count; i++) { dc_stream_retain(new_ctx->streams[i]); for (j = 0; j < new_ctx->stream_status[i].plane_count; j++) dc_plane_state_retain( new_ctx->stream_status[i].plane_states[j]); } kref_init(&new_ctx->refcount); return new_ctx; } void dc_retain_state(struct dc_state *context) { kref_get(&context->refcount); } static void dc_state_free(struct kref *kref) { struct dc_state *context = container_of(kref, struct dc_state, refcount); dc_resource_state_destruct(context); kvfree(context); } void dc_release_state(struct dc_state *context) { kref_put(&context->refcount, dc_state_free); } bool dc_set_generic_gpio_for_stereo(bool enable, struct gpio_service *gpio_service) { enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR; struct gpio_pin_info pin_info; struct gpio *generic; struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config), GFP_KERNEL); if (!config) return false; pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0); if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) { kfree(config); return false; } else { generic = dal_gpio_service_create_generic_mux( gpio_service, pin_info.offset, pin_info.mask); } if (!generic) { kfree(config); return false; } gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT); config->enable_output_from_mux = enable; config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC; if (gpio_result == GPIO_RESULT_OK) gpio_result = dal_mux_setup_config(generic, config); if (gpio_result == GPIO_RESULT_OK) { dal_gpio_close(generic); dal_gpio_destroy_generic_mux(&generic); kfree(config); return true; } else { dal_gpio_close(generic); dal_gpio_destroy_generic_mux(&generic); kfree(config); return false; } } static bool is_surface_in_context( const struct dc_state *context, const struct dc_plane_state *plane_state) { int j; for (j = 0; j < MAX_PIPES; j++) { const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (plane_state == pipe_ctx->plane_state) { return true; } } return false; } static enum surface_update_type get_plane_info_update_type(const struct dc_surface_update *u) { union surface_update_flags *update_flags = &u->surface->update_flags; enum surface_update_type update_type = UPDATE_TYPE_FAST; if (!u->plane_info) return UPDATE_TYPE_FAST; if (u->plane_info->color_space != u->surface->color_space) { update_flags->bits.color_space_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_MED); } if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) { update_flags->bits.horizontal_mirror_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_MED); } if (u->plane_info->rotation != u->surface->rotation) { update_flags->bits.rotation_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_FULL); } if (u->plane_info->format != u->surface->format) { update_flags->bits.pixel_format_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_FULL); } if (u->plane_info->stereo_format != u->surface->stereo_format) { update_flags->bits.stereo_format_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_FULL); } if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) { update_flags->bits.per_pixel_alpha_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_MED); } if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) { update_flags->bits.global_alpha_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_MED); } if (u->plane_info->dcc.enable != u->surface->dcc.enable || u->plane_info->dcc.independent_64b_blks != u->surface->dcc.independent_64b_blks || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) { update_flags->bits.dcc_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_MED); } if (resource_pixel_format_to_bpp(u->plane_info->format) != resource_pixel_format_to_bpp(u->surface->format)) { /* different bytes per element will require full bandwidth * and DML calculation */ update_flags->bits.bpp_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_FULL); } if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) { update_flags->bits.plane_size_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_MED); } if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info, sizeof(union dc_tiling_info)) != 0) { update_flags->bits.swizzle_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_MED); /* todo: below are HW dependent, we should add a hook to * DCE/N resource and validated there. */ if (u->plane_info->tiling_info.gfx9.swizzle != DC_SW_LINEAR) { /* swizzled mode requires RQ to be setup properly, * thus need to run DML to calculate RQ settings */ update_flags->bits.bandwidth_change = 1; elevate_update_type(&update_type, UPDATE_TYPE_FULL); } } /* This should be UPDATE_TYPE_FAST if nothing has changed. */ return update_type; } static enum surface_update_type get_scaling_info_update_type( const struct dc_surface_update *u) { union surface_update_flags *update_flags = &u->surface->update_flags; if (!u->scaling_info) return UPDATE_TYPE_FAST; if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width || u->scaling_info->clip_rect.height != u->surface->clip_rect.height || u->scaling_info->dst_rect.width != u->surface->dst_rect.width || u->scaling_info->dst_rect.height != u->surface->dst_rect.height || u->scaling_info->scaling_quality.integer_scaling != u->surface->scaling_quality.integer_scaling ) { update_flags->bits.scaling_change = 1; if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width || u->scaling_info->dst_rect.height < u->surface->dst_rect.height) && (u->scaling_info->dst_rect.width < u->surface->src_rect.width || u->scaling_info->dst_rect.height < u->surface->src_rect.height)) /* Making dst rect smaller requires a bandwidth change */ update_flags->bits.bandwidth_change = 1; } if (u->scaling_info->src_rect.width != u->surface->src_rect.width || u->scaling_info->src_rect.height != u->surface->src_rect.height) { update_flags->bits.scaling_change = 1; if (u->scaling_info->src_rect.width > u->surface->src_rect.width || u->scaling_info->src_rect.height > u->surface->src_rect.height) /* Making src rect bigger requires a bandwidth change */ update_flags->bits.clock_change = 1; } if (u->scaling_info->src_rect.x != u->surface->src_rect.x || u->scaling_info->src_rect.y != u->surface->src_rect.y || u->scaling_info->clip_rect.x != u->surface->clip_rect.x || u->scaling_info->clip_rect.y != u->surface->clip_rect.y || u->scaling_info->dst_rect.x != u->surface->dst_rect.x || u->scaling_info->dst_rect.y != u->surface->dst_rect.y) update_flags->bits.position_change = 1; if (update_flags->bits.clock_change || update_flags->bits.bandwidth_change || update_flags->bits.scaling_change) return UPDATE_TYPE_FULL; if (update_flags->bits.position_change) return UPDATE_TYPE_MED; return UPDATE_TYPE_FAST; } static enum surface_update_type det_surface_update(const struct dc *dc, const struct dc_surface_update *u) { const struct dc_state *context = dc->current_state; enum surface_update_type type; enum surface_update_type overall_type = UPDATE_TYPE_FAST; union surface_update_flags *update_flags = &u->surface->update_flags; if (u->flip_addr) update_flags->bits.addr_update = 1; if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) { update_flags->raw = 0xFFFFFFFF; return UPDATE_TYPE_FULL; } update_flags->raw = 0; // Reset all flags type = get_plane_info_update_type(u); elevate_update_type(&overall_type, type); type = get_scaling_info_update_type(u); elevate_update_type(&overall_type, type); if (u->flip_addr) update_flags->bits.addr_update = 1; if (u->in_transfer_func) update_flags->bits.in_transfer_func_change = 1; if (u->input_csc_color_matrix) update_flags->bits.input_csc_change = 1; if (u->coeff_reduction_factor) update_flags->bits.coeff_reduction_change = 1; if (u->gamut_remap_matrix) update_flags->bits.gamut_remap_change = 1; if (u->gamma) { enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN; if (u->plane_info) format = u->plane_info->format; else if (u->surface) format = u->surface->format; if (dce_use_lut(format)) update_flags->bits.gamma_change = 1; } if (u->hdr_mult.value) if (u->hdr_mult.value != u->surface->hdr_mult.value) { update_flags->bits.hdr_mult = 1; elevate_update_type(&overall_type, UPDATE_TYPE_MED); } if (update_flags->bits.in_transfer_func_change) { type = UPDATE_TYPE_MED; elevate_update_type(&overall_type, type); } if (update_flags->bits.input_csc_change || update_flags->bits.coeff_reduction_change || update_flags->bits.gamma_change || update_flags->bits.gamut_remap_change) { type = UPDATE_TYPE_FULL; elevate_update_type(&overall_type, type); } return overall_type; } static enum surface_update_type check_update_surfaces_for_stream( struct dc *dc, struct dc_surface_update *updates, int surface_count, struct dc_stream_update *stream_update, const struct dc_stream_status *stream_status) { int i; enum surface_update_type overall_type = UPDATE_TYPE_FAST; if (stream_status == NULL || stream_status->plane_count != surface_count) overall_type = UPDATE_TYPE_FULL; /* some stream updates require passive update */ if (stream_update) { union stream_update_flags *su_flags = &stream_update->stream->update_flags; if ((stream_update->src.height != 0 && stream_update->src.width != 0) || (stream_update->dst.height != 0 && stream_update->dst.width != 0) || stream_update->integer_scaling_update) su_flags->bits.scaling = 1; if (stream_update->out_transfer_func) su_flags->bits.out_tf = 1; if (stream_update->abm_level) su_flags->bits.abm_level = 1; if (stream_update->dpms_off) su_flags->bits.dpms_off = 1; if (stream_update->gamut_remap) su_flags->bits.gamut_remap = 1; if (stream_update->wb_update) su_flags->bits.wb_update = 1; if (stream_update->dsc_config) su_flags->bits.dsc_changed = 1; if (su_flags->raw != 0) overall_type = UPDATE_TYPE_FULL; if (stream_update->output_csc_transform || stream_update->output_color_space) su_flags->bits.out_csc = 1; } for (i = 0 ; i < surface_count; i++) { enum surface_update_type type = det_surface_update(dc, &updates[i]); elevate_update_type(&overall_type, type); } return overall_type; } /** * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full) * * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types */ enum surface_update_type dc_check_update_surfaces_for_stream( struct dc *dc, struct dc_surface_update *updates, int surface_count, struct dc_stream_update *stream_update, const struct dc_stream_status *stream_status) { int i; enum surface_update_type type; if (stream_update) stream_update->stream->update_flags.raw = 0; for (i = 0; i < surface_count; i++) updates[i].surface->update_flags.raw = 0; type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status); if (type == UPDATE_TYPE_FULL) { if (stream_update) { uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed; stream_update->stream->update_flags.raw = 0xFFFFFFFF; stream_update->stream->update_flags.bits.dsc_changed = dsc_changed; } for (i = 0; i < surface_count; i++) updates[i].surface->update_flags.raw = 0xFFFFFFFF; } if (type == UPDATE_TYPE_FAST) { // If there's an available clock comparator, we use that. if (dc->clk_mgr->funcs->are_clock_states_equal) { if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk)) dc->optimized_required = true; // Else we fallback to mem compare. } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) { dc->optimized_required = true; } dc->optimized_required |= dc->wm_optimized_required; } return type; } static struct dc_stream_status *stream_get_status( struct dc_state *ctx, struct dc_stream_state *stream) { uint8_t i; for (i = 0; i < ctx->stream_count; i++) { if (stream == ctx->streams[i]) { return &ctx->stream_status[i]; } } return NULL; } static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL; static void copy_surface_update_to_plane( struct dc_plane_state *surface, struct dc_surface_update *srf_update) { if (srf_update->flip_addr) { surface->address = srf_update->flip_addr->address; surface->flip_immediate = srf_update->flip_addr->flip_immediate; surface->time.time_elapsed_in_us[surface->time.index] = srf_update->flip_addr->flip_timestamp_in_us - surface->time.prev_update_time_in_us; surface->time.prev_update_time_in_us = srf_update->flip_addr->flip_timestamp_in_us; surface->time.index++; if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX) surface->time.index = 0; surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips; } if (srf_update->scaling_info) { surface->scaling_quality = srf_update->scaling_info->scaling_quality; surface->dst_rect = srf_update->scaling_info->dst_rect; surface->src_rect = srf_update->scaling_info->src_rect; surface->clip_rect = srf_update->scaling_info->clip_rect; } if (srf_update->plane_info) { surface->color_space = srf_update->plane_info->color_space; surface->format = srf_update->plane_info->format; surface->plane_size = srf_update->plane_info->plane_size; surface->rotation = srf_update->plane_info->rotation; surface->horizontal_mirror = srf_update->plane_info->horizontal_mirror; surface->stereo_format = srf_update->plane_info->stereo_format; surface->tiling_info = srf_update->plane_info->tiling_info; surface->visible = srf_update->plane_info->visible; surface->per_pixel_alpha = srf_update->plane_info->per_pixel_alpha; surface->global_alpha = srf_update->plane_info->global_alpha; surface->global_alpha_value = srf_update->plane_info->global_alpha_value; surface->dcc = srf_update->plane_info->dcc; surface->layer_index = srf_update->plane_info->layer_index; } if (srf_update->gamma && (surface->gamma_correction != srf_update->gamma)) { memcpy(&surface->gamma_correction->entries, &srf_update->gamma->entries, sizeof(struct dc_gamma_entries)); surface->gamma_correction->is_identity = srf_update->gamma->is_identity; surface->gamma_correction->num_entries = srf_update->gamma->num_entries; surface->gamma_correction->type = srf_update->gamma->type; } if (srf_update->in_transfer_func && (surface->in_transfer_func != srf_update->in_transfer_func)) { surface->in_transfer_func->sdr_ref_white_level = srf_update->in_transfer_func->sdr_ref_white_level; surface->in_transfer_func->tf = srf_update->in_transfer_func->tf; surface->in_transfer_func->type = srf_update->in_transfer_func->type; memcpy(&surface->in_transfer_func->tf_pts, &srf_update->in_transfer_func->tf_pts, sizeof(struct dc_transfer_func_distributed_points)); } if (srf_update->func_shaper && (surface->in_shaper_func != srf_update->func_shaper)) memcpy(surface->in_shaper_func, srf_update->func_shaper, sizeof(*surface->in_shaper_func)); if (srf_update->lut3d_func && (surface->lut3d_func != srf_update->lut3d_func)) memcpy(surface->lut3d_func, srf_update->lut3d_func, sizeof(*surface->lut3d_func)); if (srf_update->hdr_mult.value) surface->hdr_mult = srf_update->hdr_mult; if (srf_update->blend_tf && (surface->blend_tf != srf_update->blend_tf)) memcpy(surface->blend_tf, srf_update->blend_tf, sizeof(*surface->blend_tf)); if (srf_update->input_csc_color_matrix) surface->input_csc_color_matrix = *srf_update->input_csc_color_matrix; if (srf_update->coeff_reduction_factor) surface->coeff_reduction_factor = *srf_update->coeff_reduction_factor; if (srf_update->gamut_remap_matrix) surface->gamut_remap_matrix = *srf_update->gamut_remap_matrix; } static void copy_stream_update_to_stream(struct dc *dc, struct dc_state *context, struct dc_stream_state *stream, struct dc_stream_update *update) { struct dc_context *dc_ctx = dc->ctx; if (update == NULL || stream == NULL) return; if (update->src.height && update->src.width) stream->src = update->src; if (update->dst.height && update->dst.width) stream->dst = update->dst; if (update->out_transfer_func && stream->out_transfer_func != update->out_transfer_func) { stream->out_transfer_func->sdr_ref_white_level = update->out_transfer_func->sdr_ref_white_level; stream->out_transfer_func->tf = update->out_transfer_func->tf; stream->out_transfer_func->type = update->out_transfer_func->type; memcpy(&stream->out_transfer_func->tf_pts, &update->out_transfer_func->tf_pts, sizeof(struct dc_transfer_func_distributed_points)); } if (update->hdr_static_metadata) stream->hdr_static_metadata = *update->hdr_static_metadata; if (update->abm_level) stream->abm_level = *update->abm_level; if (update->periodic_interrupt0) stream->periodic_interrupt0 = *update->periodic_interrupt0; if (update->periodic_interrupt1) stream->periodic_interrupt1 = *update->periodic_interrupt1; if (update->gamut_remap) stream->gamut_remap_matrix = *update->gamut_remap; /* Note: this being updated after mode set is currently not a use case * however if it arises OCSC would need to be reprogrammed at the * minimum */ if (update->output_color_space) stream->output_color_space = *update->output_color_space; if (update->output_csc_transform) stream->csc_color_matrix = *update->output_csc_transform; if (update->vrr_infopacket) stream->vrr_infopacket = *update->vrr_infopacket; if (update->dpms_off) stream->dpms_off = *update->dpms_off; if (update->vsc_infopacket) stream->vsc_infopacket = *update->vsc_infopacket; if (update->vsp_infopacket) stream->vsp_infopacket = *update->vsp_infopacket; if (update->dither_option) stream->dither_option = *update->dither_option; /* update current stream with writeback info */ if (update->wb_update) { int i; stream->num_wb_info = update->wb_update->num_wb_info; ASSERT(stream->num_wb_info <= MAX_DWB_PIPES); for (i = 0; i < stream->num_wb_info; i++) stream->writeback_info[i] = update->wb_update->writeback_info[i]; } if (update->dsc_config) { struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg; uint32_t old_dsc_enabled = stream->timing.flags.DSC; uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 && update->dsc_config->num_slices_v != 0); /* Use temporarry context for validating new DSC config */ struct dc_state *dsc_validate_context = dc_create_state(dc); if (dsc_validate_context) { dc_resource_state_copy_construct(dc->current_state, dsc_validate_context); stream->timing.dsc_cfg = *update->dsc_config; stream->timing.flags.DSC = enable_dsc; if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) { stream->timing.dsc_cfg = old_dsc_cfg; stream->timing.flags.DSC = old_dsc_enabled; update->dsc_config = NULL; } dc_release_state(dsc_validate_context); } else { DC_ERROR("Failed to allocate new validate context for DSC change\n"); update->dsc_config = NULL; } } } static void commit_planes_do_stream_update(struct dc *dc, struct dc_stream_state *stream, struct dc_stream_update *stream_update, enum surface_update_type update_type, struct dc_state *context) { int j; bool should_program_abm; // Stream updates for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe && pipe_ctx->stream == stream) { if (stream_update->periodic_interrupt0 && dc->hwss.setup_periodic_interrupt) dc->hwss.setup_periodic_interrupt(dc, pipe_ctx, VLINE0); if (stream_update->periodic_interrupt1 && dc->hwss.setup_periodic_interrupt) dc->hwss.setup_periodic_interrupt(dc, pipe_ctx, VLINE1); if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) || stream_update->vrr_infopacket || stream_update->vsc_infopacket || stream_update->vsp_infopacket) { resource_build_info_frame(pipe_ctx); dc->hwss.update_info_frame(pipe_ctx); } if (stream_update->hdr_static_metadata && stream->use_dynamic_meta && dc->hwss.set_dmdata_attributes && pipe_ctx->stream->dmdata_address.quad_part != 0) dc->hwss.set_dmdata_attributes(pipe_ctx); if (stream_update->gamut_remap) dc_stream_set_gamut_remap(dc, stream); if (stream_update->output_csc_transform) dc_stream_program_csc_matrix(dc, stream); if (stream_update->dither_option) { struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe; resource_build_bit_depth_reduction_params(pipe_ctx->stream, &pipe_ctx->stream->bit_depth_params); pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp, &stream->bit_depth_params, &stream->clamping); while (odm_pipe) { odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp, &stream->bit_depth_params, &stream->clamping); odm_pipe = odm_pipe->next_odm_pipe; } } /* Full fe update*/ if (update_type == UPDATE_TYPE_FAST) continue; if (stream_update->dsc_config) dp_update_dsc_config(pipe_ctx); if (stream_update->dpms_off) { if (*stream_update->dpms_off) { core_link_disable_stream(pipe_ctx); /* for dpms, keep acquired resources*/ if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only) pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio); dc->hwss.optimize_bandwidth(dc, dc->current_state); } else { if (dc->optimize_seamless_boot_streams == 0) dc->hwss.prepare_bandwidth(dc, dc->current_state); core_link_enable_stream(dc->current_state, pipe_ctx); } } if (stream_update->abm_level && pipe_ctx->stream_res.abm) { should_program_abm = true; // if otg funcs defined check if blanked before programming if (pipe_ctx->stream_res.tg->funcs->is_blanked) if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg)) should_program_abm = false; if (should_program_abm) { if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) { pipe_ctx->stream_res.abm->funcs->set_abm_immediate_disable(pipe_ctx->stream_res.abm); } else { pipe_ctx->stream_res.abm->funcs->set_abm_level( pipe_ctx->stream_res.abm, stream->abm_level); } } } } } } static void commit_planes_for_stream(struct dc *dc, struct dc_surface_update *srf_updates, int surface_count, struct dc_stream_state *stream, struct dc_stream_update *stream_update, enum surface_update_type update_type, struct dc_state *context) { int i, j; struct pipe_ctx *top_pipe_to_program = NULL; if (dc->optimize_seamless_boot_streams > 0 && surface_count > 0) { /* Optimize seamless boot flag keeps clocks and watermarks high until * first flip. After first flip, optimization is required to lower * bandwidth. Important to note that it is expected UEFI will * only light up a single display on POST, therefore we only expect * one stream with seamless boot flag set. */ if (stream->apply_seamless_boot_optimization) { stream->apply_seamless_boot_optimization = false; dc->optimize_seamless_boot_streams--; if (dc->optimize_seamless_boot_streams == 0) dc->optimized_required = true; } } if (update_type == UPDATE_TYPE_FULL && dc->optimize_seamless_boot_streams == 0) { dc->hwss.prepare_bandwidth(dc, context); context_clock_trace(dc, context); } for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe && pipe_ctx->stream && pipe_ctx->stream == stream) { top_pipe_to_program = pipe_ctx; } } if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed) if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable( top_pipe_to_program->stream_res.tg); if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock) dc->hwss.interdependent_update_lock(dc, context, true); else /* Lock the top pipe while updating plane addrs, since freesync requires * plane addr update event triggers to be synchronized. * top_pipe_to_program is expected to never be NULL */ dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true); // Stream updates if (stream_update) commit_planes_do_stream_update(dc, stream, stream_update, update_type, context); if (surface_count == 0) { /* * In case of turning off screen, no need to program front end a second time. * just return after program blank. */ if (dc->hwss.apply_ctx_for_surface) dc->hwss.apply_ctx_for_surface(dc, stream, 0, context); if (dc->hwss.program_front_end_for_ctx) dc->hwss.program_front_end_for_ctx(dc, context); if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock) dc->hwss.interdependent_update_lock(dc, context, false); else dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false); dc->hwss.post_unlock_program_front_end(dc, context); return; } if (!IS_DIAG_DC(dc->ctx->dce_environment)) { for (i = 0; i < surface_count; i++) { struct dc_plane_state *plane_state = srf_updates[i].surface; /*set logical flag for lock/unlock use*/ for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (!pipe_ctx->plane_state) continue; if (pipe_ctx->plane_state != plane_state) continue; plane_state->triplebuffer_flips = false; if (update_type == UPDATE_TYPE_FAST && dc->hwss.program_triplebuffer != NULL && !plane_state->flip_immediate && !dc->debug.disable_tri_buf) { /*triple buffer for VUpdate only*/ plane_state->triplebuffer_flips = true; } } } } // Update Type FULL, Surface updates for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (!pipe_ctx->top_pipe && !pipe_ctx->prev_odm_pipe && pipe_ctx->stream && pipe_ctx->stream == stream) { struct dc_stream_status *stream_status = NULL; if (!pipe_ctx->plane_state) continue; /* Full fe update*/ if (update_type == UPDATE_TYPE_FAST) continue; ASSERT(!pipe_ctx->plane_state->triplebuffer_flips); if (dc->hwss.program_triplebuffer != NULL && !dc->debug.disable_tri_buf) { /*turn off triple buffer for full update*/ dc->hwss.program_triplebuffer( dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips); } stream_status = stream_get_status(context, pipe_ctx->stream); if (dc->hwss.apply_ctx_for_surface) dc->hwss.apply_ctx_for_surface( dc, pipe_ctx->stream, stream_status->plane_count, context); } } if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) { dc->hwss.program_front_end_for_ctx(dc, context); #ifdef CONFIG_DRM_AMD_DC_DCN if (dc->debug.validate_dml_output) { for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx cur_pipe = context->res_ctx.pipe_ctx[i]; if (cur_pipe.stream == NULL) continue; cur_pipe.plane_res.hubp->funcs->validate_dml_output( cur_pipe.plane_res.hubp, dc->ctx, &context->res_ctx.pipe_ctx[i].rq_regs, &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs); } } #endif } // Update Type FAST, Surface updates if (update_type == UPDATE_TYPE_FAST) { if (dc->hwss.set_flip_control_gsl) for (i = 0; i < surface_count; i++) { struct dc_plane_state *plane_state = srf_updates[i].surface; for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (pipe_ctx->stream != stream) continue; if (pipe_ctx->plane_state != plane_state) continue; // GSL has to be used for flip immediate dc->hwss.set_flip_control_gsl(pipe_ctx, plane_state->flip_immediate); } } /* Perform requested Updates */ for (i = 0; i < surface_count; i++) { struct dc_plane_state *plane_state = srf_updates[i].surface; for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (pipe_ctx->stream != stream) continue; if (pipe_ctx->plane_state != plane_state) continue; /*program triple buffer after lock based on flip type*/ if (dc->hwss.program_triplebuffer != NULL && !dc->debug.disable_tri_buf) { /*only enable triplebuffer for fast_update*/ dc->hwss.program_triplebuffer( dc, pipe_ctx, plane_state->triplebuffer_flips); } if (srf_updates[i].flip_addr) dc->hwss.update_plane_addr(dc, pipe_ctx); } } } if ((update_type != UPDATE_TYPE_FAST) && dc->hwss.interdependent_update_lock) dc->hwss.interdependent_update_lock(dc, context, false); else dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false); if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed) if (top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) { top_pipe_to_program->stream_res.tg->funcs->wait_for_state( top_pipe_to_program->stream_res.tg, CRTC_STATE_VACTIVE); top_pipe_to_program->stream_res.tg->funcs->wait_for_state( top_pipe_to_program->stream_res.tg, CRTC_STATE_VBLANK); top_pipe_to_program->stream_res.tg->funcs->wait_for_state( top_pipe_to_program->stream_res.tg, CRTC_STATE_VACTIVE); top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable( top_pipe_to_program->stream_res.tg); } if (update_type != UPDATE_TYPE_FAST) dc->hwss.post_unlock_program_front_end(dc, context); // Fire manual trigger only when bottom plane is flipped for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (pipe_ctx->bottom_pipe || !pipe_ctx->stream || pipe_ctx->stream != stream || !pipe_ctx->plane_state->update_flags.bits.addr_update) continue; if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger) pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg); } } void dc_commit_updates_for_stream(struct dc *dc, struct dc_surface_update *srf_updates, int surface_count, struct dc_stream_state *stream, struct dc_stream_update *stream_update, struct dc_state *state) { const struct dc_stream_status *stream_status; enum surface_update_type update_type; struct dc_state *context; struct dc_context *dc_ctx = dc->ctx; int i, j; stream_status = dc_stream_get_status(stream); context = dc->current_state; update_type = dc_check_update_surfaces_for_stream( dc, srf_updates, surface_count, stream_update, stream_status); if (update_type >= update_surface_trace_level) update_surface_trace(dc, srf_updates, surface_count); if (update_type >= UPDATE_TYPE_FULL) { /* initialize scratch memory for building context */ context = dc_create_state(dc); if (context == NULL) { DC_ERROR("Failed to allocate new validate context!\n"); return; } dc_resource_state_copy_construct(state, context); for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i]; struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i]; if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state) new_pipe->plane_state->force_full_update = true; } } for (i = 0; i < surface_count; i++) { struct dc_plane_state *surface = srf_updates[i].surface; copy_surface_update_to_plane(surface, &srf_updates[i]); if (update_type >= UPDATE_TYPE_MED) { for (j = 0; j < dc->res_pool->pipe_count; j++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j]; if (pipe_ctx->plane_state != surface) continue; resource_build_scaling_params(pipe_ctx); } } } copy_stream_update_to_stream(dc, context, stream, stream_update); commit_planes_for_stream( dc, srf_updates, surface_count, stream, stream_update, update_type, context); /*update current_State*/ if (dc->current_state != context) { struct dc_state *old = dc->current_state; dc->current_state = context; dc_release_state(old); for (i = 0; i < dc->res_pool->pipe_count; i++) { struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i]; if (pipe_ctx->plane_state && pipe_ctx->stream == stream) pipe_ctx->plane_state->force_full_update = false; } } /*let's use current_state to update watermark etc*/ if (update_type >= UPDATE_TYPE_FULL) dc_post_update_surfaces_to_stream(dc); return; } uint8_t dc_get_current_stream_count(struct dc *dc) { return dc->current_state->stream_count; } struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i) { if (i < dc->current_state->stream_count) return dc->current_state->streams[i]; return NULL; } enum dc_irq_source dc_interrupt_to_irq_source( struct dc *dc, uint32_t src_id, uint32_t ext_id) { return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id); } /** * dc_interrupt_set() - Enable/disable an AMD hw interrupt source */ bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable) { if (dc == NULL) return false; return dal_irq_service_set(dc->res_pool->irqs, src, enable); } void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src) { dal_irq_service_ack(dc->res_pool->irqs, src); } void dc_set_power_state( struct dc *dc, enum dc_acpi_cm_power_state power_state) { struct kref refcount; struct display_mode_lib *dml; switch (power_state) { case DC_ACPI_CM_POWER_STATE_D0: dc_resource_state_construct(dc, dc->current_state); if (dc->ctx->dmub_srv) dc_dmub_srv_wait_phy_init(dc->ctx->dmub_srv); dc->hwss.init_hw(dc); if (dc->hwss.init_sys_ctx != NULL && dc->vm_pa_config.valid) { dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config); } break; default: ASSERT(dc->current_state->stream_count == 0); /* Zero out the current context so that on resume we start with * clean state, and dc hw programming optimizations will not * cause any trouble. */ dml = kzalloc(sizeof(struct display_mode_lib), GFP_KERNEL); ASSERT(dml); if (!dml) return; /* Preserve refcount */ refcount = dc->current_state->refcount; /* Preserve display mode lib */ memcpy(dml, &dc->current_state->bw_ctx.dml, sizeof(struct display_mode_lib)); dc_resource_state_destruct(dc->current_state); memset(dc->current_state, 0, sizeof(*dc->current_state)); dc->current_state->refcount = refcount; dc->current_state->bw_ctx.dml = *dml; kfree(dml); break; } } void dc_resume(struct dc *dc) { uint32_t i; for (i = 0; i < dc->link_count; i++) core_link_resume(dc->links[i]); } unsigned int dc_get_current_backlight_pwm(struct dc *dc) { struct abm *abm = dc->res_pool->abm; if (abm) return abm->funcs->get_current_backlight(abm); return 0; } unsigned int dc_get_target_backlight_pwm(struct dc *dc) { struct abm *abm = dc->res_pool->abm; if (abm) return abm->funcs->get_target_backlight(abm); return 0; } bool dc_is_dmcu_initialized(struct dc *dc) { struct dmcu *dmcu = dc->res_pool->dmcu; if (dmcu) return dmcu->funcs->is_dmcu_initialized(dmcu); return false; } bool dc_submit_i2c( struct dc *dc, uint32_t link_index, struct i2c_command *cmd) { struct dc_link *link = dc->links[link_index]; struct ddc_service *ddc = link->ddc; return dce_i2c_submit_command( dc->res_pool, ddc->ddc_pin, cmd); } bool dc_submit_i2c_oem( struct dc *dc, struct i2c_command *cmd) { struct ddc_service *ddc = dc->res_pool->oem_device; return dce_i2c_submit_command( dc->res_pool, ddc->ddc_pin, cmd); } static bool link_add_remote_sink_helper(struct dc_link *dc_link, struct dc_sink *sink) { if (dc_link->sink_count >= MAX_SINKS_PER_LINK) { BREAK_TO_DEBUGGER(); return false; } dc_sink_retain(sink); dc_link->remote_sinks[dc_link->sink_count] = sink; dc_link->sink_count++; return true; } /** * dc_link_add_remote_sink() - Create a sink and attach it to an existing link * * EDID length is in bytes */ struct dc_sink *dc_link_add_remote_sink( struct dc_link *link, const uint8_t *edid, int len, struct dc_sink_init_data *init_data) { struct dc_sink *dc_sink; enum dc_edid_status edid_status; if (len > DC_MAX_EDID_BUFFER_SIZE) { dm_error("Max EDID buffer size breached!\n"); return NULL; } if (!init_data) { BREAK_TO_DEBUGGER(); return NULL; } if (!init_data->link) { BREAK_TO_DEBUGGER(); return NULL; } dc_sink = dc_sink_create(init_data); if (!dc_sink) return NULL; memmove(dc_sink->dc_edid.raw_edid, edid, len); dc_sink->dc_edid.length = len; if (!link_add_remote_sink_helper( link, dc_sink)) goto fail_add_sink; edid_status = dm_helpers_parse_edid_caps( link->ctx, &dc_sink->dc_edid, &dc_sink->edid_caps); /* * Treat device as no EDID device if EDID * parsing fails */ if (edid_status != EDID_OK) { dc_sink->dc_edid.length = 0; dm_error("Bad EDID, status%d!\n", edid_status); } return dc_sink; fail_add_sink: dc_sink_release(dc_sink); return NULL; } /** * dc_link_remove_remote_sink() - Remove a remote sink from a dc_link * * Note that this just removes the struct dc_sink - it doesn't * program hardware or alter other members of dc_link */ void dc_link_remove_remote_sink(struct dc_link *link, struct dc_sink *sink) { int i; if (!link->sink_count) { BREAK_TO_DEBUGGER(); return; } for (i = 0; i < link->sink_count; i++) { if (link->remote_sinks[i] == sink) { dc_sink_release(sink); link->remote_sinks[i] = NULL; /* shrink array to remove empty place */ while (i < link->sink_count - 1) { link->remote_sinks[i] = link->remote_sinks[i+1]; i++; } link->remote_sinks[i] = NULL; link->sink_count--; return; } } } void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info) { info->displayClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz; info->engineClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz; info->memoryClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz; info->maxSupportedDppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz; info->dppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz; info->socClock = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz; info->dcfClockDeepSleep = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz; info->fClock = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz; info->phyClock = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz; } enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping) { if (dc->hwss.set_clock) return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping); return DC_ERROR_UNEXPECTED; } void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg) { if (dc->hwss.get_clock) dc->hwss.get_clock(dc, clock_type, clock_cfg); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1