Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andi Shyti | 2819 | 88.48% | 1 | 5.26% |
Chris Wilson | 293 | 9.20% | 12 | 63.16% |
Imre Deak | 50 | 1.57% | 2 | 10.53% |
CQ Tang | 14 | 0.44% | 1 | 5.26% |
Pankaj Bharadiya | 6 | 0.19% | 1 | 5.26% |
Jani Nikula | 3 | 0.09% | 1 | 5.26% |
Matthew Auld | 1 | 0.03% | 1 | 5.26% |
Total | 3186 | 19 |
/* * SPDX-License-Identifier: MIT * * Copyright © 2019 Intel Corporation */ #include <linux/pm_runtime.h> #include "i915_drv.h" #include "i915_vgpu.h" #include "intel_gt.h" #include "intel_gt_pm.h" #include "intel_rc6.h" #include "intel_sideband.h" /** * DOC: RC6 * * RC6 is a special power stage which allows the GPU to enter an very * low-voltage mode when idle, using down to 0V while at this stage. This * stage is entered automatically when the GPU is idle when RC6 support is * enabled, and as soon as new workload arises GPU wakes up automatically as * well. * * There are different RC6 modes available in Intel GPU, which differentiate * among each other with the latency required to enter and leave RC6 and * voltage consumed by the GPU in different states. * * The combination of the following flags define which states GPU is allowed * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and * RC6pp is deepest RC6. Their support by hardware varies according to the * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one * which brings the most power savings; deeper states save more power, but * require higher latency to switch to and wake up. */ static struct intel_gt *rc6_to_gt(struct intel_rc6 *rc6) { return container_of(rc6, struct intel_gt, rc6); } static struct intel_uncore *rc6_to_uncore(struct intel_rc6 *rc) { return rc6_to_gt(rc)->uncore; } static struct drm_i915_private *rc6_to_i915(struct intel_rc6 *rc) { return rc6_to_gt(rc)->i915; } static inline void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val) { intel_uncore_write_fw(uncore, reg, val); } static void gen11_rc6_enable(struct intel_rc6 *rc6) { struct intel_uncore *uncore = rc6_to_uncore(rc6); struct intel_engine_cs *engine; enum intel_engine_id id; /* 2b: Program RC6 thresholds.*/ set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85); set(uncore, GEN10_MEDIA_WAKE_RATE_LIMIT, 150); set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ for_each_engine(engine, rc6_to_gt(rc6), id) set(uncore, RING_MAX_IDLE(engine->mmio_base), 10); set(uncore, GUC_MAX_IDLE_COUNT, 0xA); set(uncore, GEN6_RC_SLEEP, 0); set(uncore, GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */ /* * 2c: Program Coarse Power Gating Policies. * * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we * use instead is a more conservative estimate for the maximum time * it takes us to service a CS interrupt and submit a new ELSP - that * is the time which the GPU is idle waiting for the CPU to select the * next request to execute. If the idle hysteresis is less than that * interrupt service latency, the hardware will automatically gate * the power well and we will then incur the wake up cost on top of * the service latency. A similar guide from plane_state is that we * do not want the enable hysteresis to less than the wakeup latency. * * igt/gem_exec_nop/sequential provides a rough estimate for the * service latency, and puts it under 10us for Icelake, similar to * Broadwell+, To be conservative, we want to factor in a context * switch on top (due to ksoftirqd). */ set(uncore, GEN9_MEDIA_PG_IDLE_HYSTERESIS, 60); set(uncore, GEN9_RENDER_PG_IDLE_HYSTERESIS, 60); /* 3a: Enable RC6 */ rc6->ctl_enable = GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_RC6_ENABLE | GEN6_RC_CTL_EI_MODE(1); set(uncore, GEN9_PG_ENABLE, GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE | GEN11_MEDIA_SAMPLER_PG_ENABLE); } static void gen9_rc6_enable(struct intel_rc6 *rc6) { struct intel_uncore *uncore = rc6_to_uncore(rc6); struct intel_engine_cs *engine; enum intel_engine_id id; u32 rc6_mode; /* 2b: Program RC6 thresholds.*/ if (INTEL_GEN(rc6_to_i915(rc6)) >= 10) { set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85); set(uncore, GEN10_MEDIA_WAKE_RATE_LIMIT, 150); } else if (IS_SKYLAKE(rc6_to_i915(rc6))) { /* * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only * when CPG is enabled */ set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16); } else { set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16); } set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ for_each_engine(engine, rc6_to_gt(rc6), id) set(uncore, RING_MAX_IDLE(engine->mmio_base), 10); set(uncore, GUC_MAX_IDLE_COUNT, 0xA); set(uncore, GEN6_RC_SLEEP, 0); /* * 2c: Program Coarse Power Gating Policies. * * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we * use instead is a more conservative estimate for the maximum time * it takes us to service a CS interrupt and submit a new ELSP - that * is the time which the GPU is idle waiting for the CPU to select the * next request to execute. If the idle hysteresis is less than that * interrupt service latency, the hardware will automatically gate * the power well and we will then incur the wake up cost on top of * the service latency. A similar guide from plane_state is that we * do not want the enable hysteresis to less than the wakeup latency. * * igt/gem_exec_nop/sequential provides a rough estimate for the * service latency, and puts it around 10us for Broadwell (and other * big core) and around 40us for Broxton (and other low power cores). * [Note that for legacy ringbuffer submission, this is less than 1us!] * However, the wakeup latency on Broxton is closer to 100us. To be * conservative, we have to factor in a context switch on top (due * to ksoftirqd). */ set(uncore, GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250); set(uncore, GEN9_RENDER_PG_IDLE_HYSTERESIS, 250); /* 3a: Enable RC6 */ set(uncore, GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */ /* WaRsUseTimeoutMode:cnl (pre-prod) */ if (IS_CNL_REVID(rc6_to_i915(rc6), CNL_REVID_A0, CNL_REVID_C0)) rc6_mode = GEN7_RC_CTL_TO_MODE; else rc6_mode = GEN6_RC_CTL_EI_MODE(1); rc6->ctl_enable = GEN6_RC_CTL_HW_ENABLE | GEN6_RC_CTL_RC6_ENABLE | rc6_mode; /* * WaRsDisableCoarsePowerGating:skl,cnl * - Render/Media PG need to be disabled with RC6. */ if (!NEEDS_WaRsDisableCoarsePowerGating(rc6_to_i915(rc6))) set(uncore, GEN9_PG_ENABLE, GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE); } static void gen8_rc6_enable(struct intel_rc6 *rc6) { struct intel_uncore *uncore = rc6_to_uncore(rc6); struct intel_engine_cs *engine; enum intel_engine_id id; /* 2b: Program RC6 thresholds.*/ set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16); set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ for_each_engine(engine, rc6_to_gt(rc6), id) set(uncore, RING_MAX_IDLE(engine->mmio_base), 10); set(uncore, GEN6_RC_SLEEP, 0); set(uncore, GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */ /* 3: Enable RC6 */ rc6->ctl_enable = GEN6_RC_CTL_HW_ENABLE | GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_RC6_ENABLE; } static void gen6_rc6_enable(struct intel_rc6 *rc6) { struct intel_uncore *uncore = rc6_to_uncore(rc6); struct drm_i915_private *i915 = rc6_to_i915(rc6); struct intel_engine_cs *engine; enum intel_engine_id id; u32 rc6vids, rc6_mask; int ret; set(uncore, GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16); set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30); set(uncore, GEN6_RC6pp_WAKE_RATE_LIMIT, 30); set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); for_each_engine(engine, rc6_to_gt(rc6), id) set(uncore, RING_MAX_IDLE(engine->mmio_base), 10); set(uncore, GEN6_RC_SLEEP, 0); set(uncore, GEN6_RC1e_THRESHOLD, 1000); set(uncore, GEN6_RC6_THRESHOLD, 50000); set(uncore, GEN6_RC6p_THRESHOLD, 150000); set(uncore, GEN6_RC6pp_THRESHOLD, 64000); /* unused */ /* We don't use those on Haswell */ rc6_mask = GEN6_RC_CTL_RC6_ENABLE; if (HAS_RC6p(i915)) rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE; if (HAS_RC6pp(i915)) rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE; rc6->ctl_enable = rc6_mask | GEN6_RC_CTL_EI_MODE(1) | GEN6_RC_CTL_HW_ENABLE; rc6vids = 0; ret = sandybridge_pcode_read(i915, GEN6_PCODE_READ_RC6VIDS, &rc6vids, NULL); if (IS_GEN(i915, 6) && ret) { DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n"); } else if (IS_GEN(i915, 6) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) { DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n", GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450); rc6vids &= 0xffff00; rc6vids |= GEN6_ENCODE_RC6_VID(450); ret = sandybridge_pcode_write(i915, GEN6_PCODE_WRITE_RC6VIDS, rc6vids); if (ret) DRM_ERROR("Couldn't fix incorrect rc6 voltage\n"); } } /* Check that the pcbr address is not empty. */ static int chv_rc6_init(struct intel_rc6 *rc6) { struct intel_uncore *uncore = rc6_to_uncore(rc6); resource_size_t pctx_paddr, paddr; resource_size_t pctx_size = 32 * SZ_1K; u32 pcbr; pcbr = intel_uncore_read(uncore, VLV_PCBR); if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) { DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n"); paddr = rc6_to_i915(rc6)->dsm.end + 1 - pctx_size; GEM_BUG_ON(paddr > U32_MAX); pctx_paddr = (paddr & ~4095); intel_uncore_write(uncore, VLV_PCBR, pctx_paddr); } return 0; } static int vlv_rc6_init(struct intel_rc6 *rc6) { struct drm_i915_private *i915 = rc6_to_i915(rc6); struct intel_uncore *uncore = rc6_to_uncore(rc6); struct drm_i915_gem_object *pctx; resource_size_t pctx_paddr; resource_size_t pctx_size = 24 * SZ_1K; u32 pcbr; pcbr = intel_uncore_read(uncore, VLV_PCBR); if (pcbr) { /* BIOS set it up already, grab the pre-alloc'd space */ resource_size_t pcbr_offset; pcbr_offset = (pcbr & ~4095) - i915->dsm.start; pctx = i915_gem_object_create_stolen_for_preallocated(i915, pcbr_offset, pctx_size); if (IS_ERR(pctx)) return PTR_ERR(pctx); goto out; } DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n"); /* * From the Gunit register HAS: * The Gfx driver is expected to program this register and ensure * proper allocation within Gfx stolen memory. For example, this * register should be programmed such than the PCBR range does not * overlap with other ranges, such as the frame buffer, protected * memory, or any other relevant ranges. */ pctx = i915_gem_object_create_stolen(i915, pctx_size); if (IS_ERR(pctx)) { DRM_DEBUG("not enough stolen space for PCTX, disabling\n"); return PTR_ERR(pctx); } GEM_BUG_ON(range_overflows_end_t(u64, i915->dsm.start, pctx->stolen->start, U32_MAX)); pctx_paddr = i915->dsm.start + pctx->stolen->start; intel_uncore_write(uncore, VLV_PCBR, pctx_paddr); out: rc6->pctx = pctx; return 0; } static void chv_rc6_enable(struct intel_rc6 *rc6) { struct intel_uncore *uncore = rc6_to_uncore(rc6); struct intel_engine_cs *engine; enum intel_engine_id id; /* 2a: Program RC6 thresholds.*/ set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16); set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */ set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */ for_each_engine(engine, rc6_to_gt(rc6), id) set(uncore, RING_MAX_IDLE(engine->mmio_base), 10); set(uncore, GEN6_RC_SLEEP, 0); /* TO threshold set to 500 us (0x186 * 1.28 us) */ set(uncore, GEN6_RC6_THRESHOLD, 0x186); /* Allows RC6 residency counter to work */ set(uncore, VLV_COUNTER_CONTROL, _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH | VLV_MEDIA_RC6_COUNT_EN | VLV_RENDER_RC6_COUNT_EN)); /* 3: Enable RC6 */ rc6->ctl_enable = GEN7_RC_CTL_TO_MODE; } static void vlv_rc6_enable(struct intel_rc6 *rc6) { struct intel_uncore *uncore = rc6_to_uncore(rc6); struct intel_engine_cs *engine; enum intel_engine_id id; set(uncore, GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000); set(uncore, GEN6_RC_EVALUATION_INTERVAL, 125000); set(uncore, GEN6_RC_IDLE_HYSTERSIS, 25); for_each_engine(engine, rc6_to_gt(rc6), id) set(uncore, RING_MAX_IDLE(engine->mmio_base), 10); set(uncore, GEN6_RC6_THRESHOLD, 0x557); /* Allows RC6 residency counter to work */ set(uncore, VLV_COUNTER_CONTROL, _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH | VLV_MEDIA_RC0_COUNT_EN | VLV_RENDER_RC0_COUNT_EN | VLV_MEDIA_RC6_COUNT_EN | VLV_RENDER_RC6_COUNT_EN)); rc6->ctl_enable = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL; } static bool bxt_check_bios_rc6_setup(struct intel_rc6 *rc6) { struct intel_uncore *uncore = rc6_to_uncore(rc6); struct drm_i915_private *i915 = rc6_to_i915(rc6); u32 rc6_ctx_base, rc_ctl, rc_sw_target; bool enable_rc6 = true; rc_ctl = intel_uncore_read(uncore, GEN6_RC_CONTROL); rc_sw_target = intel_uncore_read(uncore, GEN6_RC_STATE); rc_sw_target &= RC_SW_TARGET_STATE_MASK; rc_sw_target >>= RC_SW_TARGET_STATE_SHIFT; DRM_DEBUG_DRIVER("BIOS enabled RC states: " "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n", onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE), onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE), rc_sw_target); if (!(intel_uncore_read(uncore, RC6_LOCATION) & RC6_CTX_IN_DRAM)) { DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n"); enable_rc6 = false; } /* * The exact context size is not known for BXT, so assume a page size * for this check. */ rc6_ctx_base = intel_uncore_read(uncore, RC6_CTX_BASE) & RC6_CTX_BASE_MASK; if (!(rc6_ctx_base >= i915->dsm_reserved.start && rc6_ctx_base + PAGE_SIZE < i915->dsm_reserved.end)) { DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n"); enable_rc6 = false; } if (!((intel_uncore_read(uncore, PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1 && (intel_uncore_read(uncore, PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1 && (intel_uncore_read(uncore, PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1 && (intel_uncore_read(uncore, PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1)) { DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n"); enable_rc6 = false; } if (!intel_uncore_read(uncore, GEN8_PUSHBUS_CONTROL) || !intel_uncore_read(uncore, GEN8_PUSHBUS_ENABLE) || !intel_uncore_read(uncore, GEN8_PUSHBUS_SHIFT)) { DRM_DEBUG_DRIVER("Pushbus not setup properly.\n"); enable_rc6 = false; } if (!intel_uncore_read(uncore, GEN6_GFXPAUSE)) { DRM_DEBUG_DRIVER("GFX pause not setup properly.\n"); enable_rc6 = false; } if (!intel_uncore_read(uncore, GEN8_MISC_CTRL0)) { DRM_DEBUG_DRIVER("GPM control not setup properly.\n"); enable_rc6 = false; } return enable_rc6; } static bool rc6_supported(struct intel_rc6 *rc6) { struct drm_i915_private *i915 = rc6_to_i915(rc6); if (!HAS_RC6(i915)) return false; if (intel_vgpu_active(i915)) return false; if (is_mock_gt(rc6_to_gt(rc6))) return false; if (IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(rc6)) { dev_notice(i915->drm.dev, "RC6 and powersaving disabled by BIOS\n"); return false; } return true; } static void rpm_get(struct intel_rc6 *rc6) { GEM_BUG_ON(rc6->wakeref); pm_runtime_get_sync(&rc6_to_i915(rc6)->drm.pdev->dev); rc6->wakeref = true; } static void rpm_put(struct intel_rc6 *rc6) { GEM_BUG_ON(!rc6->wakeref); pm_runtime_put(&rc6_to_i915(rc6)->drm.pdev->dev); rc6->wakeref = false; } static bool pctx_corrupted(struct intel_rc6 *rc6) { struct drm_i915_private *i915 = rc6_to_i915(rc6); if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915)) return false; if (intel_uncore_read(rc6_to_uncore(rc6), GEN8_RC6_CTX_INFO)) return false; dev_notice(i915->drm.dev, "RC6 context corruption, disabling runtime power management\n"); return true; } static void __intel_rc6_disable(struct intel_rc6 *rc6) { struct drm_i915_private *i915 = rc6_to_i915(rc6); struct intel_uncore *uncore = rc6_to_uncore(rc6); intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); if (INTEL_GEN(i915) >= 9) set(uncore, GEN9_PG_ENABLE, 0); set(uncore, GEN6_RC_CONTROL, 0); set(uncore, GEN6_RC_STATE, 0); intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); } void intel_rc6_init(struct intel_rc6 *rc6) { struct drm_i915_private *i915 = rc6_to_i915(rc6); int err; /* Disable runtime-pm until we can save the GPU state with rc6 pctx */ rpm_get(rc6); if (!rc6_supported(rc6)) return; if (IS_CHERRYVIEW(i915)) err = chv_rc6_init(rc6); else if (IS_VALLEYVIEW(i915)) err = vlv_rc6_init(rc6); else err = 0; /* Sanitize rc6, ensure it is disabled before we are ready. */ __intel_rc6_disable(rc6); rc6->supported = err == 0; } void intel_rc6_sanitize(struct intel_rc6 *rc6) { memset(rc6->prev_hw_residency, 0, sizeof(rc6->prev_hw_residency)); if (rc6->enabled) { /* unbalanced suspend/resume */ rpm_get(rc6); rc6->enabled = false; } if (rc6->supported) __intel_rc6_disable(rc6); } void intel_rc6_enable(struct intel_rc6 *rc6) { struct drm_i915_private *i915 = rc6_to_i915(rc6); struct intel_uncore *uncore = rc6_to_uncore(rc6); if (!rc6->supported) return; GEM_BUG_ON(rc6->enabled); intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); if (IS_CHERRYVIEW(i915)) chv_rc6_enable(rc6); else if (IS_VALLEYVIEW(i915)) vlv_rc6_enable(rc6); else if (INTEL_GEN(i915) >= 11) gen11_rc6_enable(rc6); else if (INTEL_GEN(i915) >= 9) gen9_rc6_enable(rc6); else if (IS_BROADWELL(i915)) gen8_rc6_enable(rc6); else if (INTEL_GEN(i915) >= 6) gen6_rc6_enable(rc6); rc6->manual = rc6->ctl_enable & GEN6_RC_CTL_RC6_ENABLE; if (NEEDS_RC6_CTX_CORRUPTION_WA(i915)) rc6->ctl_enable = 0; intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); if (unlikely(pctx_corrupted(rc6))) return; /* rc6 is ready, runtime-pm is go! */ rpm_put(rc6); rc6->enabled = true; } void intel_rc6_unpark(struct intel_rc6 *rc6) { struct intel_uncore *uncore = rc6_to_uncore(rc6); if (!rc6->enabled) return; /* Restore HW timers for automatic RC6 entry while busy */ set(uncore, GEN6_RC_CONTROL, rc6->ctl_enable); } void intel_rc6_park(struct intel_rc6 *rc6) { struct intel_uncore *uncore = rc6_to_uncore(rc6); unsigned int target; if (!rc6->enabled) return; if (unlikely(pctx_corrupted(rc6))) { intel_rc6_disable(rc6); return; } if (!rc6->manual) return; /* Turn off the HW timers and go directly to rc6 */ set(uncore, GEN6_RC_CONTROL, GEN6_RC_CTL_RC6_ENABLE); if (HAS_RC6pp(rc6_to_i915(rc6))) target = 0x6; /* deepest rc6 */ else if (HAS_RC6p(rc6_to_i915(rc6))) target = 0x5; /* deep rc6 */ else target = 0x4; /* normal rc6 */ set(uncore, GEN6_RC_STATE, target << RC_SW_TARGET_STATE_SHIFT); } void intel_rc6_disable(struct intel_rc6 *rc6) { if (!rc6->enabled) return; rpm_get(rc6); rc6->enabled = false; __intel_rc6_disable(rc6); } void intel_rc6_fini(struct intel_rc6 *rc6) { struct drm_i915_gem_object *pctx; intel_rc6_disable(rc6); pctx = fetch_and_zero(&rc6->pctx); if (pctx) i915_gem_object_put(pctx); if (rc6->wakeref) rpm_put(rc6); } static u64 vlv_residency_raw(struct intel_uncore *uncore, const i915_reg_t reg) { u32 lower, upper, tmp; int loop = 2; /* * The register accessed do not need forcewake. We borrow * uncore lock to prevent concurrent access to range reg. */ lockdep_assert_held(&uncore->lock); /* * vlv and chv residency counters are 40 bits in width. * With a control bit, we can choose between upper or lower * 32bit window into this counter. * * Although we always use the counter in high-range mode elsewhere, * userspace may attempt to read the value before rc6 is initialised, * before we have set the default VLV_COUNTER_CONTROL value. So always * set the high bit to be safe. */ set(uncore, VLV_COUNTER_CONTROL, _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH)); upper = intel_uncore_read_fw(uncore, reg); do { tmp = upper; set(uncore, VLV_COUNTER_CONTROL, _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH)); lower = intel_uncore_read_fw(uncore, reg); set(uncore, VLV_COUNTER_CONTROL, _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH)); upper = intel_uncore_read_fw(uncore, reg); } while (upper != tmp && --loop); /* * Everywhere else we always use VLV_COUNTER_CONTROL with the * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set * now. */ return lower | (u64)upper << 8; } u64 intel_rc6_residency_ns(struct intel_rc6 *rc6, const i915_reg_t reg) { struct drm_i915_private *i915 = rc6_to_i915(rc6); struct intel_uncore *uncore = rc6_to_uncore(rc6); u64 time_hw, prev_hw, overflow_hw; unsigned int fw_domains; unsigned long flags; unsigned int i; u32 mul, div; if (!rc6->supported) return 0; /* * Store previous hw counter values for counter wrap-around handling. * * There are only four interesting registers and they live next to each * other so we can use the relative address, compared to the smallest * one as the index into driver storage. */ i = (i915_mmio_reg_offset(reg) - i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32); if (drm_WARN_ON_ONCE(&i915->drm, i >= ARRAY_SIZE(rc6->cur_residency))) return 0; fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, FW_REG_READ); spin_lock_irqsave(&uncore->lock, flags); intel_uncore_forcewake_get__locked(uncore, fw_domains); /* On VLV and CHV, residency time is in CZ units rather than 1.28us */ if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) { mul = 1000000; div = i915->czclk_freq; overflow_hw = BIT_ULL(40); time_hw = vlv_residency_raw(uncore, reg); } else { /* 833.33ns units on Gen9LP, 1.28us elsewhere. */ if (IS_GEN9_LP(i915)) { mul = 10000; div = 12; } else { mul = 1280; div = 1; } overflow_hw = BIT_ULL(32); time_hw = intel_uncore_read_fw(uncore, reg); } /* * Counter wrap handling. * * But relying on a sufficient frequency of queries otherwise counters * can still wrap. */ prev_hw = rc6->prev_hw_residency[i]; rc6->prev_hw_residency[i] = time_hw; /* RC6 delta from last sample. */ if (time_hw >= prev_hw) time_hw -= prev_hw; else time_hw += overflow_hw - prev_hw; /* Add delta to RC6 extended raw driver copy. */ time_hw += rc6->cur_residency[i]; rc6->cur_residency[i] = time_hw; intel_uncore_forcewake_put__locked(uncore, fw_domains); spin_unlock_irqrestore(&uncore->lock, flags); return mul_u64_u32_div(time_hw, mul, div); } u64 intel_rc6_residency_us(struct intel_rc6 *rc6, i915_reg_t reg) { return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(rc6, reg), 1000); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftest_rc6.c" #endif
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1