Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Andi Shyti | 8393 | 96.96% | 2 | 10.53% |
Chris Wilson | 211 | 2.44% | 14 | 73.68% |
Pankaj Bharadiya | 42 | 0.49% | 1 | 5.26% |
Daniele Ceraolo Spurio | 7 | 0.08% | 1 | 5.26% |
Jani Nikula | 3 | 0.03% | 1 | 5.26% |
Total | 8656 | 19 |
/* * SPDX-License-Identifier: MIT * * Copyright © 2019 Intel Corporation */ #include <drm/i915_drm.h> #include "i915_drv.h" #include "intel_gt.h" #include "intel_gt_irq.h" #include "intel_gt_pm_irq.h" #include "intel_rps.h" #include "intel_sideband.h" #include "../../../platform/x86/intel_ips.h" /* * Lock protecting IPS related data structures */ static DEFINE_SPINLOCK(mchdev_lock); static struct intel_gt *rps_to_gt(struct intel_rps *rps) { return container_of(rps, struct intel_gt, rps); } static struct drm_i915_private *rps_to_i915(struct intel_rps *rps) { return rps_to_gt(rps)->i915; } static struct intel_uncore *rps_to_uncore(struct intel_rps *rps) { return rps_to_gt(rps)->uncore; } static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask) { return mask & ~rps->pm_intrmsk_mbz; } static inline void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val) { intel_uncore_write_fw(uncore, reg, val); } static u32 rps_pm_mask(struct intel_rps *rps, u8 val) { u32 mask = 0; /* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */ if (val > rps->min_freq_softlimit) mask |= (GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT); if (val < rps->max_freq_softlimit) mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD; mask &= READ_ONCE(rps->pm_events); return rps_pm_sanitize_mask(rps, ~mask); } static void rps_reset_ei(struct intel_rps *rps) { memset(&rps->ei, 0, sizeof(rps->ei)); } static void rps_enable_interrupts(struct intel_rps *rps) { struct intel_gt *gt = rps_to_gt(rps); u32 events; rps_reset_ei(rps); if (IS_VALLEYVIEW(gt->i915)) /* WaGsvRC0ResidencyMethod:vlv */ events = GEN6_PM_RP_UP_EI_EXPIRED; else events = (GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT); WRITE_ONCE(rps->pm_events, events); spin_lock_irq(>->irq_lock); gen6_gt_pm_enable_irq(gt, rps->pm_events); spin_unlock_irq(>->irq_lock); intel_uncore_write(gt->uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq)); } static void gen6_rps_reset_interrupts(struct intel_rps *rps) { gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS); } static void gen11_rps_reset_interrupts(struct intel_rps *rps) { while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM)) ; } static void rps_reset_interrupts(struct intel_rps *rps) { struct intel_gt *gt = rps_to_gt(rps); spin_lock_irq(>->irq_lock); if (INTEL_GEN(gt->i915) >= 11) gen11_rps_reset_interrupts(rps); else gen6_rps_reset_interrupts(rps); rps->pm_iir = 0; spin_unlock_irq(>->irq_lock); } static void rps_disable_interrupts(struct intel_rps *rps) { struct intel_gt *gt = rps_to_gt(rps); WRITE_ONCE(rps->pm_events, 0); intel_uncore_write(gt->uncore, GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u)); spin_lock_irq(>->irq_lock); gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS); spin_unlock_irq(>->irq_lock); intel_synchronize_irq(gt->i915); /* * Now that we will not be generating any more work, flush any * outstanding tasks. As we are called on the RPS idle path, * we will reset the GPU to minimum frequencies, so the current * state of the worker can be discarded. */ cancel_work_sync(&rps->work); rps_reset_interrupts(rps); } static const struct cparams { u16 i; u16 t; u16 m; u16 c; } cparams[] = { { 1, 1333, 301, 28664 }, { 1, 1066, 294, 24460 }, { 1, 800, 294, 25192 }, { 0, 1333, 276, 27605 }, { 0, 1066, 276, 27605 }, { 0, 800, 231, 23784 }, }; static void gen5_rps_init(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); struct intel_uncore *uncore = rps_to_uncore(rps); u8 fmax, fmin, fstart; u32 rgvmodectl; int c_m, i; if (i915->fsb_freq <= 3200) c_m = 0; else if (i915->fsb_freq <= 4800) c_m = 1; else c_m = 2; for (i = 0; i < ARRAY_SIZE(cparams); i++) { if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) { rps->ips.m = cparams[i].m; rps->ips.c = cparams[i].c; break; } } rgvmodectl = intel_uncore_read(uncore, MEMMODECTL); /* Set up min, max, and cur for interrupt handling */ fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT; fmin = (rgvmodectl & MEMMODE_FMIN_MASK); fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT; DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin, fstart); rps->min_freq = fmax; rps->max_freq = fmin; rps->idle_freq = rps->min_freq; rps->cur_freq = rps->idle_freq; } static unsigned long __ips_chipset_val(struct intel_ips *ips) { struct intel_uncore *uncore = rps_to_uncore(container_of(ips, struct intel_rps, ips)); unsigned long now = jiffies_to_msecs(jiffies), dt; unsigned long result; u64 total, delta; lockdep_assert_held(&mchdev_lock); /* * Prevent division-by-zero if we are asking too fast. * Also, we don't get interesting results if we are polling * faster than once in 10ms, so just return the saved value * in such cases. */ dt = now - ips->last_time1; if (dt <= 10) return ips->chipset_power; /* FIXME: handle per-counter overflow */ total = intel_uncore_read(uncore, DMIEC); total += intel_uncore_read(uncore, DDREC); total += intel_uncore_read(uncore, CSIEC); delta = total - ips->last_count1; result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10); ips->last_count1 = total; ips->last_time1 = now; ips->chipset_power = result; return result; } static unsigned long ips_mch_val(struct intel_uncore *uncore) { unsigned int m, x, b; u32 tsfs; tsfs = intel_uncore_read(uncore, TSFS); x = intel_uncore_read8(uncore, TR1); b = tsfs & TSFS_INTR_MASK; m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT; return m * x / 127 - b; } static int _pxvid_to_vd(u8 pxvid) { if (pxvid == 0) return 0; if (pxvid >= 8 && pxvid < 31) pxvid = 31; return (pxvid + 2) * 125; } static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid) { const int vd = _pxvid_to_vd(pxvid); if (INTEL_INFO(i915)->is_mobile) return max(vd - 1125, 0); return vd; } static void __gen5_ips_update(struct intel_ips *ips) { struct intel_uncore *uncore = rps_to_uncore(container_of(ips, struct intel_rps, ips)); u64 now, delta, dt; u32 count; lockdep_assert_held(&mchdev_lock); now = ktime_get_raw_ns(); dt = now - ips->last_time2; do_div(dt, NSEC_PER_MSEC); /* Don't divide by 0 */ if (dt <= 10) return; count = intel_uncore_read(uncore, GFXEC); delta = count - ips->last_count2; ips->last_count2 = count; ips->last_time2 = now; /* More magic constants... */ ips->gfx_power = div_u64(delta * 1181, dt * 10); } static void gen5_rps_update(struct intel_rps *rps) { spin_lock_irq(&mchdev_lock); __gen5_ips_update(&rps->ips); spin_unlock_irq(&mchdev_lock); } static bool gen5_rps_set(struct intel_rps *rps, u8 val) { struct intel_uncore *uncore = rps_to_uncore(rps); u16 rgvswctl; lockdep_assert_held(&mchdev_lock); rgvswctl = intel_uncore_read16(uncore, MEMSWCTL); if (rgvswctl & MEMCTL_CMD_STS) { DRM_DEBUG("gpu busy, RCS change rejected\n"); return false; /* still busy with another command */ } /* Invert the frequency bin into an ips delay */ val = rps->max_freq - val; val = rps->min_freq + val; rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) | (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM; intel_uncore_write16(uncore, MEMSWCTL, rgvswctl); intel_uncore_posting_read16(uncore, MEMSWCTL); rgvswctl |= MEMCTL_CMD_STS; intel_uncore_write16(uncore, MEMSWCTL, rgvswctl); return true; } static unsigned long intel_pxfreq(u32 vidfreq) { int div = (vidfreq & 0x3f0000) >> 16; int post = (vidfreq & 0x3000) >> 12; int pre = (vidfreq & 0x7); if (!pre) return 0; return div * 133333 / (pre << post); } static unsigned int init_emon(struct intel_uncore *uncore) { u8 pxw[16]; int i; /* Disable to program */ intel_uncore_write(uncore, ECR, 0); intel_uncore_posting_read(uncore, ECR); /* Program energy weights for various events */ intel_uncore_write(uncore, SDEW, 0x15040d00); intel_uncore_write(uncore, CSIEW0, 0x007f0000); intel_uncore_write(uncore, CSIEW1, 0x1e220004); intel_uncore_write(uncore, CSIEW2, 0x04000004); for (i = 0; i < 5; i++) intel_uncore_write(uncore, PEW(i), 0); for (i = 0; i < 3; i++) intel_uncore_write(uncore, DEW(i), 0); /* Program P-state weights to account for frequency power adjustment */ for (i = 0; i < 16; i++) { u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i)); unsigned int freq = intel_pxfreq(pxvidfreq); unsigned int vid = (pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT; unsigned int val; val = vid * vid * freq / 1000 * 255; val /= 127 * 127 * 900; pxw[i] = val; } /* Render standby states get 0 weight */ pxw[14] = 0; pxw[15] = 0; for (i = 0; i < 4; i++) { intel_uncore_write(uncore, PXW(i), pxw[i * 4 + 0] << 24 | pxw[i * 4 + 1] << 16 | pxw[i * 4 + 2] << 8 | pxw[i * 4 + 3] << 0); } /* Adjust magic regs to magic values (more experimental results) */ intel_uncore_write(uncore, OGW0, 0); intel_uncore_write(uncore, OGW1, 0); intel_uncore_write(uncore, EG0, 0x00007f00); intel_uncore_write(uncore, EG1, 0x0000000e); intel_uncore_write(uncore, EG2, 0x000e0000); intel_uncore_write(uncore, EG3, 0x68000300); intel_uncore_write(uncore, EG4, 0x42000000); intel_uncore_write(uncore, EG5, 0x00140031); intel_uncore_write(uncore, EG6, 0); intel_uncore_write(uncore, EG7, 0); for (i = 0; i < 8; i++) intel_uncore_write(uncore, PXWL(i), 0); /* Enable PMON + select events */ intel_uncore_write(uncore, ECR, 0x80000019); return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK; } static bool gen5_rps_enable(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); u8 fstart, vstart; u32 rgvmodectl; spin_lock_irq(&mchdev_lock); rgvmodectl = intel_uncore_read(uncore, MEMMODECTL); /* Enable temp reporting */ intel_uncore_write16(uncore, PMMISC, intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN); intel_uncore_write16(uncore, TSC1, intel_uncore_read16(uncore, TSC1) | TSE); /* 100ms RC evaluation intervals */ intel_uncore_write(uncore, RCUPEI, 100000); intel_uncore_write(uncore, RCDNEI, 100000); /* Set max/min thresholds to 90ms and 80ms respectively */ intel_uncore_write(uncore, RCBMAXAVG, 90000); intel_uncore_write(uncore, RCBMINAVG, 80000); intel_uncore_write(uncore, MEMIHYST, 1); /* Set up min, max, and cur for interrupt handling */ fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT; vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT; intel_uncore_write(uncore, MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN); intel_uncore_write(uncore, VIDSTART, vstart); intel_uncore_posting_read(uncore, VIDSTART); rgvmodectl |= MEMMODE_SWMODE_EN; intel_uncore_write(uncore, MEMMODECTL, rgvmodectl); if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10)) DRM_ERROR("stuck trying to change perf mode\n"); mdelay(1); gen5_rps_set(rps, rps->cur_freq); rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC); rps->ips.last_count1 += intel_uncore_read(uncore, DDREC); rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC); rps->ips.last_time1 = jiffies_to_msecs(jiffies); rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC); rps->ips.last_time2 = ktime_get_raw_ns(); spin_unlock_irq(&mchdev_lock); rps->ips.corr = init_emon(uncore); return true; } static void gen5_rps_disable(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); u16 rgvswctl; spin_lock_irq(&mchdev_lock); rgvswctl = intel_uncore_read16(uncore, MEMSWCTL); /* Ack interrupts, disable EFC interrupt */ intel_uncore_write(uncore, MEMINTREN, intel_uncore_read(uncore, MEMINTREN) & ~MEMINT_EVAL_CHG_EN); intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG); intel_uncore_write(uncore, DEIER, intel_uncore_read(uncore, DEIER) & ~DE_PCU_EVENT); intel_uncore_write(uncore, DEIIR, DE_PCU_EVENT); intel_uncore_write(uncore, DEIMR, intel_uncore_read(uncore, DEIMR) | DE_PCU_EVENT); /* Go back to the starting frequency */ gen5_rps_set(rps, rps->idle_freq); mdelay(1); rgvswctl |= MEMCTL_CMD_STS; intel_uncore_write(uncore, MEMSWCTL, rgvswctl); mdelay(1); spin_unlock_irq(&mchdev_lock); } static u32 rps_limits(struct intel_rps *rps, u8 val) { u32 limits; /* * Only set the down limit when we've reached the lowest level to avoid * getting more interrupts, otherwise leave this clear. This prevents a * race in the hw when coming out of rc6: There's a tiny window where * the hw runs at the minimal clock before selecting the desired * frequency, if the down threshold expires in that window we will not * receive a down interrupt. */ if (INTEL_GEN(rps_to_i915(rps)) >= 9) { limits = rps->max_freq_softlimit << 23; if (val <= rps->min_freq_softlimit) limits |= rps->min_freq_softlimit << 14; } else { limits = rps->max_freq_softlimit << 24; if (val <= rps->min_freq_softlimit) limits |= rps->min_freq_softlimit << 16; } return limits; } static void rps_set_power(struct intel_rps *rps, int new_power) { struct intel_uncore *uncore = rps_to_uncore(rps); struct drm_i915_private *i915 = rps_to_i915(rps); u32 threshold_up = 0, threshold_down = 0; /* in % */ u32 ei_up = 0, ei_down = 0; lockdep_assert_held(&rps->power.mutex); if (new_power == rps->power.mode) return; /* Note the units here are not exactly 1us, but 1280ns. */ switch (new_power) { case LOW_POWER: /* Upclock if more than 95% busy over 16ms */ ei_up = 16000; threshold_up = 95; /* Downclock if less than 85% busy over 32ms */ ei_down = 32000; threshold_down = 85; break; case BETWEEN: /* Upclock if more than 90% busy over 13ms */ ei_up = 13000; threshold_up = 90; /* Downclock if less than 75% busy over 32ms */ ei_down = 32000; threshold_down = 75; break; case HIGH_POWER: /* Upclock if more than 85% busy over 10ms */ ei_up = 10000; threshold_up = 85; /* Downclock if less than 60% busy over 32ms */ ei_down = 32000; threshold_down = 60; break; } /* When byt can survive without system hang with dynamic * sw freq adjustments, this restriction can be lifted. */ if (IS_VALLEYVIEW(i915)) goto skip_hw_write; set(uncore, GEN6_RP_UP_EI, GT_INTERVAL_FROM_US(i915, ei_up)); set(uncore, GEN6_RP_UP_THRESHOLD, GT_INTERVAL_FROM_US(i915, ei_up * threshold_up / 100)); set(uncore, GEN6_RP_DOWN_EI, GT_INTERVAL_FROM_US(i915, ei_down)); set(uncore, GEN6_RP_DOWN_THRESHOLD, GT_INTERVAL_FROM_US(i915, ei_down * threshold_down / 100)); set(uncore, GEN6_RP_CONTROL, (INTEL_GEN(i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) | GEN6_RP_MEDIA_HW_NORMAL_MODE | GEN6_RP_MEDIA_IS_GFX | GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG | GEN6_RP_DOWN_IDLE_AVG); skip_hw_write: rps->power.mode = new_power; rps->power.up_threshold = threshold_up; rps->power.down_threshold = threshold_down; } static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val) { int new_power; new_power = rps->power.mode; switch (rps->power.mode) { case LOW_POWER: if (val > rps->efficient_freq + 1 && val > rps->cur_freq) new_power = BETWEEN; break; case BETWEEN: if (val <= rps->efficient_freq && val < rps->cur_freq) new_power = LOW_POWER; else if (val >= rps->rp0_freq && val > rps->cur_freq) new_power = HIGH_POWER; break; case HIGH_POWER: if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 && val < rps->cur_freq) new_power = BETWEEN; break; } /* Max/min bins are special */ if (val <= rps->min_freq_softlimit) new_power = LOW_POWER; if (val >= rps->max_freq_softlimit) new_power = HIGH_POWER; mutex_lock(&rps->power.mutex); if (rps->power.interactive) new_power = HIGH_POWER; rps_set_power(rps, new_power); mutex_unlock(&rps->power.mutex); } void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive) { mutex_lock(&rps->power.mutex); if (interactive) { if (!rps->power.interactive++ && READ_ONCE(rps->active)) rps_set_power(rps, HIGH_POWER); } else { GEM_BUG_ON(!rps->power.interactive); rps->power.interactive--; } mutex_unlock(&rps->power.mutex); } static int gen6_rps_set(struct intel_rps *rps, u8 val) { struct intel_uncore *uncore = rps_to_uncore(rps); struct drm_i915_private *i915 = rps_to_i915(rps); u32 swreq; if (INTEL_GEN(i915) >= 9) swreq = GEN9_FREQUENCY(val); else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) swreq = HSW_FREQUENCY(val); else swreq = (GEN6_FREQUENCY(val) | GEN6_OFFSET(0) | GEN6_AGGRESSIVE_TURBO); set(uncore, GEN6_RPNSWREQ, swreq); return 0; } static int vlv_rps_set(struct intel_rps *rps, u8 val) { struct drm_i915_private *i915 = rps_to_i915(rps); int err; vlv_punit_get(i915); err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val); vlv_punit_put(i915); return err; } static int rps_set(struct intel_rps *rps, u8 val, bool update) { struct drm_i915_private *i915 = rps_to_i915(rps); int err; if (INTEL_GEN(i915) < 6) return 0; if (val == rps->last_freq) return 0; if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) err = vlv_rps_set(rps, val); else err = gen6_rps_set(rps, val); if (err) return err; if (update) gen6_rps_set_thresholds(rps, val); rps->last_freq = val; return 0; } void intel_rps_unpark(struct intel_rps *rps) { u8 freq; if (!rps->enabled) return; /* * Use the user's desired frequency as a guide, but for better * performance, jump directly to RPe as our starting frequency. */ mutex_lock(&rps->lock); WRITE_ONCE(rps->active, true); freq = max(rps->cur_freq, rps->efficient_freq), freq = clamp(freq, rps->min_freq_softlimit, rps->max_freq_softlimit); intel_rps_set(rps, freq); rps->last_adj = 0; mutex_unlock(&rps->lock); if (INTEL_GEN(rps_to_i915(rps)) >= 6) rps_enable_interrupts(rps); if (IS_GEN(rps_to_i915(rps), 5)) gen5_rps_update(rps); } void intel_rps_park(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); if (!rps->enabled) return; if (INTEL_GEN(i915) >= 6) rps_disable_interrupts(rps); WRITE_ONCE(rps->active, false); if (rps->last_freq <= rps->idle_freq) return; /* * The punit delays the write of the frequency and voltage until it * determines the GPU is awake. During normal usage we don't want to * waste power changing the frequency if the GPU is sleeping (rc6). * However, the GPU and driver is now idle and we do not want to delay * switching to minimum voltage (reducing power whilst idle) as we do * not expect to be woken in the near future and so must flush the * change by waking the device. * * We choose to take the media powerwell (either would do to trick the * punit into committing the voltage change) as that takes a lot less * power than the render powerwell. */ intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA); rps_set(rps, rps->idle_freq, false); intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA); /* * Since we will try and restart from the previously requested * frequency on unparking, treat this idle point as a downclock * interrupt and reduce the frequency for resume. If we park/unpark * more frequently than the rps worker can run, we will not respond * to any EI and never see a change in frequency. * * (Note we accommodate Cherryview's limitation of only using an * even bin by applying it to all.) */ rps->cur_freq = max_t(int, round_down(rps->cur_freq - 1, 2), rps->min_freq); } void intel_rps_boost(struct i915_request *rq) { struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps; unsigned long flags; if (i915_request_signaled(rq) || !READ_ONCE(rps->active)) return; /* Serializes with i915_request_retire() */ spin_lock_irqsave(&rq->lock, flags); if (!i915_request_has_waitboost(rq) && !dma_fence_is_signaled_locked(&rq->fence)) { set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags); if (!atomic_fetch_inc(&rps->num_waiters) && READ_ONCE(rps->cur_freq) < rps->boost_freq) schedule_work(&rps->work); atomic_inc(&rps->boosts); } spin_unlock_irqrestore(&rq->lock, flags); } int intel_rps_set(struct intel_rps *rps, u8 val) { int err; lockdep_assert_held(&rps->lock); GEM_BUG_ON(val > rps->max_freq); GEM_BUG_ON(val < rps->min_freq); if (rps->active) { err = rps_set(rps, val, true); if (err) return err; /* * Make sure we continue to get interrupts * until we hit the minimum or maximum frequencies. */ if (INTEL_GEN(rps_to_i915(rps)) >= 6) { struct intel_uncore *uncore = rps_to_uncore(rps); set(uncore, GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val)); set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val)); } } rps->cur_freq = val; return 0; } static void gen6_rps_init(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); struct intel_uncore *uncore = rps_to_uncore(rps); /* All of these values are in units of 50MHz */ /* static values from HW: RP0 > RP1 > RPn (min_freq) */ if (IS_GEN9_LP(i915)) { u32 rp_state_cap = intel_uncore_read(uncore, BXT_RP_STATE_CAP); rps->rp0_freq = (rp_state_cap >> 16) & 0xff; rps->rp1_freq = (rp_state_cap >> 8) & 0xff; rps->min_freq = (rp_state_cap >> 0) & 0xff; } else { u32 rp_state_cap = intel_uncore_read(uncore, GEN6_RP_STATE_CAP); rps->rp0_freq = (rp_state_cap >> 0) & 0xff; rps->rp1_freq = (rp_state_cap >> 8) & 0xff; rps->min_freq = (rp_state_cap >> 16) & 0xff; } /* hw_max = RP0 until we check for overclocking */ rps->max_freq = rps->rp0_freq; rps->efficient_freq = rps->rp1_freq; if (IS_HASWELL(i915) || IS_BROADWELL(i915) || IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) { u32 ddcc_status = 0; if (sandybridge_pcode_read(i915, HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL, &ddcc_status, NULL) == 0) rps->efficient_freq = clamp_t(u8, (ddcc_status >> 8) & 0xff, rps->min_freq, rps->max_freq); } if (IS_GEN9_BC(i915) || INTEL_GEN(i915) >= 10) { /* Store the frequency values in 16.66 MHZ units, which is * the natural hardware unit for SKL */ rps->rp0_freq *= GEN9_FREQ_SCALER; rps->rp1_freq *= GEN9_FREQ_SCALER; rps->min_freq *= GEN9_FREQ_SCALER; rps->max_freq *= GEN9_FREQ_SCALER; rps->efficient_freq *= GEN9_FREQ_SCALER; } } static bool rps_reset(struct intel_rps *rps) { /* force a reset */ rps->power.mode = -1; rps->last_freq = -1; if (rps_set(rps, rps->min_freq, true)) { DRM_ERROR("Failed to reset RPS to initial values\n"); return false; } rps->cur_freq = rps->min_freq; return true; } /* See the Gen9_GT_PM_Programming_Guide doc for the below */ static bool gen9_rps_enable(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); struct intel_uncore *uncore = rps_to_uncore(rps); /* Program defaults and thresholds for RPS */ if (IS_GEN(i915, 9)) intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ, GEN9_FREQUENCY(rps->rp1_freq)); /* 1 second timeout */ intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, GT_INTERVAL_FROM_US(i915, 1000000)); intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa); return rps_reset(rps); } static bool gen8_rps_enable(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ, HSW_FREQUENCY(rps->rp1_freq)); /* NB: Docs say 1s, and 1000000 - which aren't equivalent */ intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */ intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10); return rps_reset(rps); } static bool gen6_rps_enable(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); /* Power down if completely idle for over 50ms */ intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000); intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10); return rps_reset(rps); } static int chv_rps_max_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE); switch (RUNTIME_INFO(i915)->sseu.eu_total) { case 8: /* (2 * 4) config */ val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT; break; case 12: /* (2 * 6) config */ val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT; break; case 16: /* (2 * 8) config */ default: /* Setting (2 * 8) Min RP0 for any other combination */ val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT; break; } return val & FB_GFX_FREQ_FUSE_MASK; } static int chv_rps_rpe_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG); val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT; return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK; } static int chv_rps_guar_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE); return val & FB_GFX_FREQ_FUSE_MASK; } static u32 chv_rps_min_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE); val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT; return val & FB_GFX_FREQ_FUSE_MASK; } static bool chv_rps_enable(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; /* 1: Program defaults and thresholds for RPS*/ intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000); intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400); intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000); intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000); intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000); intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10); /* 2: Enable RPS */ intel_uncore_write_fw(uncore, GEN6_RP_CONTROL, GEN6_RP_MEDIA_HW_NORMAL_MODE | GEN6_RP_MEDIA_IS_GFX | GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG | GEN6_RP_DOWN_IDLE_AVG); /* Setting Fixed Bias */ vlv_punit_get(i915); val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50; vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val); val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); vlv_punit_put(i915); /* RPS code assumes GPLL is used */ drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0, "GPLL not enabled\n"); DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE)); DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val); return rps_reset(rps); } static int vlv_rps_guar_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val, rp1; val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE); rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK; rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT; return rp1; } static int vlv_rps_max_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val, rp0; val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE); rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT; /* Clamp to max */ rp0 = min_t(u32, rp0, 0xea); return rp0; } static int vlv_rps_rpe_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val, rpe; val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO); rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT; val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI); rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5; return rpe; } static int vlv_rps_min_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff; /* * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on * a BYT-M B0 the above register contains 0xbf. Moreover when setting * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0 * to make sure it matches what Punit accepts. */ return max_t(u32, val, 0xc0); } static bool vlv_rps_enable(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000); intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400); intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000); intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000); intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000); intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10); intel_uncore_write_fw(uncore, GEN6_RP_CONTROL, GEN6_RP_MEDIA_TURBO | GEN6_RP_MEDIA_HW_NORMAL_MODE | GEN6_RP_MEDIA_IS_GFX | GEN6_RP_ENABLE | GEN6_RP_UP_BUSY_AVG | GEN6_RP_DOWN_IDLE_CONT); vlv_punit_get(i915); /* Setting Fixed Bias */ val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875; vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val); val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); vlv_punit_put(i915); /* RPS code assumes GPLL is used */ drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0, "GPLL not enabled\n"); DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE)); DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val); return rps_reset(rps); } static unsigned long __ips_gfx_val(struct intel_ips *ips) { struct intel_rps *rps = container_of(ips, typeof(*rps), ips); struct intel_uncore *uncore = rps_to_uncore(rps); unsigned long t, corr, state1, corr2, state2; u32 pxvid, ext_v; lockdep_assert_held(&mchdev_lock); pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq)); pxvid = (pxvid >> 24) & 0x7f; ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid); state1 = ext_v; /* Revel in the empirically derived constants */ /* Correction factor in 1/100000 units */ t = ips_mch_val(uncore); if (t > 80) corr = t * 2349 + 135940; else if (t >= 50) corr = t * 964 + 29317; else /* < 50 */ corr = t * 301 + 1004; corr = corr * 150142 * state1 / 10000 - 78642; corr /= 100000; corr2 = corr * ips->corr; state2 = corr2 * state1 / 10000; state2 /= 100; /* convert to mW */ __gen5_ips_update(ips); return ips->gfx_power + state2; } void intel_rps_enable(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); struct intel_uncore *uncore = rps_to_uncore(rps); intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); if (IS_CHERRYVIEW(i915)) rps->enabled = chv_rps_enable(rps); else if (IS_VALLEYVIEW(i915)) rps->enabled = vlv_rps_enable(rps); else if (INTEL_GEN(i915) >= 9) rps->enabled = gen9_rps_enable(rps); else if (INTEL_GEN(i915) >= 8) rps->enabled = gen8_rps_enable(rps); else if (INTEL_GEN(i915) >= 6) rps->enabled = gen6_rps_enable(rps); else if (IS_IRONLAKE_M(i915)) rps->enabled = gen5_rps_enable(rps); intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); if (!rps->enabled) return; drm_WARN_ON(&i915->drm, rps->max_freq < rps->min_freq); drm_WARN_ON(&i915->drm, rps->idle_freq > rps->max_freq); drm_WARN_ON(&i915->drm, rps->efficient_freq < rps->min_freq); drm_WARN_ON(&i915->drm, rps->efficient_freq > rps->max_freq); } static void gen6_rps_disable(struct intel_rps *rps) { set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0); } void intel_rps_disable(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); rps->enabled = false; if (INTEL_GEN(i915) >= 6) gen6_rps_disable(rps); else if (IS_IRONLAKE_M(i915)) gen5_rps_disable(rps); } static int byt_gpu_freq(struct intel_rps *rps, int val) { /* * N = val - 0xb7 * Slow = Fast = GPLL ref * N */ return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000); } static int byt_freq_opcode(struct intel_rps *rps, int val) { return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7; } static int chv_gpu_freq(struct intel_rps *rps, int val) { /* * N = val / 2 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2 */ return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000); } static int chv_freq_opcode(struct intel_rps *rps, int val) { /* CHV needs even values */ return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2; } int intel_gpu_freq(struct intel_rps *rps, int val) { struct drm_i915_private *i915 = rps_to_i915(rps); if (INTEL_GEN(i915) >= 9) return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER, GEN9_FREQ_SCALER); else if (IS_CHERRYVIEW(i915)) return chv_gpu_freq(rps, val); else if (IS_VALLEYVIEW(i915)) return byt_gpu_freq(rps, val); else return val * GT_FREQUENCY_MULTIPLIER; } int intel_freq_opcode(struct intel_rps *rps, int val) { struct drm_i915_private *i915 = rps_to_i915(rps); if (INTEL_GEN(i915) >= 9) return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER, GT_FREQUENCY_MULTIPLIER); else if (IS_CHERRYVIEW(i915)) return chv_freq_opcode(rps, val); else if (IS_VALLEYVIEW(i915)) return byt_freq_opcode(rps, val); else return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER); } static void vlv_init_gpll_ref_freq(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); rps->gpll_ref_freq = vlv_get_cck_clock(i915, "GPLL ref", CCK_GPLL_CLOCK_CONTROL, i915->czclk_freq); DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n", rps->gpll_ref_freq); } static void vlv_rps_init(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; vlv_iosf_sb_get(i915, BIT(VLV_IOSF_SB_PUNIT) | BIT(VLV_IOSF_SB_NC) | BIT(VLV_IOSF_SB_CCK)); vlv_init_gpll_ref_freq(rps); val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); switch ((val >> 6) & 3) { case 0: case 1: i915->mem_freq = 800; break; case 2: i915->mem_freq = 1066; break; case 3: i915->mem_freq = 1333; break; } DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", i915->mem_freq); rps->max_freq = vlv_rps_max_freq(rps); rps->rp0_freq = rps->max_freq; DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->max_freq), rps->max_freq); rps->efficient_freq = vlv_rps_rpe_freq(rps); DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq); rps->rp1_freq = vlv_rps_guar_freq(rps); DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq); rps->min_freq = vlv_rps_min_freq(rps); DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->min_freq), rps->min_freq); vlv_iosf_sb_put(i915, BIT(VLV_IOSF_SB_PUNIT) | BIT(VLV_IOSF_SB_NC) | BIT(VLV_IOSF_SB_CCK)); } static void chv_rps_init(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 val; vlv_iosf_sb_get(i915, BIT(VLV_IOSF_SB_PUNIT) | BIT(VLV_IOSF_SB_NC) | BIT(VLV_IOSF_SB_CCK)); vlv_init_gpll_ref_freq(rps); val = vlv_cck_read(i915, CCK_FUSE_REG); switch ((val >> 2) & 0x7) { case 3: i915->mem_freq = 2000; break; default: i915->mem_freq = 1600; break; } DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", i915->mem_freq); rps->max_freq = chv_rps_max_freq(rps); rps->rp0_freq = rps->max_freq; DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->max_freq), rps->max_freq); rps->efficient_freq = chv_rps_rpe_freq(rps); DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq); rps->rp1_freq = chv_rps_guar_freq(rps); DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq); rps->min_freq = chv_rps_min_freq(rps); DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n", intel_gpu_freq(rps, rps->min_freq), rps->min_freq); vlv_iosf_sb_put(i915, BIT(VLV_IOSF_SB_PUNIT) | BIT(VLV_IOSF_SB_NC) | BIT(VLV_IOSF_SB_CCK)); drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq | rps->rp1_freq | rps->min_freq) & 1, "Odd GPU freq values\n"); } static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei) { ei->ktime = ktime_get_raw(); ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT); ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT); } static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir) { struct intel_uncore *uncore = rps_to_uncore(rps); const struct intel_rps_ei *prev = &rps->ei; struct intel_rps_ei now; u32 events = 0; if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0) return 0; vlv_c0_read(uncore, &now); if (prev->ktime) { u64 time, c0; u32 render, media; time = ktime_us_delta(now.ktime, prev->ktime); time *= rps_to_i915(rps)->czclk_freq; /* Workload can be split between render + media, * e.g. SwapBuffers being blitted in X after being rendered in * mesa. To account for this we need to combine both engines * into our activity counter. */ render = now.render_c0 - prev->render_c0; media = now.media_c0 - prev->media_c0; c0 = max(render, media); c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */ if (c0 > time * rps->power.up_threshold) events = GEN6_PM_RP_UP_THRESHOLD; else if (c0 < time * rps->power.down_threshold) events = GEN6_PM_RP_DOWN_THRESHOLD; } rps->ei = now; return events; } static void rps_work(struct work_struct *work) { struct intel_rps *rps = container_of(work, typeof(*rps), work); struct intel_gt *gt = rps_to_gt(rps); bool client_boost = false; int new_freq, adj, min, max; u32 pm_iir = 0; spin_lock_irq(>->irq_lock); pm_iir = fetch_and_zero(&rps->pm_iir) & READ_ONCE(rps->pm_events); client_boost = atomic_read(&rps->num_waiters); spin_unlock_irq(>->irq_lock); /* Make sure we didn't queue anything we're not going to process. */ if (!pm_iir && !client_boost) goto out; mutex_lock(&rps->lock); pm_iir |= vlv_wa_c0_ei(rps, pm_iir); adj = rps->last_adj; new_freq = rps->cur_freq; min = rps->min_freq_softlimit; max = rps->max_freq_softlimit; if (client_boost) max = rps->max_freq; if (client_boost && new_freq < rps->boost_freq) { new_freq = rps->boost_freq; adj = 0; } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) { if (adj > 0) adj *= 2; else /* CHV needs even encode values */ adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1; if (new_freq >= rps->max_freq_softlimit) adj = 0; } else if (client_boost) { adj = 0; } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) { if (rps->cur_freq > rps->efficient_freq) new_freq = rps->efficient_freq; else if (rps->cur_freq > rps->min_freq_softlimit) new_freq = rps->min_freq_softlimit; adj = 0; } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) { if (adj < 0) adj *= 2; else /* CHV needs even encode values */ adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1; if (new_freq <= rps->min_freq_softlimit) adj = 0; } else { /* unknown event */ adj = 0; } rps->last_adj = adj; /* * Limit deboosting and boosting to keep ourselves at the extremes * when in the respective power modes (i.e. slowly decrease frequencies * while in the HIGH_POWER zone and slowly increase frequencies while * in the LOW_POWER zone). On idle, we will hit the timeout and drop * to the next level quickly, and conversely if busy we expect to * hit a waitboost and rapidly switch into max power. */ if ((adj < 0 && rps->power.mode == HIGH_POWER) || (adj > 0 && rps->power.mode == LOW_POWER)) rps->last_adj = 0; /* sysfs frequency interfaces may have snuck in while servicing the * interrupt */ new_freq += adj; new_freq = clamp_t(int, new_freq, min, max); if (intel_rps_set(rps, new_freq)) { DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n"); rps->last_adj = 0; } mutex_unlock(&rps->lock); out: spin_lock_irq(>->irq_lock); gen6_gt_pm_unmask_irq(gt, rps->pm_events); spin_unlock_irq(>->irq_lock); } void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir) { struct intel_gt *gt = rps_to_gt(rps); const u32 events = rps->pm_events & pm_iir; lockdep_assert_held(>->irq_lock); if (unlikely(!events)) return; gen6_gt_pm_mask_irq(gt, events); rps->pm_iir |= events; schedule_work(&rps->work); } void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir) { struct intel_gt *gt = rps_to_gt(rps); u32 events; events = pm_iir & READ_ONCE(rps->pm_events); if (events) { spin_lock(>->irq_lock); gen6_gt_pm_mask_irq(gt, events); rps->pm_iir |= events; schedule_work(&rps->work); spin_unlock(>->irq_lock); } if (INTEL_GEN(gt->i915) >= 8) return; if (pm_iir & PM_VEBOX_USER_INTERRUPT) intel_engine_signal_breadcrumbs(gt->engine[VECS0]); if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir); } void gen5_rps_irq_handler(struct intel_rps *rps) { struct intel_uncore *uncore = rps_to_uncore(rps); u32 busy_up, busy_down, max_avg, min_avg; u8 new_freq; spin_lock(&mchdev_lock); intel_uncore_write16(uncore, MEMINTRSTS, intel_uncore_read(uncore, MEMINTRSTS)); intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG); busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG); busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG); max_avg = intel_uncore_read(uncore, RCBMAXAVG); min_avg = intel_uncore_read(uncore, RCBMINAVG); /* Handle RCS change request from hw */ new_freq = rps->cur_freq; if (busy_up > max_avg) new_freq++; else if (busy_down < min_avg) new_freq--; new_freq = clamp(new_freq, rps->min_freq_softlimit, rps->max_freq_softlimit); if (new_freq != rps->cur_freq && gen5_rps_set(rps, new_freq)) rps->cur_freq = new_freq; spin_unlock(&mchdev_lock); } void intel_rps_init_early(struct intel_rps *rps) { mutex_init(&rps->lock); mutex_init(&rps->power.mutex); INIT_WORK(&rps->work, rps_work); atomic_set(&rps->num_waiters, 0); } void intel_rps_init(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); if (IS_CHERRYVIEW(i915)) chv_rps_init(rps); else if (IS_VALLEYVIEW(i915)) vlv_rps_init(rps); else if (INTEL_GEN(i915) >= 6) gen6_rps_init(rps); else if (IS_IRONLAKE_M(i915)) gen5_rps_init(rps); /* Derive initial user preferences/limits from the hardware limits */ rps->max_freq_softlimit = rps->max_freq; rps->min_freq_softlimit = rps->min_freq; /* After setting max-softlimit, find the overclock max freq */ if (IS_GEN(i915, 6) || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) { u32 params = 0; sandybridge_pcode_read(i915, GEN6_READ_OC_PARAMS, ¶ms, NULL); if (params & BIT(31)) { /* OC supported */ DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n", (rps->max_freq & 0xff) * 50, (params & 0xff) * 50); rps->max_freq = params & 0xff; } } /* Finally allow us to boost to max by default */ rps->boost_freq = rps->max_freq; rps->idle_freq = rps->min_freq; rps->cur_freq = rps->idle_freq; rps->pm_intrmsk_mbz = 0; /* * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer * if GEN6_PM_UP_EI_EXPIRED is masked. * * TODO: verify if this can be reproduced on VLV,CHV. */ if (INTEL_GEN(i915) <= 7) rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED; if (INTEL_GEN(i915) >= 8 && INTEL_GEN(i915) < 11) rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC; } u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 cagf; if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) cagf = (rpstat >> 8) & 0xff; else if (INTEL_GEN(i915) >= 9) cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT; else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT; else cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT; return cagf; } static u32 read_cagf(struct intel_rps *rps) { struct drm_i915_private *i915 = rps_to_i915(rps); u32 freq; if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) { vlv_punit_get(i915); freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS); vlv_punit_put(i915); } else { freq = intel_uncore_read(rps_to_gt(rps)->uncore, GEN6_RPSTAT1); } return intel_rps_get_cagf(rps, freq); } u32 intel_rps_read_actual_frequency(struct intel_rps *rps) { struct intel_runtime_pm *rpm = rps_to_gt(rps)->uncore->rpm; intel_wakeref_t wakeref; u32 freq = 0; with_intel_runtime_pm_if_in_use(rpm, wakeref) freq = intel_gpu_freq(rps, read_cagf(rps)); return freq; } /* External interface for intel_ips.ko */ static struct drm_i915_private __rcu *ips_mchdev; /** * Tells the intel_ips driver that the i915 driver is now loaded, if * IPS got loaded first. * * This awkward dance is so that neither module has to depend on the * other in order for IPS to do the appropriate communication of * GPU turbo limits to i915. */ static void ips_ping_for_i915_load(void) { void (*link)(void); link = symbol_get(ips_link_to_i915_driver); if (link) { link(); symbol_put(ips_link_to_i915_driver); } } void intel_rps_driver_register(struct intel_rps *rps) { struct intel_gt *gt = rps_to_gt(rps); /* * We only register the i915 ips part with intel-ips once everything is * set up, to avoid intel-ips sneaking in and reading bogus values. */ if (IS_GEN(gt->i915, 5)) { GEM_BUG_ON(ips_mchdev); rcu_assign_pointer(ips_mchdev, gt->i915); ips_ping_for_i915_load(); } } void intel_rps_driver_unregister(struct intel_rps *rps) { if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps)) rcu_assign_pointer(ips_mchdev, NULL); } static struct drm_i915_private *mchdev_get(void) { struct drm_i915_private *i915; rcu_read_lock(); i915 = rcu_dereference(ips_mchdev); if (!kref_get_unless_zero(&i915->drm.ref)) i915 = NULL; rcu_read_unlock(); return i915; } /** * i915_read_mch_val - return value for IPS use * * Calculate and return a value for the IPS driver to use when deciding whether * we have thermal and power headroom to increase CPU or GPU power budget. */ unsigned long i915_read_mch_val(void) { struct drm_i915_private *i915; unsigned long chipset_val = 0; unsigned long graphics_val = 0; intel_wakeref_t wakeref; i915 = mchdev_get(); if (!i915) return 0; with_intel_runtime_pm(&i915->runtime_pm, wakeref) { struct intel_ips *ips = &i915->gt.rps.ips; spin_lock_irq(&mchdev_lock); chipset_val = __ips_chipset_val(ips); graphics_val = __ips_gfx_val(ips); spin_unlock_irq(&mchdev_lock); } drm_dev_put(&i915->drm); return chipset_val + graphics_val; } EXPORT_SYMBOL_GPL(i915_read_mch_val); /** * i915_gpu_raise - raise GPU frequency limit * * Raise the limit; IPS indicates we have thermal headroom. */ bool i915_gpu_raise(void) { struct drm_i915_private *i915; struct intel_rps *rps; i915 = mchdev_get(); if (!i915) return false; rps = &i915->gt.rps; spin_lock_irq(&mchdev_lock); if (rps->max_freq_softlimit < rps->max_freq) rps->max_freq_softlimit++; spin_unlock_irq(&mchdev_lock); drm_dev_put(&i915->drm); return true; } EXPORT_SYMBOL_GPL(i915_gpu_raise); /** * i915_gpu_lower - lower GPU frequency limit * * IPS indicates we're close to a thermal limit, so throttle back the GPU * frequency maximum. */ bool i915_gpu_lower(void) { struct drm_i915_private *i915; struct intel_rps *rps; i915 = mchdev_get(); if (!i915) return false; rps = &i915->gt.rps; spin_lock_irq(&mchdev_lock); if (rps->max_freq_softlimit > rps->min_freq) rps->max_freq_softlimit--; spin_unlock_irq(&mchdev_lock); drm_dev_put(&i915->drm); return true; } EXPORT_SYMBOL_GPL(i915_gpu_lower); /** * i915_gpu_busy - indicate GPU business to IPS * * Tell the IPS driver whether or not the GPU is busy. */ bool i915_gpu_busy(void) { struct drm_i915_private *i915; bool ret; i915 = mchdev_get(); if (!i915) return false; ret = i915->gt.awake; drm_dev_put(&i915->drm); return ret; } EXPORT_SYMBOL_GPL(i915_gpu_busy); /** * i915_gpu_turbo_disable - disable graphics turbo * * Disable graphics turbo by resetting the max frequency and setting the * current frequency to the default. */ bool i915_gpu_turbo_disable(void) { struct drm_i915_private *i915; struct intel_rps *rps; bool ret; i915 = mchdev_get(); if (!i915) return false; rps = &i915->gt.rps; spin_lock_irq(&mchdev_lock); rps->max_freq_softlimit = rps->min_freq; ret = gen5_rps_set(&i915->gt.rps, rps->min_freq); spin_unlock_irq(&mchdev_lock); drm_dev_put(&i915->drm); return ret; } EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1